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Message from the General Chairs 

The Eighth International Conference on Distributed Computing and Networking, 
which was held in Guwahati, India in December 2006, is an outgrowth and a con-
tinuation of the sequence of workshops titled International Workshop on Distributed 
Computing (IWDC)". Since its modest start in 1999, this annual event has grown rap-
idly in scope, volume, quality and visibility. Being traditionally situated in the different 
academic centers in India, it has also reflected the high-level research carried out in 
India in the area of distributed computing, and has helped to nourish and strengthen 
research interconnections among researchers in India itself as well as with distributed 
computing researchers throughout the world. 

During the seventh meeting of IWDC, held last December in Kharagpur, the  
Steering Committee noted with deep satisfaction how the once small workshop has 
gradually grown, through the efforts of a dedicated group of academics in the area, 
and acquired the stature and recognition of a leading international conference. Subse-
quently, the Steering Committee decided to reflect this development by changing the 
title of the meeting from a Workshop to a Conference. At the same time, it was also 
recognized that the recent shifts in research interests within the area of distributed 
computing, and particularly the recent focus on topics related to distributed network-
ing and on links bridging between distributed computing and networking, should also 
be reflected in the new name. The conference was thus renamed the International 
Conference on Distributed Computing and Networking (ICDCN). It should be 
stressed that while the new name entails a certain departure from the traditional track 
outlined by the seven previous IWDC meetings, with an eye towards further expan-
sion in size, scope and competitiveness, the underlying intention is still to maintain 
and preserve the special character of IWDC, as well as many of the features that con-
tributed to its past success, and particularly the pleasant and informal atmosphere, 
facilitating close interactions and academic discussions. 

Organizing a large conference is not a trivial task, and we are indebted to many. 
First and foremost, we are thankful to our generous sponsors, IBM, HP India Ltd., 
The Department of Science and Technology and The Department of Information 
Technology of the Government of India, for their benevolent support which was vital 
to making the conference a success.  

The Program Committee made arduous efforts in reviewing the numerous submis-
sions and selecting an impressive collection of high-quality papers for presentation. Our 
sincere thanks are due to the Program Chairs, Soma Chaudhuri and Samir R. Das, for 
coordinating and leading this effort, culminating in an exciting and well-balanced pro-
gram. We are grateful to the Keynote Chair, Sajal K. Das, for arranging five 
high-quality keynote talks by eminent leaders in the field. Following the tradition of 
previous years, we set up four advanced tutorials on topics of interest, relevant to the 
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realm between distributed computing and networking, namely, Modeling Biological 
Networks, Network Security, Algorithmic Issues in Wireless Sensor Networks, and 
Optical Networking. This was made possible by the efforts of the Tutorial Chairs, Srid-
har Iyer and Pinaki Mitra.  

The Organizing Committee worked hard to ensure that the participants enjoyed a 
comfortable stay and the technical meetings proceeded as smoothly as possible. We 
are grateful to the General Vice Chair, Sukumar Nandi, for arranging to hold the 
conference in Guwahati and for all he did to make the conference a success. Thanks 
are due to the Publicity Chairs, P. K. Das and Sriram V. Pemmaraju, for their great 
work in publicizing the event both locally and internationally, to the Publication 
Chairs, H. S. Paul and Srikanta Tirthapura, for their tremendous efforts in compiling 
the final proceedings, and to the Organizing Chair, D. Goswami, the Finance Chair, 
J. K. Deka, and the Scholarship Chair, S. V. Rao, for their hard work.  

We are grateful to the Indian Institute of Technology Guwahati for extending the 
logistic support to the conference. We thank Sukumar Ghosh, the head of the ICDCN 
Steering Committee, for his guidance, continuous support and advice. 

Last but not least, we extend our heartfelt thanks to the authors, reviewers and par-
ticipants of the conference, for their vital contribution to the success of this confer-
ence. It is our sincere hope that this event becomes another invaluable link in the 
sequence of IWDC and ICDCN meetings and a useful outlet for knowledge dissemi-
nation within the distributed computing and networking communities. 

December 2006 Gautam Barua 
IIT Guwahati 

Guwahati, India 

David Peleg 
Weizmann Institute of Science 

Rehovot, Israel 
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Message from the Technical Program Chairs 

Welcome to the Proceedings of the Eighth International Conference on Distributed 
Computing and Networking (ICDCN), 2006! This event was previously known as 
IWDC or International Workshop on Distributed Computing. It is great to see that a 
small workshop that grew out of the interests of a dedicated group of enthusiasts now 
has gained the stature of a truly international conference, covering most aspects of 
distributed computing and networking.  

This year we received 245 paper submissions continuing on the growth trend that 
we observed in recent years. We received submissions from all over the world. The 
electronic submission system (WIMPE) registered authors from India, USA, China, 
Korea, UK, Canada, Iran, Germany, Greece, Netherlands, France, Italy, Israel, Leba-
non, Turkey, Ireland, and Poland, reflecting a true international nature of the confer-
ence.  A good fraction of submitted authors are from outside India, a fact also 
reflected in the conference program and the content of these proceedings. 

Similar to the geographical diversity, the topical diversity of the submissions was 
noteworthy. All topics mentioned in the Call for Papers were covered. The 50 mem-
bers of the Technical Program Committee along with a team of external reviewers 
worked hard on the reviews under a very strict timeline. At the end of the review 
period, the Program Chairs selected 29 regular papers and 30 short papers for inclu-
sion in the proceedings and presentation in the conference.  

We were also fortunate to have an array of keynote speakers – Faith Ellen (University 
of Toronto), Nicola Santoro (Carleton University), Eli Gafni (UCLA), Shay Kutten 
(Technion), Manindra Agrawal (IIT-Kanpur), Anurag Kumar (Indian Institute of Sci-
ence). Their talks provided us with the unique opportunity to hear the leaders of their 
fields. Their papers related to the talks are also included in these proceedings. 

The main conference program was preceded by a day of tutorial presentations. We 
had an array of four tutorials, presented by  Kalyan Basu (University of Texas at 
Arlington), Indranil Sen Gupta (IIT, Kharagpur), Sriram Pemmaraju (University of 
Iowa) and Ashwin Gumaste (IIT, Bombay), on biological networks, network security, 
sensor networks and optical networks, respectively. 

We thank all authors for their interest in ICDCN 2006, and all Program Committee 
members and external reviewers for their commitment in spite of a tight schedule and 
a high review load. We hope that you will find the IDCDN proceedings to be techni-
cally rewarding.  

December 2006 Soma Chaudhuri 
Iowa State University 

Ames, Iowa, USA 

Samir R. Das 
Stony Brook University 

Stony Brook, New York, USA 
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Winfried E. Kühnhauser and Martin Süßkraut
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Abstract. Mobile Agents have been extensively studied for several years
by researchers in Artificial Intelligence and in Software Engineering.
They offer a simple and natural way to describe distributed settings
where mobility is inherent, and an explicit and direct way to describe the
entities of those settings, such as mobile code, software agents, viruses,
robots, web crawlers, etc. Further, they allow to express immediately
notions such as selfish behaviour, negotiation, cooperation, etc arising in
the new computing environments. As a programming paradigm, they al-
low a new philosophy of protocol and software design, bound to have an
impact as strong as that caused by that of object-oriented programming.
As a computational paradigm, mobile agents systems are an immediate
and natural extension of the traditional message-passing settings studied
in distributed computing.

In spite of all this, mobile agents systems have been largely ignored
by the mainstream distributed computing community. It is only in the
last few years that several researchers, some motivated by long investi-
gated and well established problems in automata theory, computational
complexity, and graph theory, have started to systematically explore this
new and exciting distributed computational universe.

In this paper we describe some interesting problems and solution tech-
niques developed in this investigations.

1 Introduction

The use of mobile agents is becoming increasingly popular when computing in net-
worked environments, ranging from Internet to the DataGrid, both as a theoretical
computational paradigm and as a system-supported programming platform.

In networked systems that support autonomous mobile agents, a main concern
is how to develop efficient agent-based system protocols; that is, to design pro-
tocols that will allow a team of identical simple agents to cooperatively perform
(possibly complex) system tasks. Example of basic tasks are wakeup, traversal,
rendez-vous, election. The coordination of the agents necessary to perform these
tasks is not necessarily simple or easy to achieve. In fact, the computational
problems related to these operations are definitely non trivial, and a great deal
of theoretical research is devoted to the study of conditions for the solvability of
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these problems and to the discovery of efficient algorithmic solutions; e.g., see
[1,2,4,5,6,7,17,18,20,45].

At an abstract level, these environments can be described as a collection of
autonomous mobile agents (or robots) located in a graph G. The agents have
computing capabilities and bounded storage, execute the same protocol, and
can move from node to neighboring node. They are asynchronous, in the sense
that every action they perform (computing, moving, etc.) takes a finite but oth-
erwise unpredictable amount of time. Each node of the network, also called host,
provide a storage area called whiteboard for incoming agents to communicate and
compute, and its access is held in fair mutual exclusion. The research concern
is on determining what tasks can be performed by such entities, under what
conditions, and at what cost.

At a practical level, in these environments, security is the most pressing con-
cern, and possibly the most difficult to address. Actually, even the most basic
security issues, in spite of their practical urgency and of the amount of effort,
must still be effectively addressed (for a survey, see [50]).

Among the severe security threats faced in distributed mobile computing envi-
ronments, two are particularly troublesome: harmful agent (that is, the presence
of malicious mobile processes), and harmful host (that is, the presence at a net-
work site of harmful stationary processes).

The former problem is particularly acute in unregulated non-cooperative set-
tings such as Internet (e.g., e-mail transmitted viruses). The latter not only
exists in those settings, but also in environments with regulated access and
where agents cooperate towards common goals (e.g., sharing of resources or dis-
tribution of a computation on the Grid. In fact, a local (hardware or software)
failure might render a host harmful. In this paper we concentrate on two security
problems, one for each type: locating a black hole, and capturing an intruder.

2 Black Hole Search

2.1 The Problem and the Model

The problem posed by the presence of a harmful host has been intensively studied
from a programming point of view (e.g., see [41,54,56]). Obviously, the first step
in any solution to such a problem must be to identify, if possible, the harmful
host; i.e., to determine and report its location; following this phase, a “rescue”
activity would conceivably be initiated to deal with the destructive process res-
ident there. Depending on the nature of the danger, the task to identify the
harmful host might be difficult, if not impossible, to perform.

Consider the presence in the network of a black hole: a host which disposes
of visiting agents upon their arrival, leaving no observable trace of such a de-
struction. Note that this type of highly harmful host is not rare; for example,
the undetectable crash failure of a site in a asynchronous network turns such a
site into a black hole. The task is to unambiguously determine and report the
location of the black hole by a team of mobile agents. One can easily see that
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the problem can also be formulated as an exploration problem. In fact, the black
hole can be located only after the whole network has been visited, and all nodes
but one are found to be safe. Clearly, in this process some agents have disap-
peared in the black hole). The searching agents start from the same safe site (the
homebase); the task is successfully completed if, within finite time, at least one
agent survives, and all surviving agents know the location of the black hole. The
research concern is to determine under what conditions and at what cost mo-
bile agents can successfully accomplish this task, called Black-Hole Search. The
main complexity measures for this problem are: the size of the solution (i.e., the
number of agents employed), the cost (i.e., the number of moves performed by
the agents executing a size-optimal solution protocol). Sometimes also bounded
time complexity is considered.

In general no assumptions are made on the time for an agent to move on a
link, except that it is finite; i.e., the system is asynchronous. Moreover, agents
communicate by writing and reading on whiteboards located at the nodes.

2.2 A Background Problem: Safe Exploration

The problem of exploring and mapping an unknown environment has been exten-
sively studied in a safe environment, due to its various applications in different
areas (navigating a robot through a terrain containing obstacles, finding a path
through a maze, or searching a network).

Most of the previous work on exploration of unknown graphs has been limited
to single agent exploration. Studies on exploration of labelled graphs typically
emphasize minimizing the number of moves or the amount of memory used by
the agent (e.g., see [1,17,19,51,52]). Exploration of anonymous graphs is possible
only if the agents are allowed to mark the nodes in some way; except when the
graph has no cycles (i.e. the graph is a tree [20,37]). For exploring arbitrary
anonymous graphs, various methods of marking nodes have been used by differ-
ent authors. Pebbles that can be dropped on nodes have been proposed first in
[9] where it is shown that any strongly connected directed graph can be explored
using just one pebble (if the size of the graph is known) and using O(log log n)
pebbles, otherwise. Distinct markers have been used, for example, in [29] to ex-
plore unlabeled undirected graphs. Yet another approach, used by Bender and
Slonim [10] was to employ two cooperating agents, one of which would stand
on a node, while the other explores new edges. Whiteboards have been used by
Fraigniaud and Ilcinkas [38] for exploring directed graphs and by Fraigniaud et
al. [37] for exploring trees. In [20,38,39] the authors focus on minimizing the
amount of memory used by the agents for exploration (they however do not
require the agents to construct a map of the graph).

There have been few results on exploration by more than one agent. A two
agent exploration algorithm for directed graphs was given in [10], whereas Fraig-
niaud et al. [37] showed how k agents can explore a tree. In both these cases,
the agents start from same node and they have distinct identities. In [7] a team
of dispersed agents explores a graph and constructs a map. The graph is anony-
mous but the links are labeled with sense of direction; moreover the protocol
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works if the size n of the network or the number of agents k are co-prime and
it achieves a move complexity of O(km) (where m is the number of edges). An-
other algorithm with the same complexity has been described in [15], where the
requirement of sense of direction is dropped. In this case the agents need to
know either n or k, which must be coprime. The solution has been made “ef-
fective” in [16], where effective means that it will always terminate, regardless
of the relationship between n and k reporting a solution whenever the solution
can be computed, and reporting a failure message when the solution cannot be
computed.

The map construction problem is actually equivalent to some others basic
problems, like Agent Election, Labelling and Rendezvous. Among them ren-
dezvous is probably the most investigated; for a recent account see [2,46].

2.3 Basic Properties for Black Hole Search

When considering the black hole search problem, some constraints follow from
the asynchrony of the agents. For example [21]:

– For asynchronous agents to locate the black hole, G must be 2-node-connected.
– For asynchronous agents to locate the black hole, the number of nodes of G

must be known.
– For asynchronous agents it is impossible to verify if there is a back hole.

Moreover, since one agent may immediately wander into the black hole, we
have:

– At least two agents are needed to locate the black hole.

How realistic is this bound? How many agents suffice? The answers vary
depending on the a priori knowledge the agents have about the network, and on
the consistency of the local labelings.

2.4 Impact of Knowledge

Topological Ignorance. Consider first the situation of topological ignorance; that
is when the agents have no a priori knowledge of the topological structure of
G. Then any generic solution needs at least Δ + 1 agents, where Δ is the max-
imal degree of G, even if the agents know Δ and the number n of nodes of G.
Interestingly, in any minimal generic solution (i.e., using the minimum number
of agents), the agents must perform Ω(n2) moves in the worst case [23]. Both
these bounds are tight. In fact there is a protocol that correctly locates the black
hole in O(n2) moves using Δ + 1 agents that know Δ and n [23]. The algorithm
essentially performs a collective “cautious” exploration of the graph until all
nodes but one are considered to be safe. The whiteboard on the homebase is
used to store information about the nodes that have been already explored and
the agents move back and forth from the homebase to continue their job. If the
black hole is a node with maximum degree, there is nothing to prevent Δ agents
disappearing in it.
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Sense of Direction. Consider next the case of topological ignorance in systems
where there is sense of direction (SD); informally, sense of direction is a labeling
of the ports that allows the nodes to determine whether two paths starting from
a node lead to the same node, using only the labels of the ports along these
paths (for a survey on Sense of Direction see [34]). In this case, two agents suf-
fice to locate the black hole, regardless of the (unknown) topological structure
of G. The proof of [23] is constructive, and the algorithm has a O(n2) cost. This
cost is optimal; in fact, it is shown that there are types of sense of direction
that, if present, impose an Ω(n2) worst-case cost on any generic two-agent algo-
rithm for locating a black hole using SD. As for the topological ignorance case,
the agents perform an exploration. The algorithm is similar to the one with
topological ignorance (in fact it leads to the same cost); sense of direction is
however very useful to decrease the number of casualties. The exploring agents
can be only two: a node that is being explored by an agent is considered “dan-
gerous” and by the properties of sense of direction, the other agent will be able
to avoid it in its exploration, thus insuring that one of the two will eventually
succeed.

Complete Topological Knowledge. Consider the case of complete topological
knowledge of the network; that is, the agents have a complete knowledge of
the edge-labeled graph G, the correspondence between port labels and the link
labels of G, and the location of the source node (from where the agents start the
search). This information is stronger then the more common topological aware-
ness (i.e., knowledge of the class of the network, but not of its size nor of the
source location – e.g. being in a mesh, starting from an unknown position).

Also in this case, two agents suffice [23]; furthermore the cost of a minimal
protocol can be reduced in this case to O(n log n), and this cost is worst-case
optimal. The technique here is quite different and it is based on a partitioning
of the graph in two portions, which are given to the two agents to perform the
exploration. One will succeed in finishing its portion and will carefully move to
help the other agent finishing its own.

Topology-Sensitive Universal Protocols. Interestingly, it is possible to consider-
ably improve the bound on the number of moves without increasing the team
size. In fact, there is a recent universal protocol, Explore and Bypass, that allows
a team of two agents with a map of the network to locate a black hole with cost
O(n + d log d), where d denotes the diameter of the network [25].

This means that, without losing its universality and without violating the
worst-case Ω(n log n) lower bound, this algorithm allows two agents to locate
a black hole with Θ(n) cost in a very large class of (possibly unstructured)
networks: those where d = O(n/ log n).

Importantly, there are many networks with O(n/logn) diameter in which the
previous protocols [23,24] fail to achieve the O(n) bound. A simple example
of such a network is the wheel, a ring with a central node connected to all ring
nodes, where the central node is very slow: those protocols will require O(n log n)
moves.
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Variations with Complete Topological Knowledge. A very simple algorithm that
works on any topology (a-priori known by the agents) is shown in [27]. The
algorithm, based on the pre-computation of an open vertex cover by cycles of
the network, uses the optimal number of agents (two); its cost (number of moves)
depends on the choice of the cover and it is optimal for several classes of networks.
These classes include all Abelian Cayley graphs of degree three and more (e.g.,
hypercubes, multi-dimensional tori, etc,), as well as many non-Abelian cube
graphs (e.g., CCC, butterfly, wrapped-butterfly networks, etc.). For some of
these networks, this is the only algorithm achieving such a bound.

Using Tokens. Recently the problem has been investigated also in a different,
weaker model where there are no whiteboards at the nodes but each agent has
an identical token that the agent can place on (or remove from) a node [26,28].
Surprisingly, the black hole search problem can be solved also in this model.
Furthermore, this can be done using a minimal team size and performing a
polynomial number of moves; not surprisingly, the protocol is quite complex.
Also the case of the ring has been studied in details in [28].

2.5 Special Topologies

A natural question to ask is whether the bounds for arbitrary networks with full
topological knowledge can be improved for networks with special topologies by
topology-dependent proptocols.

Rings. The problem has been investigated and its solutions characterized for
ring networks [21]. A Omega(n log n) lower bound holds since Ω(n log n) moves
are needed by any two-agents solution [21]. An agent and move optimal solution
exists, based on a partitioning of the ring and on a non-overlapping exploration
by the agent. There exists an optimal trade-off between time complexity and
number of agents. In fact, increasing the number of agents the number of moves
cannot decrease, but the time to finish the exploration does [21]. Notice that the
lower bound for rings implies an Ω(n log n) lower bound on the worst case cost
complexity of any universal protocol.

The ring has been investigated also to perform another task: rendezvous of
k anonymous agents, in spite of the presence of a black hole. The problem is
studied in [22] and a complete characterization of the conditions under which the
problem can be solved is established. The characterization depends on whether
k or n is unknown (at least one must be known for any non-trivial rendezvous).
Interestingly, it is shown that, if k is unknown, the rendezvous algorithm also
solves the black hole location problem, and it does so with a bounded time
complexity of Θ(n); this is a significant improvement over the O(n log n) bounded
time complexity of [21].

Interconnection Networks. The negative result for rings does not generalizes.
Sometimes the network has special properties that can be exploited to obtain a
lower cost network-specific protocol. For example, two agents can locate a black
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hole with only O(n) moves in a variety of highly structured interconnection
networks such as hypercubes, square tori and meshes, wrapped butterflies, star
graphs [24]. These strategies are based on the construction of a special walk in
the graph and by using this walk to explore the network.

2.6 Synchronous Networks

The Black Hole search problem has been studied also in synchronous settings,
where the time for an agent to traverse a link is assumed to be unitary.

When the system is synchronous the goals and strategies are quite different
from the ones reviewed in the previous sections. In fact, one of the major prob-
lem when designing an algorithm for the asynchronous case is that an agent
cannot wait at a node for another agent to come back; as a consequence, agents
must always move, and have to do it carefully. When the system is synchronous,
on the other hand, the strategies are mostly based on waiting the right amount
of time before performing a move. The algorithm becomes the determination of
the shortest traversal schedule for the agents, where a traversal schedule is a
sequence of actions (move to a neighbouring node or stay at the current node).
Furthermore, for the black hole search to be solvable, it is no longer necessary
that the network is 2-node connected; thus, the black hole search can be per-
formed by synchronous agents also in trees.

In synchronous networks tight bounds have been established for some classes
of trees [13]. In the case of general networks the problem of finding the optimal
strategy is shown to be NP-hard [14,44] and approximation algorithms are given
in [13] and subsequently improved in [43,44]. The case of multiple black holes
have been very recently investigated in [12] where a lower bound on the cost and
close upper bounds are given.

3 Intruder Capture and Network Decontamination

A particularly important security concern is to protect a network from unwanted,
and possibly dangerous intrusions. At an abstract level, an intruder is an alien
process that moves on the network to sites unoccupied by the system’s agents
“contaminating” the nodes it passes by. The concern for the severe damage
intruders can cause has motivated a large amount of research, especially on
detection (e.g., see [3,36,55]).

3.1 Decontamination and Related Problems

Assume the nodes of the network are initially contaminated and we want to
deploy a team of agents to clean (or decontaminate) the whole network. The
cleaning of a node occurs when an agent transits on the node; however, when a
node is left without protection (no agents on it) it might become re-contaminated
according to a recontamination rule. The most common recontamination rule is
that as soon as a node without an agent on it has a contaminated neighbour, it
will become contaminated again.
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A variation of the decontamination problem described above has been ex-
tensively studied in the literature under the name of graph search (e.g., see
[30,42,47,49,53]). The graph search problem has been studied for many classes
of graphs, and determining the optimal number of searchers (called search num-
ber) has been proved to be NP -complete in general.

In the classical graph search problem the agents can be arbitrarily moved from
a node “jumping” to any other node in the graph. The main difference in the
setting described in this survey is that the agents, which are pieces of software,
cannot be removed from the network; they can only move from a node to a neigh-
boring one. This additional constraint has been introduced and first studied in
[5] resulting in a contiguous, monotone, node search or intruder capture problem.
With the contiguous assumption the nature of the problem changes considerably
and the classical results on node and edge search do not generally apply. The
problem of finding the optimal number of agents is still NP -complete for ar-
bitrary graphs. As we will survey below, the problem has been studied mostly
in specific topologies. Also the arbitrary topology has been considered; in this
case, some heuristics have been proposed [35] and a move-exponential optimal
solution has been given in [11]. Investigations on the relationship between the
contiguous model and the classical one for graph search (where the agents can
“jump”) has been studied, for example, in [8,40].

In this survey we use the term decontamination to refer to contiguous
monotone node search as defined in [8].

3.2 The Models for Decontamination

Initially, all agents are located at the same node, the homebase, and all the
other nodes are contaminated; a decontamination strategy consists of a sequence
of movements of the agents along the edges of the network. The agents can
communicate when they reside on the same node.

Starting from the classical model employed in [5] (called Local Model),
additional assumptions have sometimes been added to study the impact that
more powerful agents’ or system’s capabilities have on the solutions of our
problem.

1) In the Local Model an agent located at a node can “see” only local information,
like the state of the node, the labels of the incident links, the other agents present
at the node.
2) Visibility is the capability of the agent to “see” the state of its neighbors; i.e.,
an agent can see whether a neighboring node is guarded, whether it is clean, or
contaminated. Notice that, in some mobile agent systems, the visibility power
could be easily achieved by “probing” the state of neighboring nodes before
making a decision.
3) Cloning is the capability, for an agent, to clone copies of itself.
4) Synchronicity implies that local computations are instantaneous, and it takes
one unit of time (one step) for an agent to move from a node to a neighboring one.
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The efficiency of a strategy is usually measured in terms of number of agents,
number of moves performed by the agents, and ideal time.

We say that a cleaning strategy is monotone if once a node is clean, it will
never be contaminated again. All the results reported here apply for monotone
strategies.

3.3 Results in Specific Topologies

Trees. The tree has been the first topology to be investigated in the Local Model
[5]. In the paper, the authors show a linear distributed algorithm to determine
the minimum number of agents necessary to decontaminate an arbitrary given
tree and describe a decontamination strategy. The determination of the optimal
number of agents is done through a saturation where appropriate information
about the structure of the tree are collected from the leaves and propagated
along the tree, until the optimal is known for each possible starting point. In
the worst case (complete binary tree) the number of agent is O(log n), where n
is the number of nodes in the tree.

Hypercubes. It has been shown in [32] that to decontaminate a hypercube of
size n, Θ( n√

log n
) agents are necessary and sufficient. The employ of an optimal

number of agents in the Local Model has an interesting consequence; in fact, it
implies that Θ( n√

log n
) is the search number for the hypercube in the classical

model, i.e., where agents may “jump”.
In the algorithm for the Local Model one of the agents acts as a coordina-

tor for the entire cleaning process. The cleaning strategy is carried out on the
broadcast tree of the hypercube. The main idea is to place enough agents on
the homebase and to have them move, level by level, on the edges of the broad-
cast tree, leaded by the coordinator in such a way that no recontamination may
occur. The number of moves and the ideal time complexity of this strategy are
indicated in Table 1.

The visibility assumption allows the agents to make their own decision regard-
ing the action to take solely on the basis of their local knowledge. In fact, the
agents are still moving on the broadcast tree, but they do not have to follow the
order imposed by the coordinator. The agents on node x can proceed to clean
the children of x in the broadcast tree when they “see” that the other neigh-
bors of x are either clean or guarded. With this strategy the time complexity
is drastically reduced (since agents move concurrently and independently), but
the number of agents increases. Other variations of those two models have been
studied and summarized in Table 1.

A characterization of the impact that these additional assumptions have on
the problem is still open. For example: an optimal move complexity in the Local
Model with Cloning has not been found, and it is not clear whether it exists;
when the agents have Visibility, synchronicity has not been of any help although
it has not been proved that it is indeed useless; the use of an optimal number of
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Table 1. Decontamination of the Hypercube. The star indicates an optimal bound.

Agents Time Moves

Local Local (�) O( n√
log n

) O(n log n) O(n log n)

Local, Cloning, Synchronicity n/2 (�) log n (�) n − 1

Visibility Visibility n/2 (�) log n O(n log n)
Visibility and Cloning n/2 (�) log n (�) n − 1

agents in the weaker Local Model is obtained at the expenses of employing more
agents and it is not clear whether this increment is necessary.

Chordal Rings. The Local and the Visibility Models have been subject of
investigation also in the Chordal Ring topology in [33].

Let C(〈d1 = 1, d2, ..., dk〉) be a chordal ring network with n nodes and link
structure 〈d1 = 1, d2, ..., dk〉, where di < di+1 and dk ≤ �n

2 �. In [33] it is first
shown that the smallest number of agents needed for the decontamination does
not depend on the size of the chordal ring, but solely on the length of the longest
chord. In fact, any solution of the contiguous decontamination problem in a
chordal ring C(〈d1 = 1, d2, ..., dk〉) with 4 ≤ dk ≤ √

n, requires at least 2 · dk

searchers (2 · dk + 1 in the Visibility Model).
In both models, the cleaning is preceded by a deployment stage after which

the agents have to occupy 2dk consecutive nodes. After the deployment, the
decontamination stage can start. Also in the case of the chordal ring, the visibility
assumption allows the agents to make their own decision solely on the basis of
their local knowledge: an agent move to clean a neighbour only when this is
the only contaminated neighbour. The complexity results in the two Models are
summarized in Table 2.

Table 2. Results for the Chordal Ring. The (�) indicates an optimal bound.

Chordal Ring Agents Time Moves

Local 2dk + 1 (�) 3n − 4dk − 1 4n − 6dk − 1

Visibility 2dk (�) n−2dk
2(dk−dk−1)

n − 2dk (�)

Consistently to the observations for the Hypercube, also in the case of the
chordal ring the visibility assumption allows to drastically decrease the time
complexity (and in this case also the move complexity). In particular, the strate-
gies for the visibility model are optimal both in terms of number of agents and
in terms of number of moves; as for the time complexity, visibility allows some
concurrency (although it does not bring this measure to optimal as was the case
for the hypercube).

Tori. A lower bound for the torus has beed derived in [33]. Any solution of
the decontamination problem in a torus T (h, k) with h, k ≥ 4 requires at least
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2 · min{h, k} agents; in the Local model it requires at least 2 · min{h, k} + 1
agents. The strategy that matches the lower bound is very simple. The idea is to
deploy the agents to cover two consecutive columns and then keep one column
of agents to guard from decontamination and have the other column move along
the torus. The complexity results are summarized in Table 3. As for the other
topologies, Visibility decreases time and slightly increases the number of agents.
In the case of the torus it is interesting to notice that in the Visibility model all
three complexity measures are optimal.

Table 3. Results for the 2-dimensional Torus with dimensions h, k, h ≤ k

Torus Agents Time Moves

Local 2h + 1 (�) hk − 2h 2hk − 4h − 1

Visibility 2h (�) �k−2
2

� (�) hk − 2h (�)

Finally, these simple decontamination strategies can be generalized to d-
dimensional tori (although the lower bounds have not been generalized). Let
T (h1, . . . , hd) be a d-dimensional torus and let h1 ≤ h2 ≤ . . . ≤ hd. Let N be
the number of nodes in the torus and let H = N

hd
. The resulting complexities

are reported below.

Table 4. Results for a d-dimensional Torus T (h1, h2, . . . , hd)

d-dim Torus Agents Time Moves

Local 2 N
hd

+ 1 N − 2 N
hd

2N − 4 N
hd

− 1

Visibility 2 N
hd

(�hd − 2�)/2 N − 2 N
hd

3.4 Different Contamination Rules

In [48] the network decontamination problem has been considered under a new
model of immunity to recontamination: a clean node, after the cleaning agent
has gone, becomes recontaminated only if a weak majority of its neighbours
are infected. This recontamination rule is called local immunization. The paper
studies the effects of this level of immunity on the nature of the problem in tori
and trees. More precisely, it establishes lower-bounds on the number of agents
necessary for decontamination, and on the number of moves performed by an
optimal-size team of cleaners, and it proposes cleaning strategies. The bounds are
tight for trees and for synchronous tori; they are within a constant factor of each
other in the case of asynchronous tori. It is shown that with local immunization
only O(1) agents are needed to decontaminate meshes and tori, regardless of
their size; this must be contrasted with e.g. the 2 min{n, m} agents required
to decontaminate a n × m torus without local immunization [33]. Interestingly,
among tree networks, binary trees were the worst to decontaminate without local
immunization, requiring Ω(log n) agents in the worst case [5]. Instead, with local
immunization, they can be decontaminated by a single agent.
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Abstract. This paper proposes and analyzes a real-time guarantee
scheme for time-sensitive messages on ad hoc sensor network built on
top of dual channels, each of which exploits a time-slotted channel ac-
cess mechanism synchronized across the dual channels. Each message is
evenly partitioned to produce two identical message sets for the coordi-
nator to determine the polling schedule according to the EDF policy. The
slot rearrangement step maximizes the number of switchable pairs so that
the scheduled polls can be switched dynamically between the channels
in response to the current channel status. By the runtime slot exchange
procedure that reclaims slots reserved but not used due to channel error,
the deadline meet ratio can be further improved. Simulation results show
that the proposed scheme improves the real-time performance by up to
12.5 % compared with global EDF or NCASP.

1 Introduction

The IEEE 802.11 MAC (Medium Access Control), a contention based medium
access protocol, has been successfully deployed in WLAN (Wireless Local Area
Network) and has also been implemented in many wireless testbeds and simu-
lation packages for wireless multi-hop networks[1]. As both speed and capacity
of wireless media increase, so does the demand for supporting time-sensitive
high-bandwidth applications and peer-to-peer applications such as VoIP, mobile
video conferencing, and so on. Particularly, wireless ad hoc sensor networks are
mainly applied to emergency, disaster recovery, rescue, exploration, and military
action. However, it is widely recognized that the MAC in multihop ad hoc sensor
networks is not only inefficient but also suffers from the quality degradation as
well as the connection instability originated from the ad hoc mobility.

A wireless ad hoc network is a self-configuring network of mobile routers and
associated hosts connected by wireless links, forming an arbitrary topology. The
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routers are free to move randomly and organize themselves in an unfixed pattern.
Thus, the network’s wireless topology may change rapidly and unpredictably.
Such a network may operate in a stand-alone mode, or may be connected to
the larger backbone network such as Internet. Minimal configuration and quick
deployment make ad hoc networks suitable for emergency situations. Each sensor
station has wireless communication capability and some level of intelligence for
signal processing and networking of the data.

The time-sensitive message has a hard real-time constraint that it should be
transmitted within a bounded delay as long as there is no network error. Other-
wise, the data are considered to be lost, and the loss of a hard real-time message
may jeopardize the correctness of execution result or system itself. Accordingly,
a real-time message stream needs the guarantee from the underlying network
that its time constraints are always met in advance of the system operation or
connection setup. However, just the guarantee scheme is not sufficient to satisfy
such time constraints as the wireless ad hoc network is subject to unpredictable
location-dependent and bursty errors, which make a real-time traffic application
fail to send or receive some of its real-time packets[2].

In spite of such error characteristics, the wireless network has an advantage
that it can be easily duplicated, or a cell is able to operate dual channels. The
dual channel networks have doubled network bandwidth, so intuitively such a
network should be able to accommodate twice as much real-time traffic as a single
network. However, real-time scheduling for dual or multiple resource system is
known to be an NP-hard problem[3], while the uniprocessor system has optimal
scheduling solutions such as RM (Rate Monotonic) for static scheduling as well
as EDF (Earliest Deadline First) for dynamic scheduling. Applying RM or EDF
method to multiple resource system is not optimal in scheduling preemptable
jobs due to its work conserving nature[4]. However, the network transmission
has no data dependency between each message, so the optimality of EDF scheme
can be preserved also for the dual networks if we view the given message set as
two independent (identical) message sets.

Moreover, the dual channels can cope with network errors without violating
the time constraints of messages, if the transmission order is rearranged to allevi-
ate the situation that the same stream is scheduled on the time slots cobegining
at both channels. If the simultaneous slots are allocated to different stations, the
allocation can be switched between the channels when the coordinator cannot
reach the station via the originally scheduled channel. With these assertions, we
are to propose and analyze the performance of a bandwidth allocation scheme
for real-time sensor messages on the dual channel wireless networks, aiming at
sustaining the optimality of EDF scheduling scheme as well as maximizing the
capability of coping with wireless channel errors. In this paper, the ad-hoc mode
IEEE 802.11 WLAN is assumed to be the target communication architecture[1].

The rest of this paper is organized as follows: Section 2 introduces the related
works. With the description on the dual wireless ad hoc network in Section 3,
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Section 4 describes the proposed real-time message scheduling scheme in detail.
After exhibiting the performance measurement result in Section 5, Section 6 con-
cludes this paper with a brief summarization and the description of future works.

2 Related Works

SeveralMACprotocols have beenproposed to provide boundeddelays for real-time
messagesalongwithnon-real-timedataoverawireless channel.Mostprotocolsthat
do not conform to the IEEE standard, are typically based on a frame-structured
access which completely removes the contention part. For example, Choi and Shin
suggested a unified protocol for real-time and non-real-time communications in
wireless networks[5]. In their scheme, a BS (Base Station) polls a real-time mobile
station according to the non-preemptable EDF policy. The BS also polls the non-
real-time message according to the modified round-robin scheme regardless of a
standard CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance)
protocol to eliminate message collision. M. Caccamo and et. al proposed a MAC
that supports deterministic real-time scheduling via the implementation ofTDMA
(Time Division Multiple Access), where the time axis is divided into fixed size
slots to apply the EDF discipline to wireless local area network[6]. Referred as
implicit contention, it makes every station simultaneously run the common real-
time scheduling algorithm to determine which message can access the medium.

Most works that conform to the IEEE standard are aiming at enhancing the
ratio of timely delivery for soft multimedia applications, rather than provid-
ing a hard real-time guarantee. For example, DBASE (Distributed Bandwidth
Allocation/Sharing/Extension) is a protocol to support both synchronous and
multimedia traffics over IEEE 802.11 ad hoc WLAN[7]. The basic concept is that
each time real-time station transmits its packet it will also declare and reserve the
needed bandwidth at the next collision-free period. Every station collects this
information and then calculates its actual bandwidth at the next cycle. This
scheme can be applied to WLAN standard, but it is not essentially designed for
hard real-time message streams. Also, EDCF (Enhanced Distributed Contention
Function) provided no guarantee of service, but it establishes a probabilistic pri-
ority mechanism to allocate bandwidth based on traffic categories, while HCF
(Hybrid Coordination Function) replaced centralized polling based access mech-
anism that a hybrid controller polls stations during a contention-free period[8].

The dual network architecture is analogous to the dual processor system, as
both network and processor can be considered as an active resource. According
to the IEEE 802.11 standards, at any instance a maximum of three channels
can be used simultaneously as the channels overlap each other[9][10]. In this
system, each node can be equipped with two or more (transmitter, receiver) pairs,
giving the flexibility to transmit and receive simultaneously on both channels.
Traditionally, there have been two approaches for scheduling periodic tasks in
dual or multiprocessors, namely, partitioning and global scheduling[3].

The partitioning scheme assigns each stream to a single network, on which
messages are scheduled independently. The main advantage of partitioning
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approaches is that they reduce a multiprocessor scheduling problem to a set
of uniprocessor ones. However, finding an optimal assignment to networks is a
bin-packing problem, which is NP-hard in the strong sense. In addition, Lee et
al. have proposed a bandwidth allocation scheme for real-time traffic on dual
channel WLANs. This scheme decides the polling vector based on the weighted
round robin policy for contention-free period[11]. Accordingly, their scheme can
not only efficiently overcome the deferred beacon that declines the schedulabil-
ity in WLAN, but also reduce the worst case waiting time. However, it did not
consider how to overcome the channel error at all.

In global scheduling, all eligible tasks are stored in a single priority-ordered
queue while the global scheduler selects for execution of the highest priority
task from this queue. For example, CASP (Contiguous Algorithm for Single
Priority) maintains an allocation vector A, where Ai represents the partial sum
of slots currently allocated to channel i[12]. For a given request, the scheduling
algorithm allocates the request contiguously on the channel which has the least
partial sum of allocation. Additionally, NCASP (Non-continuous Algorithm for
Single Priority) defines an overflow amount Φ, and if an assignment makes Ai

exceed Φ, it is split and then the overflown part is assigned to another resource.
However, how to decide Φ brings another complex case-sensitive problem.

3 Dual Wireless Ad Hoc Network

3.1 IEEE 802.11 WLAN

The WLAN operates on both CP (Contention Period) and CFP (Contention
Free Period) phases alternatively in BSS (Basic Service Set) as shown in Fig. 1.
Each CFP and CP are mapped to PCF (Point Coordination Function) and DCF
(Distributed Coordination Function), respectively[1]. PC (Point Coordinator)
node, typically AP (Access Point), sequentially polls each station one by one
during CFP. Even in the ad hoc mode, it is possible to designate a specific node
to play a role of PC in a target group. The PC attempts to initiate CFP by
broadcasting a Beacon at regular intervals derived from a network parameter of
CFPRate. Only the polled node is given the right to transmit its message for a
predefined time interval, and it always responds to a poll immediately whether
it has a pending message or not.

DCF

CFP CFP CPCP

Superframe Superframe

PCF DCFPCF

Beacon

Fig. 1. Time axis of wireless LAN
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3.2 Ad Hoc Network

IEEE 802.11 MAC specification allows for two modes of operation: ad hoc and
infrastructure modes[1]. In ad hoc mode, two or more stations recognize each
other through beacons and establish a peer-to-peer communication without any
existing infrastructure. In smart-rooms and hot-spot networks where wireless
access-enabled stations are located close in a small area enough to form a direct
connection without preplanning, ad hoc mode is known to have many advantages
including the low management cost[13]. Oppositely, in infrastructure mode there
is a fixed entity called an AP that bridges all data between the mobile stations
associated to it. Applying the DCF to ad hoc network leads to uncertainties
to each node’s access to the medium. Unfortunately, these uncertainties sum
up over multiple hops, hence throughput and end-to-end delay can suffer from
large variations, impacting against time-sensitive real-time applications. As a
result, to support a certain level of QoS, some kind of coordination function is
indispensable.

To support the multihop and mobile characteristics of wireless ad hoc net-
works, the rapid deployment of network and dynamic reconstruction after topol-
ogy changes are efficiently implemented by cluster management. There are sev-
eral algorithms used to divide the network into clusters. The most widely used
clustering algorithms are LIDCA (Lowest IDentifier Clustering Algorithm) and
HCCA (Highest Connectivity Clustering Algorithm) [14]. Nodes in the network
have a unique identifier. LIDCA organizes the network based on this identifier,
giving the role of a cluster-head to the node with the lowest ID in a neighbor-
hood. The operation of HCCA is similar to LIDCA, but it divides the network
according to the connectivity of each node, thus selects the nodes with highest
connectivity - those with most neighbors - as cluster-heads. In both algorithms,
every cluster is identified using the ID of its cluster-head. Upon deployment,
nodes transmit their position in a single TDMA frame, with enough power to
reach all the other nodes. In the ad hoc mode, this cluster-head node can desig-
nate to play a role of PC to schedule the transmission.

3.3 Network and Message Model

In ad hoc network, each cell or cluster is assumed to consist of a PC and multiple
sensor stations, and each of them is capable of transmitting and receiving at the
same time using two transceivers while the adjacent channels are separated by
guard bands. Every station shares medium on the common frequency band and
accesses according to the predefined MAC protocol. Each flow is ether an uplink
or downlink, while PC coordinates the overall network operations. This paper
exploits the contention-free TDMA style access policy as in [2,3,5], for the real-
time guarantee, as the contention resolution via packet collisions consumes the
precious communication energy.

As the real-time guarantee cannot be provided without developing a deter-
ministic access schedule, the network time is divided into a series of equally
sized slots to eliminate the unpredictability stemmed from access contention.
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Accordingly, the allocation scheme assigns each slot to real-time streams so as
to meet their time constraints. The slot equals the basic unit of wireless data
transmission and the other non-real-time traffic is also segmented to fit the slot
size. Therefore, a preemption occurs only at the slot boundary. The time slots
of both networks are synchronized, that is, every time a slot on one network
begins, the other network also starts its slot. This network access can be im-
plemented by making PC poll each station according to the predefined schedule
during the CFP.

The traffic of sensory data is typically isochronous (or synchronous), consisting
of message streams that are generated by their sources on a continuing basis and
delivered to their respective destinations also on a continuing basis[4]. This paper
follows the general real-time message model which has n streams, namely, S1,
S2, ..., Sn, and each Si generates a message less than Ci at each beginning of its
period Pi. Each packet must be delivered to its destination within Di time unit
from its generation or arrival at the source, otherwise, the packet is considered
to be lost. Generally, Di coincides with Pi to make the transmission complete
before the generation of the next message. As is the case of other works, we begin
with an assumption that each station has only one stream, and this assumption
can be generalized with virtual station concept[4].

3.4 Error Model

The 802.11 radio channel is modeled as a Gilbert channel[13]. We can denote
the transition probability from state good to state bad by p and the probability
from state bad to state good by q, as shown in Fig. 2. The pair of p and q
representing a range of channel conditions, has been obtained by using the trace-
based channel estimation. The average error probability and the average length
of a burst of errors are derived as p

p+q and 1
q , respectively. A packet is received

correctly if the channel remains in state good for the whole duration of packet
transmission. Otherwise, it is received in error. Channels between the PC and
respective stations are independent of one another in their error characteristics,
and both channels between the PC and a station have no relationship as they use
different radio frequency. For all transmissions, senders expect acknowledgment
for each transmitted frame and are responsible for retrying the transmission.
After all, error detection and recovery is up to the sender station, as positive
acknowledgments are the only indication of success.

BadGood

p

q

1−p

1−q

Fig. 2. Error model



A Real-Time Guarantee Scheme Based on the Runtime Message Scheduling 21

4 Message Scheduling

4.1 Bandwidth Allocation Procedure

As the most prominent dynamic priority scheduling mechanism for the
uniprocessor real-time system, EDF algorithm assigns priorities to individual
jobs in the tasks according to their absolute deadlines. The schedulability of
message streams can be tested by the following sufficient condition[6]:

∀i, 1 ≤ i ≤ n,

i∑
k=1

Ck

Pk
+ δ ≤ 1.0, (1)

which assumes that all the messages are sorted by increasing relative deadlines
and that there are n streams, while Pi and Ci denote the period and maximum
transmission time of stream Si, respectively. The δ denotes the overhead term
originated from the network management such as polling/probing overhead, bea-
con packet broadcast, interframe space, and so on.

Since the invocation behavior of a set of periodic tasks repeats itself once
every T time units, where T , called the planning cycle of the task set, is the
least common multiple of the periods of all periodic tasks, we only need to
consider all the task invocation in a planning cycle. Let < f1

i , f2
i > be the i-th

slot assignments of channel 1 and channel 2. If f1
i and f2

i are allocated to different
streams, say A and B, respectively, their transmission channels can be switched
without violating their time constraints. We define a switchable pair if f1

i and f2
i

are allocated to different streams. The < f1
i , f2

i > is also a switchable pair if any
one of f1

i and f2
i is left unassigned. The purpose of bandwidth allocation, or slot

assignment is to maximize the number of switchable pairs, as it can overcome
channel errors.

To inherit the optimality of EDF in a single resource system, the allocation
scheme first partitions the given stream set into two identical sets so that each
of them has the same period set but the transmission time of every stream is
reduced by half. Namely,

Θ : {(Pi, Ci)} → Θ1 : {(Pi,
Ci

2
)}, Θ2 : {(Pi,

Ci

2
)} (2)

Next, the schedule for Θ1 and Θ2 is determined by EDF policy, both schedules
being identical. And then, the allocation in Θ2 is rearranged to maximize the
number of switchable pairs. When the allocation scheme generates the schedule
of Θ2, it also creates the list of range to which an allocation can be migrated.
The earliest time of movement, Et, is the arrival time of message that occupies
slot t, while the amount of backward movement is marked as its laxity, Lt. The
Et and Lt of unassigned slot are set to 0 and T −(t+1), respectively, as it can be
relocated anywhere within the planning cycle. From the last slot, f1

t and f2
t are

checked whether they are equal, namely, they are allocated to the same station.
If so, the rearrangement procedure attempts to change f2

t as follows:
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for slot i from Et to t
if (f2

i == f2
t ) continue; // same station

if (Li + i < t) continue; // cannot be deferred
else exchange f2

i and f2
t and break;

[Example 1]. This example shows the bandwidth allocation for the given
stream set. The stream set consists of 3 streams, A(6,2), B(3,2), and C(4,4).
Their utilization is 2.0, the length of planning cycle being 12. The schedule for
both networks is identical as they follow the same EDF scheduling policy after
partitioning the stream set into Θ1 : {(6,1), (3,1), (4,2)} and Θ2 : {(6,1), (3,1),
(4,2)} as shown in Fig. 3(a). The figure also shows that the earliest relocatable
slot and slack time by which the allocation can be deferred. The rearrangement
procedure begins from slot 11 backward to slot 0. As shown in Fig. 3(a), f1

11

and f2
11 are both C, so it is desirable to relocate C in f2

11. Among slots from 8
(decided by E11) to 11, as f2

8 is A and L8 + 8 ≥ t, f2
8 and f2

11 are exchanged,
making < f1

11, f2
11 > a switchable pair. This procedure will be repeated down to

slot 0 and Fig. 3.(b) shows the final allocation. In this example, every slot pair
turned into the switchable one.

0 1 2 3 4 5 6 7 8 9 10 11

Channel 2 B BC C BA C BC A C C

Channel 1 B BC C BA C BC A C C

Earliest 0 0 0 0 3 4 4 6 6 9 8 8

2 2 1 2 1 2 1 1 3 2 1 0

0 1 2 3 4 5 6 7 8 9 10 11

Channel 2

Channel 1 B BC C BA C BC A C C

C A B C C B B C C C B A

(a) Step 1 : partition (b) Step 2 : rearrangement

switchable pairs
Slack

Fig. 3. Scheduling procedure

4.2 Runtime Scheduling and Error Control

Before polling a station, the PC transmits a probing control packet to the sched-
uled station, which then returns the control packet to the PC. If the PC does
not receive the probing control packet correctly from the station, the channel
is estimated to be bad. Even though the probing indicates the channel is good,
the ensuing transmission can fail if a state transits to the bad state during the
transmission. For simplicity, this paper disregards the overhead terms includ-
ing channel probing, polling overhead, mandatory ACK/NAK, and so on, but
the amount is bounded and constant for all slots, so it can be merged into
transmission time.

Let’s assume that PC is to start slot i which is originally allocated to A on
channel 1 as well as B on channel 2, namely, < A, B >. PC first probes the
channel status from itself to A and B on all two channels. Table 1 shows the
probing result and corresponding actions. As shown in row 1 (case No.1), PC
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can reach A on channel 1 and also B on channel 2, so PC polls each station as
scheduled. In row 2, by switching polls between the two channels, PC can save
the 2 transmissions that might fail on ordinary schedule. PC can reversely reach
A only on channel 2 while B on channel 1. In row 3, all connections from PC
are bad except the one to A through channel 2. If PC switch < A, B > to < B,
A >, only A can send on channel 2. In row 4, only A can send on channel 1 as
scheduled. In row 7, all scheduled connections from PC are bad.

Table 1. Channel status and transmission

Ch1−A Ch2−A Ch1 Ch2Ch2−B Ch1−B save

1

No.

2
3
4
5

Good
Bad Bad

Bad
Bad

Good
X X

Good
A
B A

B

−
−

0
2

Good 0
Bad Bad Good − A 1

Bad Good Bad Good B 0
Bad Bad Bad Bad 0

X : don’t care

Good
6
7

Bad

Good

Bad
Good

Bad
Bad

B
A

− −

1
−

The polling table in Table 1 has some entries marked as ’-’, which means PC
cannot poll A or B. This means that the scheduled transmission of corresponding
stream is invalidated and the slot would be wasted without the further rearrange-
ment. To improve the network throughput, it seems better to poll another station.
Let Sn,a

i be channel status of allocated message a (A, B, or C) on channel n (1 or 2)
at i-th slot time. Among the next pending messages, the coordinator will pick and
try those meet the following constraints: First, arrival time, Ei, lies prior to the
current slot time. Second, slot time lies prior to the deadline of invalidated mes-
sage. This enables the postponed message to be retransmitted within its deadline.

if (St
1,a1 and St

2,a2 are Good) continue;
else if (St

1,a2 and St
2,a1 are Good)

exchange ft
1 and ft

2 and break;
else

if (there is a good pair when ft
1 is switched with ft

2 )
allocate corresponding one good pair (channel-message);

for slot i from (t + 1) to (t + Lt) // bad time slot t
if (fi

n == fn
t ) continue; // same station

if (En
i > t) continue; // cannot be advanced

else exchange fn
i and fn

t and break;
if (Sbn,ba

t is still Bad) allocate failed message.

[Example 2]. This example shows the runtime scheduling for the given stream
set. As shown in Fig. 4, the channel status and transmission are as follows: In slot
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time 0 (case No.1), PC can reach B on channel 1 and also C on channel 2, so PC
can poll as scheduled. In slot time 1 (case No.2), C and A messages can meet time
constraints by switching polls between the two channels. In slot time 3 and 10
(case No.3 and No.4), corresponding message can improve network throughput
by exchanging messages between the two channels or two slots satisfying the
condition.

0 1 2 3 4 5 6 7 8 9 10 11

B C C A B C C B A B C C

0 0 0 0 3 4 4 6 6 9 8 8

2 2 1 2 1 2 1 1 3 2 1 0

C A B C C B B C C C B A

0 0 0 0 4 3 6 4 8 8 9 6

3 4 0 0 3 0 2 0 3 2 1 0

Channel 2

Channel 1

Earliest

Slack

Earliest

Slack

B A C C B C C B A B C C

C C B B C A B C C C A B

No.1 No.2 No.4

No.1 No.2 No.4

No.3

No.3

0 1 2 3 4 5 6 7 8 9 10 11

Fig. 4. Runtime scheduling procedure

The slot length, say L, is as large as the basic unit of wireless data transmission
and every traffic is also segmented to fit the slot size. Each invocation needs
�Ci

L � slots, so every packet should be received correctly to be reassembled at
the receiver. When the failed packets are managed and allocated to reclaim the
unused slot, we consider the probability that the entire message can be correctly
received. The only one message is selected among the failed messages according
to the following rules: It has the higher probability of the success ratio by being
allocated one more slot. If we let N be the number of successfully transmitted
slots until now, the message whose N

�Ci
L � value is the largest one, is selected.

5 Performance Evaluation

This section measures the performance of the proposed scheme in terms of dead-
line meet ratio according to the packet error rate via simulation using ns-2 event
simulator[15]. We fixed the length of planning cycle to 24 as well as the num-
ber of streams to 3, and generated every possible stream sets whose utilization
ranges from 0.2 to 2.0, to measure how much the rearrangement scheme can im-
prove network throughput. Fig. 5 shows the deadline meet ratio according to the
packet error rate to demonstrate the effect of runtime slot exchange. The curve
marked as Switch represents the result of switching pairs while that marked as
Reclaim shows the effect of reclaiming unused slots. The success ratio means
the fraction of timely delivery of real-time packet. The packet error rate is the
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function of packet length and bit error rate, so we make it range from 0.0 to 0.5,
considering the error-prone wireless channel characteristics. As shown in Fig. 5,
the deadline meet ratio is improved by around 12.5 % when the packet error
rate is over 0.4 and the number of switchable pairs is 24. Fig. 6 plots the result
of runtime scheduling and error control scheme based on the example described
in section 4.

"Reclaim"
"Switch"

"GlobalEDF"
"NCASP"

 0.1
 0.2

 0.3
Packet error rate  0
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Fig. 5. Success ratio
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6 Conclusion

This paper has proposed and analyzed the performance of a real-time guarantee
scheme for time-sensitive applications using message scheduling and error control
on the dual channel ad hoc networks. Basically, simultaneous use of dual channels
increases the available bandwidth of the network and satisfies the ever-increasing
demand of higher bandwidth. After dividing the network time into fixed size slots
synchronized across the two channels, polling schedule is determined according
to the optimal EDF policy. In addition, slot rearrangement scheme makes it
possible to maximize the number of switchable pairs, making it possible for the
coordinator to select an error-free channel, as well as rearrange polling order to
reclaim the reserved but not used channel.

Simulation results show that the proposed scheme improves the schedulability
by 12.5 % for real-time messages using the runtime slot exchange scheme. Also, it
allocates more bandwidth to messages as it can enhance achievable throughput
for the given stream sets. As a future work, we will extend the message model to
the personalized real-time applications mainly targeted to the telematics system
which provides streaming information service to the users of high-mobility[16].
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Abstract. Mobile Ad-hoc Networks are networks that have a dynamic topol-
ogy without any fixed infrastructure. To transmit information in ad-hoc net-
works, we need robust protocols that can cope with constant changes in the 
network topology. The known routing protocols for mobile ad-hoc networks 
can be classified in two major categories: proactive routing protocols and re-
active routing protocols. Proactive routing protocols keep the routes up-to-
date to reduce delay in real-time applications but they have high control over-
head. The control overhead in reactive routing protocols is much less than 
proactive routing protocols; however, the routes are discovered on demand, 
which is not suitable for real-time applications. In this paper, we have intro-
duced a new routing system for mobile ad-hoc networks called ADIAN, 
which is based on the concepts of Distributed Artificial Intelligence (DAI). In 
ADIAN, every node acts as an independent and autonomous agent that col-
laborates with other agents in the system. Our experimental results have veri-
fied the efficiency and robustness of ADIAN under dynamic conditions of ad-
hoc networks.  

Keywords: Mobile Ad-hoc Networks, Routing, and Distributed Artificial 
Intelligence. 

1   Introduction 

A Mobile Ad-hoc Network (MANET) is a network consisting of wireless devices that 
make a self-configured network together. There is no fixed communication infrastruc-
ture in MANETs. Since wireless devices’ broadcasting range is limited, communica-
tion in MANETs depends on the intermediate nodes. Therefore, each node in the 
network acts as a router. In these networks the topology changes constantly due to the 
mobility of the nodes. Furthermore, new nodes may be added to the network, existing 
nodes may leave the network, or some nodes may go to the sleep mode, dynamically. 
Due to special characteristics of these networks, the main problem is how to setup an 
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effective routing mechanism to deliver data packets. Another problem involves power 
consumption. Since most of the nodes are battery operated and have limited power, 
power consumption of nodes should be minimized. 

Distributed nature and dynamicity of MANETs, make it suitable for applying Dis-
tributed Artificial Intelligence (DAI) techniques. Many routing protocols have already 
been designed for MANETs; however, most of them use simple assump-tions to 
model the mobility of the nodes. What is more, they have a modular structure contain-
ing object codes. Intelligent agents embody stronger notion of autonomy than objects. 
Likewise, the agents are capable of flexible behavior, and the standard object model 
has nothing to say about such types of behavior. Moreover, cooperation of a set of 
autonomous and intelligent agents can tolerate and handle potential failures in 
MANETs. 

In this paper we introduce a new routing system called A Distributed Intelligent 
Ad-hoc Network (ADIAN), where network nodes are considered as intelligent agents 
and the agents discover routes to deliver information. Agents in ADIAN are autono-
mous and act in a plausible way. In this system, the routing overhead, which has an 
important impact on the performance of the MANETs is aimed to be minimized. This 
point is discussed further in section 4-3. 

The remainder of the paper is organized as follows: sections 2 and 3 briefly present 
the existing routing protocols of two major categories: proactive and reactive routing. 
The weakness of the existing routing protocols and the motivation for using DAI 
techniques is then discussed in the section 3. Section 4 includes a detailed description 
of ADIAN. In section 5 the simulation results are presented. Finally, section 6 
concludes the paper. 

2   Routing in Ad-Hoc Networks 

Dynamic nature of a MANET due to the mobility of its nodes causes a high degree of 
unpredictability in the network topology. This unpredictability makes the task of 
routing for transfer of information very complex. Design of a robust routing algorithm 
in these networks is an important and active research topic. Various routing protocols 
have already been introduced and evaluated in different environments and traffic 
conditions [5-6]. An extensive review and comparison of routing protocols for 
MANETs can be found in [7]. 

Environment and features of the MANETs, such as mobility and limited energy 
and bandwidth, requires an efficient use of available resources. In other words, to 
preserve the power, the routing overheads should be minimized and routing loops 
need to be avoided. Other important issues include: scalability, directional link sup-
port, security, reliability, and QoS [13-15]. 

The existing routing protocols of MANETs are divided into two major categories: 1) 
proactive routing protocols and 2) reactive routing protocols [5]. Proactive routing 
protocols constantly keep the routes between each pair of nodes up-to-date, by using 
periodic broadcasts. Since routing information is kept in some routing tables, these 
protocols are sometimes called table-driven protocols. On the other hand, reactive 
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routing protocols discover a route only when it is required. Moreover, discovery proc-
ess of a route is often initiated by the source node [5, 14]. 

The main feature of the proactive routing protocols is to maintain fixed routes to 
every pair of node in the network. Creating and maintaining routes are performed 
through periodic and event-driven messages (such as triggered messages when a link 
is broken) [5, 14]. Some of the proactive routing protocols include: DSDV1, CGSR2, 
WRP3, TBRPF4, and FSR5 [16-18, 21-24]. 

In reactive routing protocols, in order to reduce the routing overhead, routes are 
discovered only when they are needed. Some of the reactive routing protocols in-
clude: DSR6, AODV7, TORA8, ABR9, and SSR10 [25-28]. 

3   Application of DAI in Routing in Ad-Hoc Networks 

Distributed and dynamic nature of the MANETs makes this domain suitable for ap-
plying DAI techniques. Most of the ad-hoc routing protocols do not use these tech-
niques. Since there are a few routing protocols that use artificial intelligence, having a 
new system in which the intelligent agents can collaborate for routing has motivated 
us to apply some of the DAI techniques to the routing problem in the ad-hoc net-
works. Multi-agent systems offer production systems that are decentralized rather 
than centralized, emergent rather than planned, and concurrent rather than sequential.  

In this section we briefly explain two routing protocols that have used simple DAI 
techniques. Moreover, there are some related works that try to use artificial 
intelligence techniques in [29-32], but they do not exploit autonomous agents in their 
algorithms. 

3.1   ARAMA 

ARAMA is based on the concepts in biology [1]. The idea of designing ARAMA is 
based on the Ant Colony. Forward packets (Forward Ants) are used to collect infor-
mation and backward packets (Backward Ants) are used to update the routing infor-
mation in the nodes. Motivation of the algorithm is based on similarity between the 
MANETs and the ant routing algorithm (i.e., both of them have similar features such 
as their self-built, self-configured, and distributed nature). Some of the advantages of 
this algorithm are: fast response to the changes, local solution, employing both of 

                                                           
1   Destination Sequenced Distance Vector. 
2   Cluster-head Gateway Switch Routing. 
3   Wireless Routing Protocol. 
4   Topology Dissemination Based on Reverse-Path Forwarding. 
5   Fisheye State Routing. 
6   Dynamic Source Routing. 
7   Ad hoc On-demand Distance Vector. 
8  Temporally Ordered Routing Algorithm. 
9   Associatively Based Routing. 
10 Signal Stability Routing. 
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reactive and proactive advantages, discovering multiple routes, reliable routes, ability 
to control the updates and the broadcasts. 

3.2   Ant-AODV 

One of the disadvantages of AODV is the lack of ability to handle real-time applica-
tions. Moreover, the ant type routing algorithms can not work well in highly dynamic 
networks with weak routes. Since nodes are dependent on ants for collecting informa-
tion, in some cases the nodes carrying ants may leave the network unpredictably. This 
is caused by nodes mobility, and sleep mode of the mobile hosts. In this case, the 
number of ants in the network is decreased, which results in ineffective routing [2]. 

Ant-AODV is designed to solve the existing weaknesses of AODV and the ant 
routing. Some of its characteristics are: decreasing end-to-end and route discovery 
delay. Unlike other routing protocols, it does not waste bandwidth used for routing 
overhead, either. 

Ant-AODV and ARAMA use swarm intelligence as one of the DAI methods. In 
the swarm intelligence, each agent can not solve the problem or even part of it alone. 
In other words, these protocols do not act autonomously and do not have the ability to 
make decision in various domains and different situations independently. 

Therefore, none of the existing routing protocols for MANETs is suitable for all 
the conditions. In other words, each protocol is usually designed for a special purpose 
and for a special domain. 

In the rest of this paper we will focus on a new routing system called ADIAN, 
which has been implemented as a framework to test different conditions. We can test 
various situations in topology and size of the network in order to determine the impor-
tant criteria in robustness of the network.  

4   ADIAN 

ADIAN discovers the routes on-demand and is based on nodes negotiation as intelli-
gent agents. Agents act autonomously in ADIAN. Routing in ADIAN is based on 
agents’ negotiation to deliver data packets. The negotiation protocol between agents 
ADIAN is to some extend similar to that of CNET [9]. Moreover, each node has un-
certain and limited knowledge about the agents in other nodes, which are represented 
in a way similar to meta-knowledge of MINDS algorithm [10]. Finally, the routing 
process is achieved through cooperating agents. Furthermore, the agent’s knowledge 
is updated through negotiation with other agents, and by data packets’ transmission. 

4.1   Knowledge Store in ADIAN  

In ADIAN, each agent stores its knowledge in four tables that consist of: State Table, 
Routing Table, Neighborhood Table, and Belief Table. The "State Table" includes the 
latest agent’s information. The "Routing Table" contains the latest information about 
the destination agents and the appropriate neighbor agents that are used to deliver data 
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packets to the desired destination. The "Neighborhood Table" includes a list of 
neighbors, which is updated periodically. The subsection 4.2 explains how these ta-
bles are used in ADIAN. 

The Belief Table contains information about every node, which is accompanied by 
a belief degree about the accuracy of the information, and an updating time of each 
record. There are some other fields in this table including: Destination Agent, Belief 
Degree, Position of the agent, Remained Power, and the other important resources 
such as: CPU Load, Congestion Level, and whether or not the agent is busy. This 
table is used to choose the best neighbor to negotiate for delivering data packets to a 
desired destination. 

Each agent in ADIAN learns the status of other agents through communication. 
Whenever a new agent enters into the system, it will construct its own belief table. 
The information in this table is later updated based on the information of the received 
data packets from other agents. At the start point of adding a new record, the belief 
degree value is set to the value of sender’s belief degree. Then, through a punish-
ment/reward mechanism, the degree of each agent belief, which indicates the accu-
racy of its meta-knowledge, gradually converges to a stable state.  

The position information of nodes in ADIAN is assumed to be supplied by a GPS. 
Note that the information of each agent is local and no agent has a full view of the 
whole system. In order to know the position of other agents, each agent has to rely on 
its meta-knowledge about others. 

In Figure 1, the typical knowledge of the first agent about the second agent is rep-
resented. This knowledge-base shows that agent 1 is 80% certain about the accuracy 
of its information about agent 2. This uncertainty gradually reduces through negotia-
tion between the agents, and by transmission of data packets through the network. 

Belief Table 

ID 
Source 
Node 

Destin. 
Node 

belief Power 
pos
X 

pos
Y 

Transmission 
Delay 

Band 
Width

Congestion 
Level 

CPU 
Load 

Is 
Busy 

Time 

1 agent1 agent2 80% 178   5 1 0.1ms 
128K

B 
2% 18% No 27 

Fig. 1. Format of the Belief Table – each agent has knowledge about the other agents with a 
belief degree 

4.2   Routing in ADIAN 

The ADIAN routing includes the three following phases. 

1) Route Discovery 
The new routes are found in this phase. Agents are responsible for delivery of data 
packets from a source node to a destination node, while trying to find an optimal 
route. Therefore, they go through a negotiation process to find a suitable route to 
deliver the data packets. If an agent intends to deliver a packet, and it does not find 
any neighbor in its routing table, it will search its neighborhood table based on its 
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own information about the destination that exist in its Belief Table to choose the best 
neighbor. The selection is based on the following factors: Euclidean Distance, Belief 
Degree, Remained Power, and Updating Time using the following equation: 

++ powerbelief
timecurrent

timeupdating
**

3

1

Distance   Euclidean 

δβα

 

(1) 

Where  represents the importance of updating time in choosing a route,  is the be-
lief’s importance level, and  is the remained power importance degree. 

The effectiveness of , , and  is discussed in section 5.2, and simulation results 
compare their effectiveness. 

During route discovery, the agent that has the least distance is chosen to negotiate. 
Then a message is sent to the chosen agent for cooperating in transmission of the data 
packets. This agent evaluates the received information as indicated below. 

(a) Information about the destination accompanied with the belief degree of the source 
agent regarding that information. 

(b) Some other information such as delivery priority of the data packets used to in-
crease the system performance. 

Agents in ADIAN can accept/reject the negotiation autonomously. In some cases, if 
there is any congestion or limited resource in the selected agent, it will deny to cooperate 
in routing that ends in having a balanced network and a robust routing. 

As an example, consider Figure 2, where agent A decides to send some data pack-
ets to agent E. It assesses its neighbors, and uses its knowledge about E that is found 
in its Belief Table to calculate the distances between itself and its neighbors, using the 
above equation. In this example, the least distance belongs to the agent B; therefore, it 
is chosen for negotiation. 

 

Fig. 2. Topology of a sample ad-hoc network – agent A is trying to send its packets to agent E 

If B has enough power to deliver packets, it will evaluate the received information 
for inconsistencies. If there is any inconsistency between its knowledge and the re-
ceived information, it will return the correct information to A, and will not accept the 
negotiation. Agent A will then correct its knowledge. Otherwise, it will send a mes-
sage in order to inform A that it can cooperate with it. 

In ADIAN, data packets are also used to update information that agents have about 
each other. In other words, each data packet carries some extra information regarding 
a limited number of lastly visited agents. Besides, if an agent accepts to cooperate 

Distance = 



 ADIAN: A Distributed Intelligent Ad-Hoc Network 33 

with another agent, it will send back its information to the requested agent. The initial 
performance of ADIAN might be low due to local and inaccurate knowledge of its 
agents. However, this exchange of information facilitates the gradual convergence of 
ADIAN to a stable and acceptable performance. 

As it was explained earlier, the knowledge of ADIAN agents is gradually refined 
via their communications. The performance of ADIAN is highly dependent on the 
accuracy of its agents' knowledge. Therefore, in the cases where only few agents 
communicate, the system might not have a reasonable performance. To handle this 
problem, a periodic broadcasting scheme is used. To reduce the overhead, the broad-
casting is done only if an agent remains idle for a certain period of time. 

2) Route Maintenance 
The second phase of routing is the route maintenance which is responsible for main-
taining the routes during the transmission task. In ADIAN, there is no need to send 
additional control packet to maintain routes. Data packets in their journey are used to 
update the knowledge of the visited agents; therefore, agents receive up-to-date in-
formation about each other. 

Another problem is to prevent routing loops. ADIAN prevents routing loops using 
a list of illegal neighbors. If a data packet passes through a node, then it adds the pre-
viously visited node to its list. Agents are not allowed to use the nodes in their illegal 
list for routing. 

3) Failure Handling 
The third phase of routing is about handling the potential failures, which are often due 
to mobile nodes, and sometimes are due to having low battery in nodes that contribute 
to a transmission task. If a link between two nodes fails, the related information in 
their routing table will be deleted and the current agent tries to negotiate with another 
agent. If there is no suitable agent for routing, a backward routing will be performed 
to the previously visited agent. 

4.3   ADIAN Features 

ADIAN satisfies the following requirements that have been specified in [19] such as:  

− The process of routing need to be performed cooperatively.  
− Routing loops should be prevented.  
− Routing should be initiated on-demand. 
− The possibility of having a sleep mode need to be considered (i.e., when the power 

of agents are less than a threshold, they deny cooperation in delivering packets).  
− Agents’ knowledge about the world and one another is local, limited, and 

uncertain. 
− In distributing the tasks through the network, the load balancing should be 

considered. 
− The routing algorithm should be complete (i.e., if there exists a route to a destina-

tion, the algorithm would find it). 

In addition, there is no need to use control packets in ADIAN, so that the band-
width is preserved and the ADIAN Overhead is low. 
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5   Simulation Results 

To assess the performance of the proposed protocol, that consists of a Multi Agent 
Systems (MAS), called ADIAN, we have used various simulations in a typical mobile 
Ad-hoc network environment, as described below. 

5.1   Simulation Model 

In order to demonstrate the effectiveness of ADIAN, we evaluate our proposed proto-
col and compare its performance to the DSR and AODV. We have implemented 
ADIAN using the GLObal MObile SIMulation (GLOMOSIM) library [33]. 

The number of the nodes in the simulation world is 40; however, the size of the 
simulation world including the number of nodes, and the mobility pattern of nodes 
could be simply configured by adjusting the simulation parameters. In addition, sys-
tem parameters such as available power, updating time, and beliefs in choosing the 
next hop are all configurable, and have been tested in different states. 

The details of the ADIAN's simulation model, including the transmission primi-
tives, mobility and traffic model, are reported next.  

5.1.1   Transmission Primitives 
Here, an ideal scheduler controls the packet transmissions and each agent uses a FIFO 
buffer. The size of the buffer is limited to 20 packets. A broadcast packet is initiated 
after the channel is free for a Random Assessment Delay (RAD) randomly chosen in 
the range [0, 1, 2, ..., 250] milliseconds (ms) with a transmission radius of R = 250 
meter. By notifying a packet reception to the contractor (i.e. the selected sender's 
neighbor for delivering data packets) about remaining for the whole duration of the 
transmission within the transmission range, no collisions with other transmissions 
would be occurred, simultaneously. 

The required time to detect a link breakage is simulated by considering a typical re-
transmission mechanism with an exponential back-off. The nominal transmission 
speed is set to 8 Mbps. This simplified model would present the main behavior of a 
typical wireless link layer in our simulations. 

5.1.2   Traffic 
Packets are generated by 20 Constant Bit Rate (CBR) sources at the rate of 5 pack-
ets/sec. The size of data packets is different and is chosen from a source file. The 
parameters in the source file records are: "time", "source agent", "destination agent", 
and "data packet size", where each field is separated by a special delimiter. Note that 
the scenario for the simulation is fixed. However, we can change the scenario easily. 
The number of simultaneous sources at any time can be more than one by defining 
more sources that have the same time field value. 

5.1.3   Mobility 
Agents can move in an n * m kilometer (km) region according to the random way-
point mobility model with a zero pause time. 
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The default values were set to n = m = 1 km. At the beginning of simulations the 
agents were placed randomly inside the region. Each agent then selects a new point 
and moves towards it at a constant speed, that is chosen in the range of [1, 2, …, Vmax] 
m/s, uniformly at random. When the agent arrives at the destination, it would repeat 
the same behavior. 

5.1.4   Performance Metrics 
The following metrics have been considered during the simulations. 
− Delivery Rate; ratio of the number of data packets delivered to the destinations 

generated by the traffic sources. 
− Time Cost; lasting time to deliver data packets to the destination. 
− Physical Distance; Euclidean distance among hops. 

5.2   Comparison Between Different Scenarios 

In the simulations, the cost includes temporal and physical distance. The temporal 
cost is related to the negotiations (1 per negotiation) and sending the packets to the 
next hop (2 per sending). For calculating the physical distance, the Euclidean distance 
is used. The simulation model is similar to the one described in section 5.1. The pause 
time for each agent to settle down and then move was set to 100 seconds. 

In this section, different experiments have been performed to determine the desired 
coefficients of the system parameters. In the simulations, we have evaluated three 
parameters including: delivery rate, time cost, and physical distance cost. Here, the 
agents move randomly such that some links maybe formed to increase performance, 
or vise versa. In other words, a suitable topology maybe formed, that increases the 
performance, or conversely, an undesired link may occur, which decreases the per-
formance. To minimize the effect of this phenomenon, we have forced the desired 
pattern by statistical analysis. 

 

Fig. 3. (a) The effect of importance of power to choose best next hop: a- Delivery rate (%), b- 
Time Cost (10ms), c- Physical distance (20m), (b) The effect of importance of updating time to 
choose the best next hop: a- Delivery rate (%), b- Time Cost (10ms), c- Physical distance (20m) 

Figure 3(a) shows that when the level of importance of power choosing the next 
hop increases, the delivery rate will also increase. In other words, the probability of 



36 S. Shahbazi et al. 

having no power for each node, which leads to go to sleep mode, will decrease. This 
fact is shown in Figure 3(a)-a. According to Figures 3(a)-b and 3(a)-c, there is a trade-
off between increasing delivery rate and increasing the costs. By using the results of 
these experiments one can determine the desired parameters for the desired perform-
ance for different applications. 

In Figure 3(b), the importance of updating time factor is shown. When the updated 
time factor is given more importance the effects of power and the delivery rate will 
decrease (Figure 3(b)-a). According to the Figures 3(b)-b and 3(b)-c, the costs de-
crease by increasing the importance of the updating time. This is because, more up-to-
date routes means less backtracks in the routing process. Therefore, agents need to 
have fewer negotiations. 

Figure 4 shows the result of experiments where the degree of agents’ belief regard-
ing other agents was gradually given a higher priority. Similar to the updated time 
effect, by increasing the importance of belief degree, the importance of the power 
decreases. Therefore, the delivery rate will decrease. This fact is shown in Figure 4(a). 
According to Figures 4(b) and 4(c), the costs decrease by increasing the importance of 
the belief degree, which is due to the fact that transmissions face less deadlock (i.e., 
paths and cooperating agents are chosen more accurately). 

Our experimental results showed that the power and the belief degree factors have 
more effects on the system than the updating time. 

We have also performed some experiments regarding the levels of information car-
ried with the data packets, as shown in Table 1. In the first set of experiments, which is 
shown in row 1 of the table, there is no additional information in the data packets. The 
results of carrying information about 1, 2, and 3 last visited nodes are shown in rows 1, 
2, and 3 of the table, respectively. According to Table 1, increasing the number of 
visited nodes in data packets that carry information will increase the performance. 

Delivery 
Rate  
(0-1)

Temporal 
Cost 

(×10ms) 

Distance 
Cost 

(×20m) 

# of visited nodes 
that data packets 

carrying their 
information

0.87.284.970
0.93.163.91
0.963.133.042
0.992.272.053

(a) (b)

(c)

(%) (%)

(%) 

 

Fig. 4. The effects of importance of belief degree to choose the best next hop: (a) Delivery rate 
(%), (b) Time Cost (10ms), (c) Physical distance (20m) 

5.3   Comparison with Other Protocols 

To show the effectiveness of ADIAN, comparisons with two typical proactive 
(DSDV) and reactive (AODV) routing protocols were made. The first one compares 
the overhead of the protocols, and the other one is about the measurement of 

Table 1. Experimental results of effects of 
added information to data packets on system 
performance 
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"GOODPUT". The conditions of the simulation remain the same, as expressed in 
section 5.1. Furthermore, the coefficients of ADIAN in section 5.2 are set to 33.33%. 

Figure 5(a) shows the comparison results of ADIAN, DSDV, and AODV Delivery 
Rate. The results indicate that ADIAN has the best performance in correctly deliver-
ing the data packets. This is due to the agents' negotiations to find a path to the desti-
nation, as was explained earlier in section 4.2. 

(a) (b)
 

Fig. 5. (a) Delivery rate comparison of ADIAN, AODV, and DSDV. (b) GOODPUT compari-
son of ADIAN, AODV, and DSDV. 

The comparison of "GOODPUT" factor is shown in Figure 5(b). This is a measure 
that shows the probability or the rate of successfully received packets with no cell loss 
that causes packet loss at the receiver. The results show that the GOODPUT factor of 
ADIAN is the best. This is the consequence of ADIAN's low overhead that was dis-
cussed earlier, in section 4.2. 

6   Conclusions 

Ad-hoc networks are flexible networks that do not have any pre-installed infra-
structure. By recent developments in wireless technology and peripheral devices, the 
application of such networks has been rapidly increased. However, the routing prob-
lem in ad-hoc networks due to mobility of nodes is still a challenging issue. 

In this paper, we have presented a new routing system called ADIAN, for ad-hoc 
networks. In ADIAN, routing is performed by the help of DAI methods, and each 
node in the network is regarded as an autonomous agent. Therefore, we have achieved 
to design a robust routing algorithm by using intelligent agents. Moreover, we have 
been successful to decrease the routing overhead. 

In this paper, the simulation results were based on various parameters such as the 
life of power supply, update time, and agents’ belief about other agents. The results 
show that, in different conditions, ADIAN gradually converges to the desired point of 
operation by minimizing the costs and the resource consumptions. This gradual con-
vergence is due to inaccurate knowledge of its distributed agents in the early stages of 
the routing algorithm. 
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Abstract. It is not a trivial job to maintain clusters in a highly mobile ad hoc 
scenario where changes in node activity status cause frequent and unpredictable 
topological changes. It requires continuous and efficient management protocol 
for frequent up-dation and re-clustering which are costly in a resource-poor  
environment. In this context, we describe a convenient cluster management pro-
tocol that incurs very little communication overhead for maintaining a stable 
cluster structure. Our protocol defines a geographical boundary for each cluster 
using GPS information that enables the mobile nodes to get alarmed while 
crossing the cluster boundary. Here a cluster-head is also free to leave the clus-
ter after delegating the leadership to a member-node, which will then act as a 
surrogate cluster-head of the cluster. The simulation results indicate that this 
mechanism reduces as much as 30% of the overhead traffics involved in cluster 
maintenance. 

1   Introduction 

The clustering is always of significant importance for network management, routing 
methods, QoS, resource allocation, topology update effect and in this context, they 
should be maintained and managed efficiently. This task becomes complicated in a 
highly mobile scenario and results in much overhead with increase in cluster size 
[2, 3, 4]. Existing periodic trigger based clustering management protocol incorporates 
large intra and inter-cluster traffic that degrades the performance of the network as a 
whole. 

Here we describe a convenient and a low cost cluster management protocol for large 
mobile networks. We assume that the locations of the nodes are available directly us-
ing GPS (Global Positioning System). Clusters are formed initially using a modified 
Max-Min-D-cluster formation algorithm [1] and we propose to construct a static geo-
graphical boundary for each cluster using GPS of the boundary nodes. In this protocol 
the nodes are free to move from one cluster to another keeping the cluster structure 
entirely stable within the defined region boundary. This boundary information is avail-
able with all the members of a cluster. Our technique enables all the nodes of a cluster 
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to get alarmed while crossing the cluster boundary and is able to generate a timely 
request for unbind and bind with old and new cluster-head respectively.  

This paper also proposes a novel optimistic cluster head-surrogating scheme for 
achieving efficiency in mobile cluster management process. In this scheme a cluster-
head is also free to leave its cluster after delegating the leadership to any member-
node of its current cluster. This member-node now will act as a surrogate cluster-head 
of the cluster. The process actually duplicates a copy of headship program and related 
member information list to the selected surrogate-head. This particular technique of 
defining the clusters with fixed boundaries has following advantages. 

1. The cluster structure becomes robust in the face of topological changes caused by 
node motion, node failure and node insertion /removal. 

2. Conventional beacon-based cluster management algorithms require the entire  
network to reconfigure continuously, while in GPS based cluster management 
protocol the impact of node mobility has been localized within the cluster and its 
immediate neighboring clusters. 

3. The ability of surrogating cluster headship from a mobile cluster head to any of its 
neighbor.  

4. Independent and autonomous cluster control and maintenance by the mobile mem-
bers only.   

5. No performance degradation of the network due to cluster management protocol. 

2   GPS Bounded Cluster Structure Algorithm 

To obtain the initial set of clusters, we referred a leader election algorithm - Max-Min 
D–Cluster Formation algorithm proposed by Alan D. Almis, Ravi Prakash, Vuong 
Duong and T. Huynh [1]. There are several advantages for using Max-Min D–Cluster 
Formation algorithm over other existing clustering algorithms like the nodes can 
asynchronously run the heuristics so no need for synchronized clocks, we can custom-
ize the number of clusters as a function of d. 

In our proposed GPS based clustering algorithm we have used the initial leader 
election part of the Max-Min D–Cluster algorithm in the first phase. In the second 
phase the elected leader or the cluster head will be able to recognize its boundary by 
getting the GPS information from all of its member nodes and will announce this 
boundary location values within d hop. Thus all the member nodes get alarmed about 
the current cluster boundary and will utilize this value while going out of this cluster. 
The cluster boundary algorithm can be explained in two phases. 

Phase I: Max-Min D–Cluster Formation Algorithm 
1. At some common epoch each node initiates 2d rounds of flooding of information    

exchange (node id) where d is the given heuristic. Each node maintains a logged 
entry of two arrays, WINNER and SENDER to store the results of each flooding 
round. 

2. Initially each node sets its winner to be equal to its own node id. 
3. This is the phase for FLOODMAX where a node chooses the largest value among 

its own WINNER array and this process continues for d rounds. 
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4. This FLOODMIN phase follows FLOODMAX where a node chooses the 
smallest rather than the largest value as its new WINNER to reclaim some of their 
territory. 

5. After these two d rounds of information exchange a node is able to determine its 
cluster-head. 

The existing Max-Min D–Cluster Formation algorithm can be stopped here and as 
the head selection procedure is over we can now proceed to define a static geographi-
cal boundary for the clusters. This geographic boundary can be easily defined with the 
absolute coordinate position (GPS) of the nodes lying at the boundaries. 

 
 

 
    
          

 
 

 
 
 

Fig. 1. Initial Cluster structures formed with Max - Min -D Clustering 

Phase II: Cluster Boundary Formation Algorithm 
1. The cluster head broadcasts get_Position_ forAll ( )  request message along with 

its own GPS to get percolated within d hop. 
2. All member nodes in turn unicasts back the message node_GPS ( ) to the cluster-

head  using geographical routing. 
3. Cluster-head receives all the GPS values of its members and calculates the 

maximum limiting coordinates for Left, Right, Up and Down values to define its 
boundary. 

4. The cluster head then broadcasts the message get_Boundary_values( ) within 
the d hop transmission range to notify all the member nodes about the cluster 
boundary. 

5. All the member nodes become alarmed about the rectangular cluster boundary 
information that can be verified while changing their positions. 

Thus our GPS based clustering algorithm will partition the network into a number 
of geographically overlapping clusters. These cluster boundaries are static, and are not  
required to be redefined with the mobility of the boundary nodes. This boundary 
value will be once notified to all the members of a cluster and will remain fixed until 
all the nodes move away from this region. In that case only the cluster–head will 
recall the initial clustering algorithm to remain connected and the cluster boundary 
does not exists any more. 
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Boundary

 

Fig. 2. Cluster boundaries formed with GPS of the boundary nodes 

3   Cluster Management Protocol 

For periodic beacon based cluster maintenance protocols if a cluster member is mov-
ing out of the transmission range of the CH, the member node searches for the new 
head by detecting the new CH beacon signal. There is no other intelligent way to 
track the mobility of a member node. Here we have proposed a cluster maintenance 
protocol using GPS technology, which is able to maintain a stable cluster structure 
even in presence of high mobility incurring little overhead. In this protocol any node 
including the cluster head automatically gets alarmed while crossing the geographical 
boundary of a cluster using the program which continuously compares the current 
GPS value of the node with that of the boundary values. Thus it is quite easy for a 
departing node to make a timely arrangement for rebinding with a new CH and un-
bind with the old one.  

4   Mobility Management of Cluster Heads Through Selection of 
Surrogate Heads 

The entire process of surrogating actually involves the transfer of cluster head infor-
mation and re-announcement of new cluster head within the cluster. We have consid-
ered different schemes for selecting surrogate head considering different aspects of 
the network performance like number of cluster head change in the near future or the 
overhead traffic involved in transferring the headship. 

We have found that if the surrogate head can be selected from the middle of the 
cluster then, the chance of this new cluster head to cross the cluster boundary gets 
reduced and as such the duration of a node to remain as cluster head increases re-
markably. This particular scheme though yields better stability of a cluster [fig .4] but 
the traffic overhead involved for handover of headship is much higher due to multi-
hop data transfer. In the second scheme, when the departing head can select any of its 
1- hop neighbors as surrogate head and as such there is no need to concern about their 
positions.  Here the initial overhead for head transfer is much less due to 1 hop data 
transfer.  But as the surrogate head lies within the vicinity of cluster boundary the 
chance of change of cluster head in near future also gets increased. 
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5   Performance Analysis and Simulation Results 

We first analyze the communication overhead involved in cluster maintenance with 
varying the important clustering parameters like i) cluster size and ii) node mobility. 
It has been observed in all the graphs shown in the following fig  [3a and 3b] that a 
significant amount of overhead traffic can be reduced for cluster maintenance using 
the GPS based cluster management protocol. For the periodic beacon based clustering 
algorithm [1] there is a gradual rise in the curves showing a rapid increase in commu-
nication overhead with cluster size and mobility. 
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Fig. 3. Average overhead involved in cluster maintenance with a) varying cluster size b) vary-
ing node mobility 
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Fig. 4. Frequency of cluster head surrogating using the two selection schemes with a) varying 
cluster size   b) varying node mobility 

The cluster topology stability can be measured by determining the number of times 
each cluster head has attempted and given up its role as cluster head. So in the second 
part of our simulation results we have tried to show the performance of the surrogate 
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head selection schemes. We have counted the number of cluster changes with varying 
cluster size and varying the node mobility, and the results give the efficiency of selec-
tion scheme used. 

6   Conclusion 

Here we have tried to minimize the frequency of re-clustering by proposing a GPS 
based stable cluster maintenance protocol. We have shown that using a one time abso-
lute geographical boundary for a cluster, it can be kept stable over a region for a long 
period. In this protocol the mobility can be managed locally and as such the commu-
nication overhead gets heavily reduced. The cluster belonging ness can be determined 
once by using the deterministic GPS based approach and any further modifications in 
the member belongingness can be taken care locally without having a little impact on 
the rest of the network. This GPS based robust approach together with the support of 
Surrogate cluster-head makes this approach highly deployable in an extremely mobile 
environment.  
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Abstract. The aim of this work is to propose a QoS routing algorithm in 
MANETs. The proposed algorithm predicts the future states of nodes including 
buffer level and position. Predicting the future state of node, the algorithm 
could decide whether a node is a good selection as a router or not. Through this 
algorithm, more stable and lower buffer level nodes are selected and hence QoS 
routing parameter could be satisfied. The proposed algorithm outperforms even 
in high speed and high load network conditions. Simulation shows routing 
performance has been improved, especially in terms of end-to-end delay.  

Keywords: Mobile Ad hoc Network, QoS Routing, Prediction, buffer, positon. 

1   Introduction 

Mobile Ad hoc Networks (MANETs) are typically heterogeneous networks with 
various types of mobile nodes. Many applications are running in MANETs that need 
different levels of quality. Qualities of Service (QoS) parameters are mostly 
bandwidth, delay, jitter, and packet loss. Providing end-to-end support for QoS 
guarantees is a central and crucial issue in designing future multimedia MANETs. 
Quality of Service is more difficult to guarantee in MANETs than in other types of 
networks because of a limited bandwidth resource, limited power abilities and the 
absence of a fixed structure coupled with the ability of nodes to move freely.  

Some works have been done in QoS routing in ad hoc networks. So far, some 
algorithms such as Flexible QoS Model for MANET (FQMM) [1] as well as QoS 
extensions of AODV[2], DSR[3], TORA[3], DSDV[3] and OLSR [4] are proposed. 
In addition, Multi-Path QoS Routing protocol relying on the ticket-based probing 
technique has been proposed in [5]. However, these algorithms did not propose a 
mechanism to reduce delay as a QoS requirement.  

Some QoS routing algorithms which consider delay as QoS requirement have been 
proposed in literature such as Predictive location-based [6], VGAP [7]  and AQOR 
[8]. In [6] a predictive location-based algorithm is proposed which finds path based 
on updated location of nodes. Although this protocol seems promising, the overhead 
in maintaining and updating tables is high. Moreover, the prediction accuracy is 
highly dependent on the previous states of mobile nodes which might be misleading. 
VGAP [7] could guarantee statistical end to end delay. However, it seems that it did 
not outperform in high traffic conditions because it uses only cluster heads to transmit 
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traffic and limits the available bandwidth usage. AQOR [8] also proposes a method to 
compute end to end delay for a path. But, this algorithm not only did not operate very 
well in high traffic and high speed nodes conditions but also did not select a stable 
path and paths may be broken immediately.  

This paper proposes a new QoS routing algorithm which focuses on delay as the 
main QoS parameter. This paper shows that the new algorithm, Prediction based QoS 
Routing, PQR, takes the impact of the speed, location, and buffer level of nodes into 
its account to reduce end-to-end delay. In the following section, the new proposed 
algorithm, PQR, is described. Simulation analysis is presented to show the 
performance of PQR algorithm in section III. Finally, the conclusions are presented in 
section IV. 

2   PQR 

In a wired network, if nodes adopt a WFQ-like service discipline and the source 
traffic is constrained by a leaky bucket, an upper bound on the end-to-end delay and 
bandwidth guarantees can be provided [9]. However, when fair queueing algorithms 
are used over wireless networks, the delay bound may not hold due to the bursty and 
location dependent channel errors of a wireless link.  

2.1   Structure of PQR  

PQR tries to predict future states of nodes and decide whether to choose a node as a 
forwarder or not. The future state of node includes its future buffer occupancy 
percentage as well as its future location in relation to its downstream node.  

Buffer: Occupancy percentage of a node’s buffer is the buffer level. If the buffer 
level of a particular node is high, this implies that a large number of packets are 
queued up for forwarding, which in turn implies that a packet routed through this 
node would have to experience high queueing delays.  

To predict future buffer level, a Minimum Mean Square Error Predictor (MMSE 
predictor) is used. By using this predictor, there is no need to know the underlying 
structure of traffic; therefore, it can be used for on-line prediction purposes [10]. 
MMSE is a well known method which its effective performance is shown in many 
literature such as [11], [12].  

Let {Xt} denotes a linear stochastic process and suppose that the next value of {Xt} 
can be expressed as a linear combination of current and previous observations. That is  

tmttmt XwXwX ε+++= +−+ 111 ...
 

where m is the order of regression.  
In PQR, nodes which their estimated buffer level in future time is above 75% of 

the buffer size are high buffer level nodes and are not appropriate choice to be 
selected as a router. This is a heuristic value based on network resources performance.  

Speed and node movement: If a node is moving with high speed, this would not be a 
good choice for packet forwarding. If it is selected as a router, after some seconds it 
will go away and its connection with its neighborhoods will be broken. So, it could 
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not forward packets and many packets will be lost and must be generated and 
forwarded again. Consequently, delay in MAC layer is increased because of 
degradation of link quality. In addition, a route recovery should be performed which 
may last a few seconds and packets should be queued up until a new path is set. So, 
high speed movement causes increase of end-to-end delay. Indeed, node movement 
causes QoS violation and increases packet loss and packet delays as well as 
decreasing network throughput.  

To decrease these kinds of QoS violation, PQR predicts whether a node’s future 
position could have stable links to forward packets or not. Hence, node’s position in 
relation to its downstream neighborhood is predicted. If two nodes will be in the range 
of each other in future, then the upstream node is selected as a router. To predict time 
duration which nodes will be in the range of each other, Link Expiration Time (LET) 
method has been proposed in [13] which is used here with a little modification 
because LET does not calculate the exact lifetime value expected.  

Assume two mobile nodes that their speed and direction of their movement remain 
constant. Let the location of node i and node j at current time be given by (xi, yi) and 
(xj, yj). Also, let Vi, Vj be the speeds, and i and j be the directions of the nodes i and 
j respectively. If the transmission range of the nodes is r, then the Link Lifetime 
Duration (LLD) of the link between the two nodes will be based on t1 and t2 as 
shown below while in [13] LET is equal to t2. 
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Assume that always t1 is smaller than t2. If both t1 and t2 are greater than zero, 

then two nodes will be the in range of each other in future and LLD is set to t2-t1. If 
t1 is smaller than zero and t2 is greater than zero, it shows that two nodes are and will 
be in the range of each other until t2 time. So, LLD will be set to t2. If t1 and t2 are 
not defined or t1 and t2 are below zero, it means that two nodes will not be in range of 
each other. In these cases LLD is set to zero.  

According to this prediction of future time, it is decided whether a node is a good 
choice to select as a router or not.  Experimental results show that LLD value about 5 
seconds is a desirable threshold. That is, when LLD is computed for a link between 
two nodes, if it is greater than the threshold, this is a good node to select as a router; 
otherwise, this node could not be a stable node in this path and will not be selected. 
Similar to the buffer threshold, the LLD threshold is also heuristic and is good for 
high speed scenarios (maximum mobile nodes’ speed is 20 m/s). Obviously for lower 
speed, a higher threshold for LLD could be used to achieve better result.  

To calculate LLD, the GPS information of upstream node should be sent to 
downstream node. Hence, some fields are added to route request messages. The fields 
contain node’s speed, position and direction of movement. Adding the required 
information to route request message has two advantages: first, only when these 
information are required, they are transferred to downstream node; second, the most 
recently updated information is transferred, so LLD computation will be more 
accurate. 
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2.2   PQR Algorithm 

We developed our PQR algorithm based on AODV routing protocol because of its on-
demand features, recovery abilities and scalability. In PQR when downstream node 
receives a rout request message (e.g. RREQ in AODV) form node upstream, it 
predicts its future buffer level and its LLD in relation to upstream node. If its future 
buffer level is low (under 75%) and its LLD is greater than the threshold, downstream 
node will forward this RREQ to next hops; otherwise, it will drop the route request 
message. This repeats until route request message is received at the destination. Then, 
a route reply message is generated and sent to the destination as the same in AODV 
protocol. Note that considering future buffer and position status of nodes result to 
avoid the aggregation of traffic while selecting stable nodes simultaneously.  

PQR, in fact, implements a call admission mechanism explicitly. For any request, it 
is checked whether there is a set of nodes which could make a desired path. Through 
PQR, we expect more stable paths are selected for routing so packets in this path will 
not experience long delays. Stable path means a path which has low breakage 
probability. Hence, QoS violation will be reduced and QoS guarantee will be 
provided with more probability. Meanwhile, including buffer as a selection criterion 
causes the distribution of load among paths.  In addition, algorithm implementation is 
so simple. In the following section, the achieved results of simulations are explained.  

3   Simulation 

The following results were obtained by using Network Simulator (NS 2.28)[14]. 70 
nodes were distributed randomly on a grid of 1000m *1000m with each node having a 
transmission range of 250m. Traffic sources are CBR (Constant Bit Rate). The data 
rate is varied between 50 to 400 packets per second with packet length of 512 bytes. 
Number of requests is 15 and they will enter randomly during the simulation time. 
The mobility model uses the random way point model. Nodes move with a randomly 
chosen speed (uniformly between 1 and 20 m/sec). Each node starts its movement 
from a random location to a random destination. Simulations were run for 1000 
seconds and 10 times.  

3.1   Performance Results 

We compare the performance of our algorithm with AODV routing protocol which is 
our base protocol. PQR is compared with AODV within the following three key 
performance metrics: 

-Average end-to-end delay of data packets - This includes all possible delays 
caused by buffering during route discovery latency, queuing at the interface queue, 
retransmission delays at the MAC, propagation and transmission times. As it is 
illustrated in Fig. 1, routing with proposed algorithm has a better end-to-end delay 
since the subset of forwarding nodes belongs to the set of nodes with more available 
buffer space as well as more stability with their neighborhoods.  
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-Packet delivery ratio - The ratio of the data packets delivered to the destination to 
those generated by the CBR sources. Fig. 2 shows a comparison of this metric for the 
AODV with PQR algorithm. Routing with PQR algorithm has a better packet delivery 
ratio because more stable and lower buffer level nodes are selected.  
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Fig. 1. Average end-to-end delay Fig. 2. Packet delivery ratio 

-Call acceptance rate- It is the number of calls which a path is set for them to total 
number of calls. In PQR algorithm the call acceptance rate is reduced because for 
many calls there is not a stable path which could satisfy QoS requirements (Fig. 3). 
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Fig. 3. Call acceptance ratio Fig. 4. Average e2e delay in various speeds 

Thus, proposed algorithm did not accept it for admission to network. However, in 
AODV more calls are accepted but their QoS requirement are violated during their 
session.  

Moreover, to show the efficiency of PQR in high speed and high traffic condition, 
we compare end to end delay of PQR with AODV in various speeds. Figure 4 shows 
end to end delay while maximum speed of nodes is varied between 1 to 20 m/s and 
traffic rate is set to 400 packet per seconds. As shown, PQR has a lower average end 
to end delay than AODV. It should be noted that PQR outperforms better in higher 
speed.  
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4   Conclusion 

We introduced a Prediction based QoS Routing algorithm, PQR, to enhance on 
demand routing protocols to provide QoS routing, particularly in terms of end-to-end 
delay. The proposed algorithm predicts future states of nodes, and based on it, decides 
whether to select a node as a router or not. Through this algorithm, more stable and 
lower buffer level nodes are selected and hence end-to-end delay is reduced. 
Simulation results show the efficiency of the proposed algorithm. 
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Abstract. Multicasting in resource constrained MANETs imposes a se-
vere restriction on the message overhead for construction and mainte-
nance of the multicast distribution tree. Algorithms based on minimum
spanning trees (MST) or Steiner trees require reconstruction of the tree
when members join or leave a multicast group in addition to change in
network topology. In the present paper, multicasting based on MCDS
with local repair is presented. The proposed MCDS algorithm tries to
optimize the number of messages required for construction and mainte-
nance of the multicast backbone. It is observed that when a node joins
or leaves the multicast group, the time taken for repair with local route
discovery is almost constant and is independent of multicast group size.
Moreover, there is only a modest increase in the CDS size. The results
are similar when a node that is not a member of the multicast group
but forms a part of the MCDS moves away resulting in a change of the
network topology.

1 Introduction

Adhoc wireless networks are resource constrained self-organizing, adaptive that
do not have any established infrastructure or centralized administration. Sharing
information and communication within a group necessitates that multicasting
be employed for optimum utilization of resources such as bandwidth and energy.
Multicasting techniques must address the issues of volatility of the network and
resource constraints. In explicit multicasting [1], the destination information is
listed in data packet headers. In [2] a shared mesh is established for each mul-
ticast group. The information of the position of a node and its neighbours has
been utilised for position based multicasting in [3]. Multicast ZRP [4] proactively
maintains a on-demand multicast shared tree membership for node’s local rout-
ing zone at each node. In [4] conventional protocols are used to define a multicast
group as a collection of hosts. In overlay multicasting [6], nodes participating in
the multicast group exploit the multicast routing at application level. Multicas-
ting requires construction and periodic reconstruction of MST or Steiner tree
when members join/leave or the topology changes. To sustain communication,
a minimum virtual backbone is required in the network. Different techniques
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have been proposed for the MCDS formation [7] [8] [9]. One set of algorithms
[8] are based on the idea of creating a DS incrementally, other set of algorithms
use initial set as CDS and recursively remove vertices using MST, steiner tree
etc [9]. Some approaches [7] try to construct a MCDS by finding a maximal
independent set, which is then expanded to CDS by adding connected vertices.

The rest of the paper is organized as follows. In Section II, an MCDS Al-
gorithm has been proposed and the design of the related multicast protocol
had been discussed. Section III contains the comparisons and simulation results.
Section IV concludes the paper.

2 Proposed Scheme

In the proposed technique, source initiates the multicast group. It calculates the
multicast routing tree and provides the other nodes with the required informa-
tion. It also determines the bandwidth that the other nodes must be willing to
provide in order to be a part of the multicasting group.

The source is aware of the routing information of all the nodes and uses an
MCDS algorithm to calculate the multicasting tree. It then sends the routing
information to all the nodes. Each node is only provided with the information
it requires and does not have information for the entire multicast group.

After the initial construction of the multicasting group, whenever a node joins,
leaves or moves away, a local route discovery process is initiated. A local repair
process is initiated to maintain the tree.

2.1 MCDS Formation

The MCDS construction/modification is a resource intensive operation. To be
efficient, it must require local information with minimal message exchange. The
MCDS formation starts by hierarchically dividing the graph into Clusters. The
clustered architecture of an ad-hoc network is a 2-level hierarchical network con-
verts a dense network into sparse network and has node information locally
which is suitable for scalability, so. Each cluster head computes its forward
node that relays the broadcast packet, set to cover other cluster heads within
its vicinity. The forward node set is computed such that all the cluster heads
in network can be connected and broadcast packet is delivered to entire net-
work. The information about the forward node set is also piggy-backed with the
broadcast packet to further reduce its forward node set. The broadcast oper-
ation is restricted only to cluster heads and nodes in locally selected forward
node sets.

Cluster heads are elected using election process based on Highest Connec-
tivity. A gateway is a non-cluster head node in a cluster that has a neighbor
in another cluster (i.e. gateways are needed to connect cluster heads together).
The cluster heads and gateways together form a CDS of network. The cluster
based broadcast algorithm only requires nodes in this CDS forward the broad-
cast packet while other nodes do not participate in packet forwarding process.
In proposed work, Highest Connectivity of node is used for cluster head election.
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The forward node set of the cluster head v is a subset of gateways by which the
v connects to the cluster heads in C(v) (adjacent cluster head set). v connects
to a cluster head in C2(v) (cluster heads that are 2-hops away from v) via a
1-hop gateway and it connects to a cluster head in C3(v) (cluster heads that
are 3-hops away from v) via two 2-hop gateways. At each cluster head, greedy
algorithm is used to determine forward node set. The set of forward node set is
selected as follows. The forward node set is organized as {f1, f2} where f1 is a
1-hop gateway used to connect to cluster heads in C2(v) and f2 is a set of 2-hop
gateways that are neighbors of f1 and are used to connect to cluster heads in
C3(v). f2 may be empty if none in C3(v) is considered. The Core MCDS nodes
and gateway or forwarding nodes together form the MCDS. The MCDS forma-
tion through this algorithm has the benefit that the number of cluster heads
gets reduced; lesser number of MCDS nodes is formed as compared to other
Algorithms.

2.2 The Multicast Protocol

The source initiates the multicast group as the group leader and the root of the
multicast tree. It maintains a sequence number for the group and disseminates
group information to all network nodes. The sequence number is incremented
periodically by the group leader, and is used by the receiving nodes to deter-
mine the freshness of the group related messages. A node that wishes to join a
multicast group will broadcast a Route Request message. Any on-tree node can
respond to the this message with a Route Reply message via the reverse route.
Other off-tree nodes will re-broadcast the Route Request message or unicast it
to the group leader if the node has the group leader information and has a path
to it. As the joining node may receive multiple replies, it activates the selected
path by sending a Multicast Activation (MACT) message along the selected path
to the multicast tree. The amount of bandwidth that the joining node must be
ready to reserves is encapsulated in the request message. MACT message is then
used to activate and reserve bandwidth on the selected path.

2.3 The Protocol Operations

Multicast Group Initialization. The source is aware of the members of the
group and initiates the creation of the group. It uses the a query message to
obtain routing table of the nodes. The nodes respond via query reply message.
The MCDS is then deteremined. The source dessiminates the routing and band-
width information to upstream and downstream neighbours to enable the nodes
to maintain routing and reservation tables.

3 Results and Comparison

Case 1: Node Join. When a node joins, it is checked whether the node is
connected to any on tree node. If so then the on tree becomes a part of the CDS
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and the node becomes a part of the tree. If not, a path to the tree is found. All
the nodes on the path become a part of the CDS and the node becomes a part
of the group.

Fig. 1. Fig. 2.

The graph in figure 1 shows the time taken for local route discovery (LR)
and the time taken for constructing the new CDS for each of the eight cases. As
can be seen the local route discovery is much faster than constructing the entire
CDS again.

Figure 2 shows the number of nodes in the CDS for the local route discovery
and the number of nodes when the MCDS is recalculated for each of the eight
cases. There is an increase in the number of nodes in the CDS for the local route
discovery. Only the source needs to maintain this information

Case 2: Leaving the Multicast Group. When a node leaves the multicast
group, a local repair process is initiated. There are two possibilities. The leaving
node may be part of the CDS or a simple on tree node. In the latter case
no repair is needed. However, if it is part of the CDS then a repair process
is initiated. As soon as any node discovers that there is link breakage with
any of its neighbors it checks to see if it is still connected to any node in the
CDS. If so no action is taken. If it not then a local route discovery process is
initiated.

This is done for all the affected nodes. Once each node discovers a new path
an message is sent to the source to maintain the multicast group information
and compute the routing tables and other group related information.

In figure 3 shows the time taken for local route repair (LR) and the time taken
for constructing the new CDS for each of the six cases. As can be seen the local
route repair is much faster than constructing the entire CDS again.

The graph in figure 4 shows the number of nodes in the CDS for the lo-
cal route repair and the number of nodes when the MCDS is recalculated for
each of the six cases. There is an increase in the number of nodes in the CDS
for the local route discovery. But only the source needs to maintain this
information.

Case 3: Mobility of the Node. A node may move causing existing links to
break. Whenever a node moves old links are broken and new links are formed.
As a result a local route repair process is initiated.
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Fig. 3. Fig. 4.

There are two possibilities. The node may be part of the MCDS or a simple
on tree node.

If it is just a simple node, then the only affected node is the moving node
itself. A local route discovery process is initiated and a path to the tree is found.
All the nodes on the path are part of the CDS.

If the moving node is part of the MCDS then all the affected nodes have to
recompute their routes. If the affected node is connected to any other node in the
MCDS then nothing has to be done. Else a local route repair process is initiated
and a path to the group is found.

Fig. 5. Fig. 6.

The graph in Fig 5 shows the time taken for local route repair (LR) and the
time taken for constructing the new CDS for each of the six cases. As can be seen
the local route repair is much faster than constructing the entire CDS again. It
can be observed that the time taken for local route repair (LR) and the time
taken for constructing the new CDS for each of the six cases. The local route
repair is much faster than constructing the entire CDS again.

The graph in figure 6 shows the number of nodes in the CDS for the local
route repair and the number of nodes when the MCDS is recalculated for each of
the six cases. There is an increase in the number of nodes in the CDS for the local
route discovery. However, only the source needs to maintain this information.

4 Conclusion

The proposed protocol integrates resource reservation with the routing protocol
to provide multicasting. MCDS based algorithm is utilised to create the initial



MCDS Based Multicasting in Mobile Adhoc Networks 57

multicasting tree and uses local route discovery and route repair to manage
removal of nodes and link breakages due to mobility.

The simulation results indicate the superiority of local route discovery and
local route repair as opposed to reconstruction. The heuristic used to create the
MCDS is simple and comparable to existing algorithms in terms of efficiency.
The protocol is intuitively designed to work in adhoc networks with low mobility
and low rates of addition. However, the efficacy of the protocol must be tested
for networks having high mobility and high rates of nodes addition.
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Abstract. We formulate a programmer-centric description of the mem-
ory consistency model provided by the Itanium architecture. This allows
reasoning about programs at a non-operational level in the natural way,
not obscured by the implementation details of the underlying architec-
ture. However, our definition is not tight. We provide two very similar
definitions and show that the specification of the Itanium memory model
lies between the two. These two definitions are motivated by slightly dif-
ferent implementations of load-acquire instructions.

Keywords: Programmer-centric memory consistency, Itanium multi-
processor.

1 Introduction

We contend that for programming purposes, a memory consistency model should
be specified as a set of (ordering) rules on the instructions used by the pro-
grammer, rather than on a lower level collection of operations. Furthermore,
the validity condition should be the natural notion of validity of sequences of
these instructions acting on the objects of the system. For example, in a valid
sequence of loads and stores, the value returned by each load instruction should
be the value written by the most recent preceding instruction in the sequence
that stored a value to the same memory location. Such a description is useful
to a programmer of the system since she can reason about her code directly,
and therefore we call it programmer-centric. Descriptions in terms of lower level
operations specify an implementation (in hardware or on a virtual platform) and
are useful for an architect who is building the system, but should not be con-
fused with its specification. In this case these lower level implementations should
be proved equivalent to the specification. A further advantage of our approach
is that constructions can be composed. A high level specification of an object
oriented system can be implemented by a succession of constructions, such that
an implementation at one level is the specification for a still lower level, and
each level of implementation is proved to correctly implement its specification.
This, of course, is the familiar notion of abstraction; we simply extend it to weak
models of memory consistency.
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In previous work we established a framework for specifying programmer-
centric memory consistency models and for proving such equivalences between
specifications and implementations [7, 6]. This paper applies these ideas to the
Intel Itanium architecture. That is, we aim for a programmer-centric specifica-
tion of the memory consistency of the Itanium multiprocessor. As will be seen, we
failed to realize this goal. Instead, we define two very similar programmer-centric
memory consistency models, ItaniumA and ItaniumB, and show that “official”
Itanium memory consistency [9], henceforth referred to as Itanium (with no sub-
script), lies strictly between these two (Section 3). ItaniumB and ItaniumA differ
only slightly in the ordering constraints involving Itanium load-acquire instruc-
tions, and each is motivated by a plausible hardware implementation. Several
other plausible definitions also fail to exactly capture the Itanium memory con-
sistency specification (Section 5). The main results of this paper are preceded,
in Section 2, with an overview the Itanium architecture and a synopsis of its
operational level memory consistency as described by Intel [9].

Several other frameworks for describing memory consistency have been pro-
posed but are not central to this paper. The framework of Adir, Attiya and
Shurek [1] is very similar to ours and precedes ours. Arvind and Maessem [3]
provide a framework for serializable memory models. We are unaware, however,
of how to use these frameworks to prove equivalence between systems. Yang
et. al. [11, 12, 4] present a non-operational approach to specifying and analyz-
ing shared memory consistency models and use it to provide a translation of
the rules of Itanium specification. Adve and Gharachorloo [2] consider the ques-
tion of programmer centricity of memory consisteny models and provide it by
giving the illusion of sequentially consistent memory. The TLA work of Joshi
et. al. [10] is a precise specification of Itanium and is the basis of the official
specification [9].

2 Itanium Multiprocessors

2.1 Itanium Architecture

The Itanium specifications [9] are independent of specific machine implemen-
tations. Although we do not know of a concrete machine implementation that
exactly captures the Itanium specifications, in this subsection we overview some
of the architectural features of such a machine.

Itanium provides a distributed-shared memory (DSM) architecture where each
processor maintains a replicated copy of the shared address space. The rules that
govern processor execution and inter-processor communication are complicated
and give rise to complex behaviors. Itanium also supports write-buffers with read
by-passing, which further complicates the behavior of Itanium. Bypassing loads
can complete before earlier buffered stores and give rise to an out-of-order execu-
tion. When a processor loads a variable that it never stores, however, (such as a
single-writer variable owned by a different processor) the load returns the value
from the local replica rather than from the local buffer. Itanium write buffers
are guaranteed to be FIFO only per variable. Hence, two store instructions to
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different variables can be applied to a replica in the opposite order to that in
which they occur in a processor’s program.

To constrain out-of-order execution, Itanium supports the extensions of “ac-
quire” and “release” to load and store instructions, respectively. A load-acquire
instruction (denoted ld.acq) is always performed before any subsequent instruc-
tion in the program. A store-release (denoted st.rel) is always performed after
every preceding instruction in the program. Store-releases also constrain inter-
processor interaction. Specifically, incoming store-releases force earlier stores by
the same processor to be applied remotely in the same order they are applied at
the issuing processor. Acquires and releases also restrict the write buffer’s be-
havior. For instance, when a release is buffered it forces all previously buffered
stores to be removed from the buffer and applied to the local replicas before the
release itself. A load-acquire can also force the buffer to be flushed, but this is
not necessary in general.

2.2 Itanium Memory Consistency According to the Itanium Manual

Itanium memory consistency is specified in the Intel manual [9]. We paraphrase
(and simplify) it here as concisely as possible, so that it can be compared to the
programmer-centric version that we describe in Section 3. When the same things
are named differently in the manual [9] and in our framework (Subsection 3.1),
we use our terminology and notation, to simplify the comparisons. For example,
what we call a computation is exactly what the manual calls an execution, and
we denote program order by

prog−→ whereas the manual uses . We also define
a few additional terms to simplify notation. The symbol st[.rel] represents an
instruction with store semantics (i.e. either st or st.rel), ld[.acq] represents a
load instruction (i.e. either ld or ld.acq), and i represents any Itanium-based
instruction.

Each Itanium-based instruction is decomposed into operations that either read
values from or write values to memory locations. An instruction’s operations
correspond to different aspects of the visibility of the instruction for different
processors. Specifically, ld[.acq] is “decomposed” into a single read operation
R(ld[.acq]); st[.rel] by processor p is decomposed into n + 1 write operations for
an n-processor multiprocessor: a local write operation visible only to p denoted
LV(st[.rel]) and a remote write operation for each processor q in the system
denoted RVq(st[.rel]). fence is “decomposed” into just one operation, F(fence).
The operations of an instruction and the instruction itself correspond. For exam-
ple, each of the operations LV(stp(x, v)), RVp(stp(x, v)) and RVq(stp(x, v)) for
every processor q �= p corresponds to the store instruction stp(x, v). The opera-
tion O is a read operation (respectively, write operation) if O corresponds to load
(respectively, store) instruction.

We assume that memory locations with distinct names do not overlap. Let WR
be a (write) operation corresponding to instruction st[.rel] and RD be a (read)
operation corresponding to instruction ld[.acq]. The value stored by st[.rel] (re-
spectively, written by WR) is denoted WrVal(st[.rel]) (respectively, WrVal(WR)).
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Similarly, the value loaded by ld[.acq] (respectively, read by RD) is denoted Rd-
Val(ld[.acq]) (respectively, RdVal(RD)). Every location b in memory has an initial
value, denoted by InitVal(b), that will be returned to read operations when they
occur before there are any write operations to that location.

Any computation of the basic Itanium processor family memory ordering
model must have an associated visibility order, which linearly orders all the
operations that correspond to all the instructions of the computation and sat-
isfies the Itanium rules below. If there is no visibility order for a computa-
tion that satisfies all of these rules, the computation is not permitted by the
architecture.

If an instruction i is by a processor p, we write p = Proc(i). For any two
operations O and U, O V−→ U means that O precedes U in the visibility order V.
If there is a store instruction stp(x, ·) and a load instruction ldp(x) such that

LV(stp(x, ·)) V−→R(ldp(x)) V−→RVp(stp(x, ·)) then the operation R(ldp(x)) is a
local read in V and ldp(x) is a local load in V (or simply a local load or local
read when V is clear).

Itanium Rules

(WO): Every store becomes visible locally before it becomes visible remotely.
For every store st[.rel] where p=proc(st[.rel]), LV(st[.rel]) V−→RVp(st[.rel])

and RVp(st[.rel])
V−→RVq(st[.rel]) for q �=Proc(st[.rel]).

(ACQ): Any instruction program-ordered after a ld.acq becomes visible after
the ld.acq.
If ld.acq

prog−→ i, A is a read operation corresponding to ld.acq, and O is an
operation corresponding to i, then A

V−→ O.
(REL): Any instruction program-ordered before a st.rel becomes visible before

the st.rel.
– If i

prog−→ st.rel, and i does not have store semantics, and O is an operation
corresponding to i, then O

V−→ LV(st.rel).
– If st[.rel]

prog−→ st.rel then LV(st[.rel]) V−→LV(st.rel) and
RVp(st[.rel])

V−→RVp(st.rel) for each processor p.
(FEN): Instructions become visible in order with respect to fence instructions.

– If fence
prog−→ i and O is an operation corresponding to i, then F(fence) V−→

O.
– If i

prog−→ fence and O is an operation corresponding to i, then O
V−→F(fence).

(MD:RAW): Every load that is program-ordered after a store to the same
location must become visible after that store.
– If st[.rel] and ld[.acq] access the same memory location and

st[.rel]
prog−→ ld[.acq], then LV(st[.rel]) V−→R(ld[.acq]).

(MD:WAR): Every store that is program-ordered after a load to the same
location must become visible after that load.
– If ld[.acq] and st[.rel] access the same memory location and ld[.acq]

prog−→
st[.rel], then R(ld[.acq]) V−→ LV(st[.rel]).
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(MD:WAW): Stores by a processor to a common location become visible to
that processor in program order.
– If st[.rel]1 and st[.rel]2 access the same memory location and

st[.rel]1
prog−→ st[.rel]2, then LV(st[.rel]1)

V−→ LV(st[.rel]2).
(COH): Stores to the same location become remotely visible in the same order

for every processor.
– If st[.rel]1 and st[.rel]2 are stores to the same location and Proc(st[.rel]1)

= Proc(st[.rel]2) and LV(st[.rel]1)
V−→LV(st[.rel]2) then

RVp(st[.rel]1)
V−→RVp(st[.rel]2).

– If st[.rel]1 and st[.rel]2 are stores to the same location and
RVp(st[.rel]1)

V−→RVp(st[.rel]2) for any processor p, then

RVq(st[.rel]1)
V−→RVq(st[.rel]2) for all processors q.

(WBR): Store-release instructions become remotely visible atomically.
– If RVp(st.rel)

V−→ O
V−→RVq(st.rel) then O=RVr(st.rel) for some proces-

sor r.

The remaining rules determine what value must be returned by a load, which
depends on the placement of the read of the load within the low level write
operations to the same location.

(RV1): Let ld[.acq] be a local load of location x and st[.rel] be a store to x, such
that Proc(st[.rel]) = Proc(ld[.acq]). Suppose that LV(st[.rel]) V−→R(ld[.acq])
and there is no other store, st[.rel]’, to x with Proc(st[.rel]’)= Proc(ld[.acq])
where LV(st[.rel]) V−→LV(st[.rel]’) V−→R(ld[.acq]). Then RdVal(ld[.acq]) =
WrVal(st[.rel]).

(RV2): Let ld[.acq] be a non-local load of location x and p = Proc(ld[.acq]).
Suppose there is a store st[.rel] to x such that RVp(st[.rel])

V−→R(ld[.acq]),

and there is no other store st[.rel]’ to x with RVp(st[.rel])
V−→RVp(st[.rel]’)

V−→R(ld[.acq]). Then RdVal(ld[.acq]) = WrVal(st[.rel]).
(RV3): Let ld[.acq] be a non-local load instruction of location x and p =

Proc(ld[.acq]). Suppose there is no st[.rel] to x such that
RVp(st[.rel])

V−→R(ld[.acq]). Then RdVal(ld[.acq]) = InitVal(x).

3 Programmer-Centric Itanium-Based Consistency

3.1 Framework

As each process in a multiprocess system executes, it issues a sequence of instruc-
tion invocations on shared memory objects.1 For this paper the shared memory
consists of only shared variables, and each instruction invocation is Itanium-
based. That is, each instruction invocation is of the form stp(x, v) or st.relp(x, v)

1 Parts of this section were first used in previous work (Section 2.2 of [5]); they are
re-used in this work in a modified form.
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meaning that process p writes a value v to the shared variable x, or ldp(x) or
ld.acqp(x) meaning that process p reads a value from shared variable x, or fencep

meaning that process p invoked a memory fence instruction. Instruction invo-
cations st and st.rel are referred to collectively as store instructions and have
store semantics ; ld and ld.acq are called load instruction invocations and have
load semantics. It suffices (for this paper) to model each individual process p as
a sequence of these instruction invocations and call such a sequence an individ-
ual (Itanium-based) program.2 An (Itanium-based) multiprogram is a finite set
of these individual programs.

An instruction is an instruction invocation completed with a response. In
our setting the response of a store instruction invocation or a fence instruction
invocation is an acknowledgment and is ignored. The response of a load invo-
cation is the value returned by the invocation. A (multiprocess) computation of
an Itanium-based multiprogram, P is created from P by changing each load in-
struction invocation, ldp(x) (respectively, ld.acqp(x)) to ν ←ldp(x) (respectively,
ν ←ld.acqp(x)) where ν is either the initial value of x or some value stored to x
by some store to x in the multiprogram.

Notice that the definition of a computation permits the value returned by
each ld(x) or ld.acq(x) instruction invocation to be arbitrarily chosen from the
set of values stored to x by the multiprogram. In an Itanium (or any other) mul-
tiprocessor, the values that might actually be returned are substantially further
constrained by its architecture, which determines the way in which the processes
communicate and that shared memory is implemented. A memory consistency
model captures these constraints by specifying a set of additional requirements
that computations must satisfy. Typically, these require the existence of a set
of sequences of instructions that satisfy certain properties. A collection of such
sequences for a computation C that meet all the requirements of memory consis-
tency model M is called a set of M-verifying sequences for C. We use C(P ,M)
to denote the set of all computations of multiprogram P that satisfy the mem-
ory consistency model M. Memory consistency model M is stronger than M′

if, for every Multiprogram P , C(P ,M) ⊆ C(P ,M′); M is strictly stronger than
M′ if C(P,M) � C(P ,M′) The terms weaker and strictly weaker are defined
similarly.

The description of a memory consistency model is simplified by assuming that
each store instruction invocation has a distinct value. Although it is technically
straightforward to remove this assumption, without it, the description of the
memory model is messy and its properties are consequently obscured.

For an Itanium-based computation C, I(C) denotes all the instructions in
C. I(C)|p is the subset of I(C) in processor p’s program sequence; I(C)|x is
the subset of I(C) applied to variable x; I(C)|r is the subset containing only
the load instructions; I(C)|w is the subset containing only the store instruc-
tions; Let I(C)|acq denote the subset containing all ld.acq instructions plus the
memory fence instructions; let I(C)|rel denote the subset containing all st.rel

2 We have made some common simplifying assumptions such as memory locations do
not overlap, memory is cacheable (i.e., WB) and semaphores are omitted.
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instructions plus the memory fence instructions. The relation (I(C),
prog−→ ), called

program order, is the set of all pairs (i, j) of instructions that are in the same
individual computation of C and such that i precedes j in that sequence. For
any partial order relation (I(C),

y−→ ), the notation i
y−→ j is used to mean

(i, j) ∈ (I(C),
y−→ ).

A load instruction is domestic if the value it returns was stored into shared
memory location x by a store instruction by the same processor; memory fence
instructions and load instructions that are not domestic are foreign. If an in-
struction, i, with load semantics returns the value stored by an instruction, j,
with store semantics then i and j are causally related.

3.2 Weak and Strong Itanium Memory Consistency

This section uses the framework of Subsection 3.1 to formulate two programmer-
centric definitions of Itanium consistency and describe informally what the def-
initions are intended to capture. They differ only slightly in the constraints on
ld.acq instructions.

Define the following partial orders. Let i, j ∈ I(C) such that i
prog−→j.

Acquire A: i
Acquire A−→ j if and only if i ∈ I(C)|acq.

Acquire B: i
Acquire B−→ j if and only if i ∈ I(C)|acq and i is foreign.

Acquire A describes a conservative implementation of ld.acq instructions,
which requires any ld.acq to precede all instructions that follows it in the pro-
gram. In the presence of buffers, certain architectural decisions can sacrifice this
“text-book” behavior. For instance, Acquire B captures the situation when a
ld.acq can be satisfied from the buffer (a domestic ld.acq). A ld that follows the
ld.acq in program order could by-pass the buffer, or, a following st to a different
variable could be committed to the local replica earlier than the buffered st that
is used to satisfy the ld.acq. In these cases, the program order between the ld.acq
and the subsequent ld or st is not necessarily preserved. There is one occurrence
of each st in a processor’s view, and these views are constructed based on the
order in which stores occur in the local replicas. To maintain the intuitive notion
of validity, the ld.acq must be delayed in the view until its causally-related st
occurs in the local replica. Hence, a domestic ld.acq may occur in a view after a
ld or a st that follows it in program order.

Acquire B allows this behavior, but prohibits it when the ld.acq is foreign
(necessarily satisfied from the local replica rather than the buffer). It is also
prohibited when ld.acq and the ld are applied to the same variable: if the ld.acq
is satisfied from the buffer, then either the ld is also satisfied from the buffer or, if
not, the st under consideration must have been applied to the local replica. This
will be taken care of by the coherence requirement in the Itanium consistency
definition.

One mechanism to prohibit a domestic ld.acq from occurring in a processor’s
view later than it should is to flush the buffer before the ld.acq is completed,
ensuring that the ld.acq is always satisfied from the local replica. Such an archi-
tecture could achieve views satisfying Acquire A.
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The following definition is parameterized by an arbitrary partial order on
I(C), denoted R, which will be replaced by various partial orders (such as Ac-
quire A and B) to construct variants of Itanium consistency.

Definition 1. A computation C satisfies ItaniumR if for each p ∈ P there is

a total order (I(C)|p ∪ I(C)|w,
Sp−→ ) such that Sp is valid and for every i, j ∈

I(C)|p ∪ I(C)|w:

1. If i
R−→ j then i

Sp−→ j (R Order), and
2. If i

prog−→j and j ∈ I(C)|rel then i
Sp−→ j (Release Order), and

3. If i
prog−→j and i, j ∈ I(C)|x and [(i ∈ I(C)|w or j ∈ I(C)|w) or (i ∈ I(C)|acq)]

then i
Sp−→ j (Same Memory Order), and

4. If i, j ∈ I(C)|x|w and i
Sp−→ j then i

Sq−→ j, ∀q ∈ P (Same Memory Agree-
ment), and

5. If i, j ∈ I(C)|rel and i
Sp−→ j then i

Sq−→ j, ∀q ∈ P (Release Agreement), and

6. If i ∈ I(C)|rel and j ∈ I(C)|st|p and i
Sp−→ j then i

Sq−→ j, ∀q ∈ P (Release
to Store Agreement), and

7. There does not exist a cycle of i1, i2 . . . ik ∈ I(C)|w where ij ∈ I(C)|pj, ∀j ∈
{1, 2, . . . k} and k ≤ n such that: ik

S1−→ i1, and i1
S2−→ i2, and i2

S3−→ i3 . . .

and ik−1
Sk−→ ik (Cycle Free Agreement).

ItaniumA abbreviates ItaniumR when R = Acquire A. ItaniumB is defined sim-
ilarly (R = Acquire B). Section 5 defines additional Itanium models based on
further variants of acquire orders.

Notice that a view of a processor consists of its own instructions in addition
to the store instructions of all other processors. A specified Acquire Order is
maintained by each view (item 1). The Release Order (item 2) is simply what
a programmer expects: any instruction preceding a st.rel must maintain this
order in the processors’ views. Item 3 specifies the coherence requirement. The
remaining items are requirements that establishing some agreement between the
views of each processor. Since channels between processors are FIFO for each
variable, the communicated store instructions to the same variable must appear
in every view in the same order (item 4). A st.rel instruction occurs in all replicas
atomically so item 5 requires the st.rel instructions to be seen in the same order
by all processors. Furthermore, by item 6, if a st is seen by the storing processor
after a st.rel, that st must be seen after the st.rel by all processors. Item 7 is a
technical condition arising from timing considerations. Consider a store sp by p
and a store sq by q. Since a store is visible to the storing processor before it is
visible to others, it is not possible for p see sq before sp, and yet for q see sp

before sq. Item 7 generalizes this to any number of processors.

4 Itanium Is Strictly Between ItaniumA and ItaniumB

Because of space constraints, the proofs of our two major theorems, Theorems 1
and 2, are omitted but can be found elsewhere [8].
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Theorem 1. ItaniumA memory consistency is strictly stronger than Itanium
memory consistency.

Theorem 2. Itanium memory consistency is strictly stronger than ItaniumB

memory consistency.
A couple of computations serve to illustrate the essential differences between
ItaniumB, Itanium and ItaniumA. Computation 1 satisfies ItaniumB consistency
but not Itanium or ItaniumA consistency.

Comp 1
{

p : 3 ←ld(x) st(x, 2) 2 ←ld.acq(x) st(y, 4)
q : 4 ←ld.acq(y) st(x, 3)

In Computation 1, 2 ←ld.acqp(x) is domestic but 4 ←ld.acqq(y) is foreign.
4 ←ld.acqq(y) must be satisfied from the local replica and not the write-buffer,
but it is possible for 2 ←ld.acqp(x) to be satisfied from p’s write-buffer while
stp(x, 2) is pending, waiting to be applied to p’s local replica. Since the write-
buffers are only FIFO per variable, it is possible for stp(y, 4) to be applied to p’s
replica before stp(x, 2). Hence, in p’s view it is possible for 2 ←ld.acqp(x) to occur
after stp(y, 4), a violation of the “text-book” implementation of ld.acq. ItaniumB

allows this behavior, which is captured by the following verifying sequences:{
Sp : stp(y, 4) stq(x, 3) 3 ←ldp(x) stp(x, 2) 2 ←ld.acqp(x)
Sq : stp(y, 4) 4 ←ld.acqq(y) stq(x, 3) stp(x, 2)

Computation 1 does not satisfy Itanium because of the following cycle of
operations:

R(3 ←ldp(x)) MD:WAR−→ LV(stp(x, 2))
(MD:RAW )−→ R(2 ←ld.acqp(x))

(ACQ)−→
LV(stp(y, 4))

(WO)−→ RVp(stp(y, 4))
(WO)−→ RVq(stp(y, 4))

(RV 2)−→ R(4 ←ld.acqq(y))
(ACQ)−→ LV(stq(x, 3))

(WO)−→ RVq(stq(x, 3))
(WO)−→ RVp(stq(x, 3))

(RV 2)−→ R(3 ←ldp(x)).

Any verifying visibility sequence is a total order, so no such sequence could
extend the orders of this cycle.

Also, Computation 1 does not satisfy ItaniumA, which requires 2 ←ld.acqp(x)
to precede stp(y, 4) in p’s view. However, this is not possible because Sp must
extend:

stq(x, 3) valid−→ 3 ←ldp(x)
same memory−→ stp(x, 2)

same memory−→ 2 ←ld.acqp(x)
strong acquire−→ stp(y, 4).

The Cycle Free agreement requirement needs stq(x, 3)
Sq−→ stp(y, 4) because

otherwise stq(x, 3)
Sp−→ stp(y, 4)

Sq−→ stq(x, 3) which is not allowed. Thus, Sq

contains the following cycle: stq(x, 3)
cycle free−→ stp(y, 4) valid−→ 4 ←ld.acqq(y)

strong acquire−→ stq(x, 3) .
While the “liberal” behavior of the ld.acq instructions in ItaniumB allows

computations that are otherwise prohibited under Itanium, the conservative be-
havior of the ld.acq instructions in ItaniumA is too prohibitive.

Computation 2 satisfies Itanium consistency but not ItaniumA consistency.
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Comp 2
{

p : 4 ←ld.acq(y) st(x, 5) st.rel(z, 2)
q : st(x, 3) 3 ←ld.acq(x) st(y, 4)2 ←ld.acq(z) 3 ←ld(x)

Processor q can place stq(x, 3) in its write-buffer, satisfy 3 ←ld.acq(x) from
the buffer, and then buffer stq(y, 4). Since the write-buffers are only FIFO per
variable it is possible for stq(y, 4) to be applied to both replicas while stq(x, 3)
is still pending in the buffer. Processor p can perform 4 ←ld.acqp(y) and then
apply stp(x, 5) to q’a replica while stq(x, 3) is still in q’s buffer.

Formally, a sequence V that satisfies Itanium is:
LV(stq(x, 3)), Rq(3 ←ld.acqq(x)), LV(stq(y, 4)), RVq(stq(y, 4)), RVp(stq(y, 4)),
Rp(4 ←ld.acqp(y)),LV(stp(x, 5)),LV(st.relp(z, 2)),RVp(stp(x, 5)),RVq(stp(x, 5)),
RVp(st.relp(z, 2)), RVq(st.relp(z, 2)), Rq(2 ←ld.acqq(z)), Rq(3 ←ldq(x)),
RVq(stq(x, 3)), RVp(stq(x, 3)).

ItaniumA does not allow Computation 2 since ItaniumA requires all ld.acq
instructions to be satisfied from the local replica rather than the buffer. Hence,
stq(x, 3) is guaranteed to be applied to q’s replica before even stq(y, 4) is buffered.
p must see stq(y, 4) before it buffers stp(x, 5) because it sees the value in y through
a ld.acq instruction. When p sees stq(y, 4), the value of x in q’s replica must be
3. p’s st.relp(z, 2) forces stp(x, 5) to be applied everywhere before the st.rel itself.
When q sees st.relp(z, 2), it must also have seen stp(x, 5). So the value of x in q’s
replica must be 5, overwriting the earlier value of 3. 3 ←ldq(x) must take place
after 2 ←ld.acqq(z), since ItaniumA requires the ld.acq to precede any following
instruction. However, we have already argued that the value of x according to q
cannot be 3.

Formally, the ItaniumA sequence, Sp, must extend:

stq(y, 4) valid−→ 4 ←ld.acqp(y)
strong acquire−→ stp(x, 5) release−→ st.relp(z, 2). The Cy-

cle Free agreement requirement needs stq(y, 4)
Sq−→ stp(x, 5) because otherwise

stq(y, 4)
Sp−→ stp(x, 5)

Sq−→ stq(y, 4) which is not allowed. Thus, Sq must extend:

stq(x, 3)
same memory−→ 3 ←ld.acqq(x)

strong acquire−→ stq(y, 4)
cycle free−→ stp(x, 5)

release−→ st.relp(z, 2) valid−→ 2 ←ld.acqq(z)
strong acquire−→ 3 ←ldq(x). This makes the

final 3 ←ldq(x) invalid.

5 Other Acquire Orders

ItaniumB and ItaniumA bound Itanium and the only difference between them is
slight changes in the Acquire Order. So a natural question is: “Is there a definition
of an Acquire Order that yields a programmer-centric memory consistency spec-
ification that is equivalent to Itanium?” This section examines several plausible
Acquire Order definitions and compares their relative strengths. One interesting
result is another memory consistency model that is weaker than ItaniumA yet
still strictly stronger than Itanium.

Define the write-before-read relation (I(C), wbr−→) by: i1
wbr−→ i2 if, for some

shared variable x, i1 ∈ I(C)|x|w and i2 ∈ I(C)|x|r and i2 reads the same value
written by i1.
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In addition to Acquire A and Acquire B defined in Subsection 3.2, define two
additional acquire orders as follows. Let i, j ∈ I(C) such that i

prog−→j.

Acquire C: i1 ∈ I(C)|acq and i2 is a non-domestic load.
Acquire D: i1

wbr−→ i3
prog−→ i2 and i3 ∈ I(C)|acq

Acquire C models a possible implementation where two load instructions,
i1 = ld.acq which is program ordered before i2 = ld or ld.acq, and i1 checks
the write-buffer and misses it, bypasses any pending stores, and returns its value
from the local replica. Meanwhile i2 hits the buffer and returns. The effect is that
i2 bypasses i1 because when constructing the processor’s view i2 will be delayed
until its causally-related buffered write is committed to the local replica. Acquire
D restricts this behavior in which any instruction can similarly bypass an earlier
(in program order) domestic ld.acq. The bypassing instruction cannot be moved
too early in the processor’s view. It must follow the st that is causally related to
the bypassed ld.acq.

These two partial orders give rise to two new definitions for Itanium consis-
tency, in particular ItaniumC (Definition 1 with R = Acquire C) and ItaniumD

(Definition 1 with R = Acquire D).
More variants of the Itanium memory consistency model are defined by com-

bining the four basic acquire orders based either on intersection or conjunction
as follows. Let γ, β ∈ {A, B, C, D}.
Intersection: A computation C satisfies Itaniumγ∩β if C satisfies Itaniumγ and

Itaniumβ .
Conjunction: A computation C satisfies Itaniumγ∧β if C satisfies Itaniumγ∩β

and there is a set of Itaniumγ-verifying sequences for C that are also Itaniumβ-
verifying sequences for C.

Note that the models Itaniumγ∩β allow the Itaniumγ-verifying sequences for
C to be different from Itaniumβ-verifying sequences for C. Hence, Itaniumγ∧β

is stronger than Itaniumγ∩β.

Itanium
Incomparable

ItaniumCItaniumD

Itanium
C   B

ItaniumB

WeakStrong

D   B
Itanium U

C   D

U Itanium
C   B

U

ItaniumA

Itanium

ItaniumD   B ItaniumC   D

Fig. 1. Relative Strength of Various Systems
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Since ItaniumA is stronger than each of ItaniumB, ItaniumC , and ItaniumD,
this introduces six new and distinct Itanium memory consistency models:
ItaniumC∩B, ItaniumC∩D ItaniumD∩B ItaniumC∧B, ItaniumC∧D and
ItaniumD∧B. Observe that ItaniumA is also stronger than each of the models
ItaniumC∧B, ItaniumC∧D and ItaniumD∧B.

Figure 1 shows the relative strength of each system. The proofs are elsewhere [8].
A conclusion of this investigation is that ItaniumD∧B is weaker than ItaniumA

but still stronger than Itanium. At present a programmer-centric consistency
model that is equivalent to Itanium has not been identified. However, there is
promise in this technique of strengthening the Acquire B order.
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Abstract. The group mutual exclusion problem is a generalization of
the ordinary mutual exclusion problem where each application process
can be a member of different groups and members of the same group are
allowed simultaneous access to their critical sections. Members of dif-
ferent groups must access their critical sections in a mutually exclusive
manner. In 2003, Joung proposed a especially designed group quorum
system for group mutual exclusion named the surficial system. Given
the total number of manager processes in the system n and the number

of groups sought m, the degree of the surficial system is k =
√

2n
m(m−1)

,

which means that up to k processes can be in their critical section si-
multaneously. In this paper, we propose a new group quorum system for
group mutual exclusion of degree k′ = 1+

√
1 + n

m
, which is much higher

than k. Also, when k = k′, our system produces quorums of smaller size.
This makes our system far more efficient and practical.

1 Introduction

Mutual exclusion is a fundamental problem in distributed systems. In this prob-
lem, access to a shared resource by concurrent processes must be synchronized
so that only one process can use the resource at a time. The group mutual exclu-
sion problem is a generalization of the ordinary mutual exclusion problem where
each application process can belong to different groups and members of the same
group are allowed simultaneous access to their critical sections. Members of dif-
ferent groups must access their critical sections in a mutually exclusive manner.
Solutions for group mutual exclusion in shared memory models have been pro-
posed in [2], [6], [10], [11]. In this paper, we consider processes that communicate
via message passing. Solutions for group mutual exclusion in such networks have
been proposed in [4], [15], [16].

Quorum-based solutions have been proposed for solving both ordinary and
group mutual exclusion problems [1], [3], [5], [12], [13], [14]. The basic idea of
this type of algorithms is to rely on a set M of manager processes to control
access to the critical section. An application process that wishes to enter the
critical section has to collect enough votes (permissions) from manager processes
to form a quorum Q ⊆ M . Under the assumption that each manager process
gives out its permission to at most one process at a time1 (as in Maekawa’s
1 This assumption is made throughout the paper.

S. Chaudhuri et al. (Eds.): ICDCN 2006, LNCS 4308, pp. 70–81, 2006.
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algorithm [12]), if quorums are made such that ∀Qi, Qj ⊆ M, Qi ∩Qj �= φ, then
mutual exclusion is automatically guaranteed. It is known that quorum-based
algorithms are resilient to node failures and network partitioning.

In 2003, Joung proposed a especially designed group quorum system for group
mutual exclusion named the surficial system [8]. The main advantage of such
approach is that it provides a way from which truly distributed quorum-based
solutions for group mutual exclusion can be easily constructed [12]. Moreover,
taking a purely mathematical perspective, we think that group quorum systems
are an elegant object which study is well justified.

In an m-group quorum system over a set of manager processes P , there will
be m groups (sets), each of which is a set of quorums of P such that every two
quorums of different groups intersect. Intuitively, an m-group quorum system
can be used to solve group mutual exclusion as follows: Each process i of group
j, when attempting to enter its critical section, must acquire a quorum Q it has
chosen from that group by obtaining permission from every member of Q. Upon
exiting the critical section, process i returns the permission to the members of
Q. By the intersection property, no two processes of different groups can enter
their critical sections simultaneously.

Under the assumption that each manager process gives out its permission to
at most one process at a time, a group quorum system has a main disadvantage:
it limits the level of concurrency allowed by the system. This is true because the
number of processes in a group that can enter their critical sections simultane-
ously is bounded above by the maximum number of pairwise disjoint quora in
that group (also called the degree of the group). The theoretical upper bound
on that degree, provided m > 1, is OPT =

√
n, where n is the number of man-

ager processes in the system [8]. So, under the condition that no more than
√

n
processes of any group are to enter their critical sections simultaneously, group
quorum systems are applicable. Now, if this is unacceptable for some applica-
tions, then by relaxing the above assumption, it is not difficult to equip a group
quorum system with additional algorithms so that there is no limit on how many
processes of the same group can be in their critical sections simultaneously. Such
algorithms are described in [8].

Group quorum systems of optimal degree (=
√

n) are described in [9]. Un-
fortunately, the work in [9] requires n to be of the form x2, where x is a power
of a prime. To the author’s knowledge, the only known group quorum system
that works for any n and m > 1, named the surficial system, is described in [8].
The surficial system has degree k =

√
2n

m(m−1) , for some integer k, and produces

quorums of size s = (m − 1)k. In this paper, we describe a new group quorum
system based on the notion of Cohorts, a concept introduced by Huang et al.
in 1993 [7]. Our system has degree k′ = 1 +

√
1 + n

m , for some integer k′ > 2,
which is much higher than k for m > 3. Moreover, the quorum size in our system
is s′ = m(k′ − 2), which is smaller than s for the same degree k′ = k and for
m > k/2. These improvements are significant because the degree of a system is
related to its fault-tolerance and the level of concurrency it allows. The quorum
size is related to the lower bound on the cost of communication imposed on
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any solution based on the system. Hence, our system is far more efficient and
practical than the surficial system.

The rest of the paper is organized as follows. Section 2 gives basic defini-
tions. Section 3 describes the group mutual exclusion problem and discusses the
effectiveness of quorum-based solutions for it. Our contribution is included in
Section 4. Section 5 is a conclusion.

2 Basic Definitions

The definitions and examples in this section are based on [7].

Definition 1. Let P = {1, ..., n} be a set of manager processes. A quorum
system (also called coterie) over P is a set C ⊆ 2P of subsets of P satisfying
the following requirements:

intersection: ∀Q1, Q2 ∈ C : Q1 ∩ Q2 �= φ.
minimality: ∀Q1, Q2 ∈ C, Q1 �= Q2 : Q1 � Q2.

We call each Q ∈ C a quorum. By the intersection property, a coterie can be
used to develop algorithms for mutual exclusion in a distributed system. To
enter a critical section, a process must receive permission from every member
of some quorum. By the intersection property, mutual exclusion is guaranteed.
The minimality property is not necessary but used rather to enhance efficiency.
As it is clear that if Q1 ⊆ Q2, then a process that can obtain permission from
every member of Q2 can also obtain permission from every member of Q1.

Definition 2. A k-coterie C is a set of sets where each set Q ∈ C is called a
quorum. The following properties should hold for the quorums in a k-coterie.

Intersection : There are k quorums Q1, Q2, ..., Qk in C such that ∀i, j : 1 ≤
i �= j ≤ k : Qi ∩ Qj = φ (i.e., there exist k mutually disjoint quorums). But,
there are no k + 1 mutually disjoint quorums.
Minimality : ∀Q1, Q2 ∈ C, Q1 �= Q2 : Q1 � Q2.

For example, {{1, 3}, {1, 4}, {2, 3}, {2, 4}} is a 2-coterie because we can find two
mutually disjoint quorums, but no three or four mutually disjoint quorums.
By the intersection property, a k-coterie can be used to develop algorithms to
achieve k-entry critical sections. To enter the critical section, a process is required
to receive permission from all the members of some quorum in the system. Since
no more than k quorums can be formed simultaneously, no more than k processes
can be in their critical section at the same time.

Definition 3. A Cohorts Ck,n = {C1, C2, ..., Cn} is a set of sets (also called
cohorts2 satisfying the following three properties:

2 The author acknowledges that the use of the term Cohorts to describe a set of cohorts
is unnecessarily confusing, but we follow the same notation used in [7].
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1. n ≥ k.
2. ∀i : |Ci| > k.
3. ∀i, j(i �= j) : Ci ∩ Cj = φ.

For example, C2,3 = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}} satisfies the above three
properties.

With respect to a specific set Q, we define two types of cohorts: primary and
supporting. Given a Cohorts Ck,n, a cohort C ∈ Ck,n is Q’s primary cohort if
|C ∩ Q| = |C| − k + 1. On the other hand, a cohort C is Q’s supporting cohort
if it yields exactly one element to Q; that is, if |C ∩ Q| = 1. Clearly, a cohort C
cannot be Q’s primary and supporting cohort simultaneously.

A set Q is a quorum under Ck,n if it has one primary cohort Ci and all other
cohorts Cj(1 ≤ j < i) are supporting cohorts of Q. Note that no supporting
cohorts are needed when the primary cohort is C1. It is known that quorums
under Ck,n can form a k-coterie. For example, the following sets are quorums
under C2,2 = {{1, 2, 3}, {4, 5, 6}}:
Q1 = {1, 2}, Q2 = {1, 4, 5}, Q3 = {1, 4, 6}, Q4 = {1, 5, 6}, Q5 = {1, 3}, Q6 =
{2, 4, 5}, Q7 = {2, 4, 6}, Q8 = {2, 5, 6}, Q9 = {2, 3}, Q10 = {3, 4, 5}, Q11 =
{3, 4, 6}, Q12 = {3, 5, 6},
where we have underlined for each quorum the elements from its primary cohort.
The reader can check that those 12 quorums form a 2-coterie.

3 On Group Mutual Exclusion

In the group mutual exclusion problem, there is a set of resources (groups) G =
{g1, g2, . . . , gm} and a resource to be requested by a user may change dynamically
(a user can be a member of different groups). Users wishing to use the same
resource are allowed to access it (enter their critical sections) simultaneously.
However, only one resource can be used at a time; that is, users of different
groups (wishing to use different resources) must enter their critical sections in a
mutually exclusive manner.

On Group Quorum Systems

Definition 4. Let P = {1, ..., n} be a set of manager processes. An m-group
quorum system C = (C1, ..., Cm) over P consists of m sets, where each Ci ⊆ 2P

is a set of subsets of P satisfying the following properties:

intersection: ∀1 ≤ i, j ≤ m, i �= j, ∀Q1 ∈ Ci, ∀Q2 ∈ Cj : Q1 ∩ Q2 �= φ.
minimality: ∀1 ≤ i ≤ m, ∀Q1, Q2 ∈ Ci, Q1 �= Q2 : Q1 � Q2.

Each Ci is called a cartel and each Q ∈ Ci a quorum.
The intersection property secures that no two processes of different groups

can be in their critical sections simultaneously. The minimality property is used
to enhance efficiency.
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Define the degree of a cartel Ci, denoted d(Ci), as the maximum number
of pairwise disjoint quora in Ci. The degree of a group quorum system C =
(C1, ..., Cm), denoted d(C), is defined as d(C) = min{d(Ci)(1 ≤ i ≤ m)}. We say
C is regular of degree k if all its cartels have the same degree k.

Under the condition that each quorum gives permission to only one process
at a time, the number of processes of the same group that can be in the critical
section simultaneously is bounded above by the degree of the cartel associated
with that group. Moreover, following [8], we know that a group quorum system
of degree k implies that every cartel contains at least an unhit quorum even if
k− 1 manager processes have failed. So, high degree group quorum systems also
provide for a better protection against faults. On the other hand, an m-group
quorum system of degree k also implies that every quorum in the system has size
at least k (unless m = 1). So, the higher the degree, the larger the quorum size
is, which has a negative effect on the cost of communication when it comes to
obtain (release) permissions from a quorum. So, in designing systems for group
mutual exclusion, one has to try to reduce the quorum size while keeping the
high degree of fault-tolerance.

4 The New Work

4.1 A New Group Quorum System Based on Cohorts

In this section, we introduce a new group quorum system based on the notion
of Cohorts. First, we derive some basic facts about Cohorts in general.

Given a Cohorts Ck,n = {C1, ..., Cn}, properties 2 and 3 of a Cohorts imply
that

∑n
i=1 |Ci| > nk ≥ k2 (by property 1). Moreover, if we let P denote the

set ∪n
i=1Ci, then |P | ≥ k2 or k ≤ √|P |. This last inequality stimulates us to

consider a Cohorts as a way to construct a regular group quorum system over
P of degree k.

4.2 The Algorithm

Given the set of manager processes P = {1, ..., n} and the number of groups
sought m, we show how to use the notion of Cohorts to construct an m-group
regular quorum system over P of degree k, where n = mk(k − 2) (equivalently
k = 1 +

√
1 + n

m ), for some integer k > 2 and m > k
k−2 .

Let C denote the Cohorts Ck,k = {C1, ..., Ck}, where each cohort Ci ⊂ P ,
|Ci| = m(k − 2) > k,∀1 ≤ i ≤ k. Hence, ∪k

i=1Ci = P ; that is, all Ci are
mutually disjoint. The reader can verify that Ck,k satisfies the properties of a
Cohorts.

We know from the work of [7] that quorums under C can form a k-coterie.
Moreover, a simple way to construct a single group of k mutually disjoint quo-
rums Q1, Q2, ..., Qk was described in [7]. It works as follows: For 1 ≤ i ≤ k, make
Ci the primary cohort of Qi and a supporting cohort of Qj (i < j ≤ k). In the
case of the Cohorts C, Ci yields exactly m(k − 2) − k + 1 elements to Qi and
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exactly one element to each Qj(i < j ≤ k. Because of property 3 of a Cohorts,
it follows that those Qi are mutually disjoint.

A main contribution of this paper is an algorithm which generalizes the
method of [7] to construct an m-group regular quorum system over P of de-
gree k. The algorithm, named Quorums, is described next.

Procedure Quorums (m: number of groups, k: degree)

1. Let C = m(k − 2); // common size of individual cohorts C1, . . . , Ck

2. Let C1, . . . , Ck be k arrays of size C each. Initialize those arrays as follows.
C1[] = {1, . . . , C},
C2[] = {C + 1, . . . , 2C},
. . .
Ck[] = {(k − 1)C + 1, . . . , kC = n}

3. Let PC = C−k+1; // no. of elements drawn from primary cohort – referred
to thereafter as the primary cohort elements of a quorum

4. Declare the array Q[m][k][C] // to hold m groups of k quorums each; each
quorum is of size C

5. For i = 1 to m do // ith group
6. Let step = (i − 1)(k − 2) // step to move from one group to the next
7. For j = 1 to k do // jth quorum
8. For p = 1 to PC do // add elements drawn from primary cohort Cj

9. Let l = step + p
10. if (l > C) then l = l − C // lth value of the Cj cohort
11. Set Q[i][j][p] to Cj [l] // add a new member to the jth quorum of the ith

group
12. End For p = 1
13. If (j = 1) then // if first quorum of any group
14. Let count = 1
15. For p = 2 to k do // add elements drawn from secondary cohorts C2, . . . , Ck.
16. Let l = step + C
17. if (l > C) then l = l − C
18. Set Q[i][j][PC + count] to Cp[l]
19. Increment count
20. End For p = 2
21. Else // j �= 1
22. Let count = 1
23. For p = j − 1 down to 1 do // add elements from secondary cohorts

C1, . . . , Cj−1

24. Let l = step + PC + count
25. if (l > C) then l = l − C
26. Set Q[i][j][PC + count] to Cp[l]
27. Increment count
28. End For p = j − 1
29. Decrement count // adjust count
30. For p = k down to j + 1 do // add elements from secondary cohorts

Cj+1, . . . , Ck
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31. Let l = step + PC + count
32. if (l > C) then l = l − C
33. Increment count
34. Set Q[i][j][PC + count] to Cp[l]
35. End For p = k
36. End Else
37. End For j
38. End For i

Denote the jth quorum of the ith group by Qij . Then, procedure Quorum
places C elements in each Qij (1 ≤ i ≤ m, 1 ≤ j ≤ k). Of those C elements, PC
elements are drawn from Qij ’s primary cohort (= Cj) (this is done in steps 8−12
of the algorithm). The remaining (k − 1) elements are drawn from Qij ’s (k-1)
distinct secondary cohorts (= C1, . . . , Cj−1, Cj+1, . . . , Ck) (this is done either in
steps 13 − 20 if j = 1 or steps 21 − 36 otherwise).

Next, we show that for any i, i′, j, j′ (1 ≤ i �= i′ ≤ m, 1 ≤ j, j′ ≤ k), the
generated quorums Qij and Qi′j′ have a nonempty intersection. We do this in
three steps based on the values of j and j′.

Lemma 1. if j = j′, k − 3 < |Qij ∩ Qi′j′ | ≤ (m − 2)(k − 2) − 1.

Proof. By construction, the procedure Quorums visits each cohort Cj , 1 ≤ j ≤ k
to select the members of the k quorums of each group i (1 ≤ i ≤ m). The
primary cohort members of each Qij (1 ≤ i ≤ m, 1 ≤ j ≤ k) are drawn from the
cohort Cj . In particular, those members are Cj [(i − 1)(k − 2) + 1], . . . , Cj [(i −
1)(k − 2) + PC] (steps 8 − 12 of the algorithm). In selecting members from Cj ,
the index value may have to be wrapped around to the beginning of Cj (this
appears in steps 10, 17, 25, and 32 of the algorithm). The step used by Quorums
to move from one group to the next is S = k − 2. Figure 1 should help visualize
our argument.

Gm

C1 : {1, 2, . . . , (i − 1)(k − 2) + 1, . . . , PC − k + 4, . . . , PC, PC + 1, PC + 2, . . . , C}

G1 Gi Gm−1

Fig. 1. Primary cohorts’ elements of Qi1 (1 ≤ i ≤ m)

W.l.o.g., let j = j′ = 1 and i = 1. Then, Q11 and Qi′1 (2 ≤ i′ ≤ m−1) intersect
using the primary cohort elements of those quorums. In particular, |Q11∩Q21| ≥
PC −S, |Q11 ∩Q31| ≥ PC − 2S, and |Q11 ∩Q(m−1)1| ≥ PC − (m− 2)S = k− 3.
As for i′ = m, the primary cohort elements of Qm1 consists of S = k − 2
elements from the end of C1 and PC − S elements from the beginning of C1.
Thus |Qm1 ∩ Q11| = PC − S. Thus, considering only the common elements
in the primary cohort members, we have, k − 3 < |Qij ∩ Qi′j | ≤ PC − S =
(m − 2)(k − 2) − 1 for 1 ≤ i �= i′ ≤ m, 1 ≤ j ≤ k. ��
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Lemma 2. If j �= j′ but either j = 1 or j′ = 1, |Qij ∩ Qi′j′ | ≥ 1.

Proof. Let j = 1. W.l.o.g., let i = 1. Then, the k−1 secondary cohorts elements
of Q11 (steps 13− 20 of the algorithm) are: C2[C], C3[C], . . . , Ck[C] (See Fig. 2.
Using those elements, Q11 intersects with all quorums Qi′j′ for 3 ≤ i′ ≤ m
and 1 < j′ ≤ k. This is true because all such quorums extend beyond the end
of Cj′ when collecting their primary cohort elements. For i′ = 2, the primary
cohort elements of Q2j′ (1 < j′ ≤ k) are Cj′ [(k − 2) + 1] . . . Cj′ [(k − 2) + PC] =
Cj′ [(k − 2) + C − k + 1] = Cj′ [C − 1], which means that the primary cohort
elements of each Q2j′ are one step short of the end of each Cj′ . However, steps
21− 36 of the algorithm guarantee that Q22 ∩Q11 = Ck[C], Q23 ∩Q11 = C2[C],
and Q2k ∩ Q11 = Ck−1[C]. ��

i = m − 1

C2 :

C3 :

Ck :

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

C1 : {1, 2, . . . , 1 + k − 2, . . . , PC − k + 4, . . . , PC, PC + 1, . . . . . . . . . . . . PC + 2, . . . C}

i = 1 i = 2 i = m

Fig. 2. Case of j = 1 �= j′

Lemma 3. If j �= j′ and neither j = 1 nor j′ = 1, |Qij ∩ Qi′j′ | ≥ 1.

Proof. This is the most general of all three cases depicted pictorially in Fig. 3.
W.l.o.g, let i = 1. In this case, Q1j intersects with all quorums Qi′j′ (2 ≤ i′ ≤
m − 1, 1 ≤ j′ �= j ≤ k). The intersection is between some of Q1j ’s secondary
cohorts elements (steps 30−35 of the algorithm, shown in Fig. 3 as the elements
along the line of arrows from Ck to Cj+1) and Qi′j′ ’s primary cohorts elements
(2 ≤ i′ ≤ m − 1). For i′ = m, the intersection may, in addition, involve the
secondary cohorts elements of Qmj′ (steps 23 − 28 of the algorithm, shown in
Fig. 3 for Q1j as the elements along the line of arrows from Cj−1 to C1) and the
primary cohort elements of Q1j . ��
Summarizing all three lemmas, we conclude that ∀i, i′, j, j′ (1 ≤ i �= i′ ≤ m, 1 ≤
j, j′ ≤ k), 1 ≤ |Qij ∩ Qi′j′ | ≤ PC − S = m(k − 2) − 2k + 3.

We have traced below the Quorums procedure for P = {1, ..., 32} and m = 4.
In this case, k = 4 and a 4-group regular quorum system over P of degree 4 can be
constructed as follows. First, construct a Cohorts C4,4 = {C1, C2, C3, C4}, where
each Ci ⊂ P and |Ci| = m(k − 2) = 8, ∀1 ≤ i ≤ 4, and ∪4

i=1Ci = P . Following
the algorihm, let C1 = {1, 2, 3, 4, 5, 6, 7, 8}, C2 = {9, 10, 11, 12, 13, 14, 15, 16},
C3 = {17, 18, 19, 20, 21, 22, 23, 24}, and C4 = {25, 26, 27, 28, 29, 30, 31.32}.
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C1 : {1, 2, . . . . . . , 1 + (i − 1)(k − 2), . . . . . . . . . . . . . . . . . . , PC, . . . , . . . . . . . . . . . . . . . . . . . . . . . .C}
C2 : . . . . . . . . . . . .

C3 : . . . . . . . . . . . .

. . .

. . . . . . . . .

. . .

Cj :

Ck . . . . . . . . . . . .

Fig. 3. Members of Q1j

In this case, each primary cohort yields exactly m(k−2)−k+1) = 5 elements
to its corresponding quorum. Applying our algorithm results in a 4-group regular
quorum system over P of degree k = 4. The generated group quorum system
G = {G1, G2, G3, G4} is as follows.

G1 ={Q1 = {1, 2, 3, 4, 5, 16, 24, 32}, Q2 = {9, 10, 11, 12, 13, 6, 30, 23},
Q3 = {17, 18, 19, 20, 21, 14, 7, 31},Q4 = {25, 26, 27, 28, 29, 22, 15, 8}}

G2 ={Q1 = {3, 4, 5, 6, 7, 10, 18, 26}, Q2 = {11, 12, 13, 14, 15, 8, 32, 17},
Q3 = {19, 20, 21, 22, 23, 16, 1, 25}, Q4 = {27, 28, 29, 30, 31, 24, 9, 2}}

G3 ={Q1 = {5, 6, 7, 8, 1, 12, 20, 28}, Q2 = {13, 14, 15, 16, 9, 2, 26, 19},
Q3 = {21, 22, 23.24, 17, 10, 3, 27}, Q4 = {29, 30, 31, 32, 25, 18, 11, 4}}

G4 ={Q1 = {7, 8, 1, 2, 3, 14, 22, 30}, Q2 = {15, 16, 9, 10, 11, 4, 28, 21},
Q3 = {23, 24, 17, 18, 19, 12, 5, 29}, Q4 = {31, 32, 25, 26, 27, 20, 13, 6}}

4.3 Properties of the Proposed Group Quorum System

Given m and k, the procedure Quorums generates m groups of k quorums each,
where each quorum is of size m(k− 2). Hence, the degree of the system is k and
quorums belonging to the same group are mutually disjoint (recall n = mk(k −
2)). Also, using the results of the previous section, we can state that quorums
belonging to different groups have a non-empty intersection. In particular, if we
let G(P ) = (G1, ..., Gm) be the set of groups generated by the algorithm, then
∀1 ≤ i, j ≤ m : i �= j, ∀Q1 ∈ Gi, ∀Q2 ∈ Gj : 1 ≤ |Q1 ∩ Q2| ≤ PC − S =
m(k − 2)− 2k + 3.

Also, if we let np be the size of the multiset {Q | ∃1 ≤ i ≤ m : Q ∈ Gi and
p ∈ Q}, then np = m. This is true because each group consists of k mutually
disjoint quorums of size m(k − 2) each, drawn from a set P = {1, ..., n}, where
n = km(k−2). Thus, each manager process appears exactly once in each group.
All these results are summarized in the following theorem:
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Theorem 1. Let P = {1, ..., n} be a set of manager processes and m be a posi-
tive integer such that m > 1 and n = mk(k − 2) (equivalently k = 1 +

√
1 + n

m)
for some integer k > 2 and m > k

k−2 . Furthermore, let G(P ) = (G1, ..., Gm) be
our proposed group quorum system. Then G(P ) is an m-group regular quorum
system over P of degree k. Moreover, G(P ) satisfies the following properties:

– ∀1 ≤ i, j ≤ m : |Gi| = |Gj | = k.
– ∀1 ≤ i, j ≤ m, ∀Q1 ∈ Gi, ∀Q2 ∈ Gj : |Q1| = |Q2| = m(k − 2).
– ∀p, q ∈ P : np = nq = m, where np is the size of the multiset {Q | ∃1 ≤ i ≤

m : Q ∈ Gi and p ∈ Q}, and similar for nq.
– ∀1 ≤ i, j ≤ m, i �= j, ∀Q1 ∈ Gi, ∀Q2 ∈ Gj : 1 ≤ |Q1∩Q2| ≤ m(k−2)−2k+3.

The first property of the theorem states that all groups have the same number of
quora. This ensures fairness among different users wishing to access the critical
section as members of different groups. Moreover, the size of each group is equal to
the degree of the system; that is, all quora in a given group are mutually disjoint.
The second property states that all quora have the same size m(k−2). This implies
that the number of permissions(messages) (i.e, cost of communication) needed
per entry to the critical section is independent of the quorum a process chooses.
The third property ensures that each manager process in the system shares the
same responsibility (the load assumed by any process). As stated by Maekawa
[12], these three properties are desired in a system from which truly distributed
quorum-based algorithms for group mutual exclusion can be easily constructed.
The last condition simply bounds the number of nodes that must be common to
any two quora of different groups, thereby reducing the size of a quorum.

Finally, we explain the claim we made at the end of the Introduction section
about our system being far more efficient and practical than the surficial system.
Basically, our system requires n/m to be of the form q2 − 1, for some positive
integer q. This is far less stringent than the requirement of the surficial system of

2n
m(m−1) = q2 for some positive integer q. Also, when both systems are applicable,
our system produces quorums of smaller size for a similar degree, assuming
m > k/2.

We have compared in Table 1 the number of manager processes and the size
of the quorum used in our system versus the surficial system for various val-
ues of m and k. In Table 1, n(s) and n′(s′) refer to the number of manager

Table 1. Comparing number of processes and quorum size

k = k′ m n′ s′ n s

3 5 15 5 N/A N/A
4 3 24 6 N/A N/A
4 4 32 8 N/A N/A
5 3 45 9 75 10
5 4 60 12 150 15
5 5 75 15 250 20
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processes (size of the quorum) used in the surficial system and our system,
respectively.

Note that there are entries in the table which are not applicable under the
surficial system (denoted by N/A). The last entry in the table states that in
order to construct a 5-group regular quorum system of degree 5, the surficial
system uses 250 manager processes and produces quorums of size 20; our system
uses 75 processes and produces quorums of size 15.

5 Conclusion

In this paper, we presented a new group quorum system for group mutual exclu-
sion. Our system, which is based on the notion of Cohorts, is easy to construct
and has nice properties from which truly distributed quorum-based algorithms
for group mutual exclusion can be easily constructed.

Given the total number of manager processes n and the total number of
groups m, our system has degree k = 1 +

√
1 + n

m , for some integer k > 2 and
produces quorums of size m(k − 2). This compares favorably to the surficial
system of Joung [8], where the degree of the system is

√
2n

m(m−1) and the size of

the quorum is (m− 1)k.
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An Efficient Non-intrusive Checkpointing

Algorithm for Distributed Database Systems�
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Abstract. Checkpointing distributed database systems is useful for re-
covery from failures as well as for audit purposes. In this paper, we
present a non-intrusive checkpointing algorithm for distributed database
systems. Our approach uses both checkpoints and transaction logs to
capture a transaction-consistent state of the database which helps in
reducing overall checkpointing overhead. Out approach is non-intrusive
and hence does not block arriving or executing transactions during check-
pointing.

Keywords: Checkpointing, distributed databases.

1 Introduction

It is a common practice to take checkpoints of a distributed database from
time to time, and restore the database to the most recent checkpoint when a
failure occurs. It is desirable that a checkpoint records a state of the database
which reflects the effect of completed transactions only and not the results of
any partially executed transactions. Such a checkpoint of the database is called
a transaction-consistent (which we call from now on as tr-consistent) global
checkpoint of the database [1].

A straightforward way to take a tr-consistent checkpoint of a distributed
database is to block all newly submitted transactions, wait until all the currently
executing transactions finish and then take a checkpoint of the whole database.
Such a checkpoint is guaranteed to be tr-consistent, but this approach is not
practical, since blocking newly-submitted transaction will increase transaction
response time which is not acceptable for the users of the database. On the other
hand, checkpointing the state of each data item independently and periodically
without blocking any transactions is more desirable. However, if each data item
in the database is checkpointed independently, then the checkpoints of the data
items may not form a tr-consistent global checkpoint of the database and hence
useless. Communication-induced checkpointing algorithms allow the data items
to be checkpointed independently and also force the data items to take addi-
tional checkpoints to ensure each checkpoint of each data item to be part of a
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tr-consistent global checkpoint of the database. Baldoni et al. [2] presented two
such protocols for distributed database systems.

The protocols presented by Baldoni et al. [2] may induce a large number
of forced checkpoints, especially if the transactions access large number of data
items. Such increase in checkpointing overhead will result in longer response time.
They present two protocols, which we call Protocol A and Protocol B. Protocol
B in [2] uses a lazy checkpointing approach to reduce checkpoints produced in
Protocol A. In this paper, we propose an algorithm which uses both checkpoints
of data items and transaction logs to determine a tr-consistent checkpoint of the
database.

The remainder of this paper is organized as follows. In Section 2 we introduce
the necessary background required for understanding the paper. In Section 3
we present our algorithm and simulation results. Section 4 concludes the paper.

2 Background

Similar to [2], we model a distributed database system as consisting of a finite
set of data items, a set of transactions and a concurrency control mechanism for
executing the transactions. We also assume the system is deterministic, in which
the state of the database depends only on its initial state and the operations
performed to it [3].

A data item is the smallest unit of data accessible to transactions. In this
model, a non-empty set of data items resides at various sites. Sites exchange
information via messages transmitted on a communication network, which is
assumed to be reliable. Message transmission time is unpredictable but finite.
The set of data items at each site is managed by a data manager (DM). For
simplicity, we assume each data item x has a data manager DMx. Each DMx

is responsible for controlling access to the data item, taking checkpoints pe-
riodically and performing other data maintenance (such as integration check)
associated with that data item.

A transaction is defined as a partial order of read and write operations on
various data items and terminates with a commit or an abort operation. Each
transaction is managed by an instance of the transaction manager (TM) that
forwards its operations to the scheduler which runs a specific concurrency control
protocol. The TM with the help of the scheduler is responsible for the proper
scheduling of the transaction in such a way that the integrity of the database is
maintained.

The saved state of a data item is called a checkpoint. Each checkpoint on a
data item is assigned a unique sequence number. We assume that the database
consists of a set X of n data items X = {xi | 1 ≤ i ≤ n}. In addition, we denote
by Cix

x the checkpoint on x with sequence number ix. The set of all checkpoints
on data item x is denoted by Cx = {Cix

x | ix : ix ≥ 0}. When restoring a database
from checkpoints, it is important that the set of checkpoints of the data items
to which the database is restored forms a tr-consistent global checkpoint, that
is, the checkpoints to which the database is restored represents the state of the
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database which reflects the effect of only completed transactions and not the
results of any partially executed transactions.

A data item may take two types of checkpoints, namely, physical checkpoints
and logical checkpoints [4]. A data item is said to have taken a physical check-
point at time t1 if the state of data item at time t1 is available on the stable
storage. A data item is said to have taken a logical checkpoint at time t1 if
adequate information is saved on the stable storage to allow the state of the
data item at time t1 to be recovered. A physical checkpoint is trivially a logi-
cal checkpoint, however, the converse is not true. One approach to take logical
checkpoint at time t1 is to take a physical checkpoint at some time t0 < t1 and
log on stable storage all operations performed on the data item between t0 and
t1. This approach can be summarized as [4]: physical checkpoint + operation log
= logical checkpoint. This approach for taking a logical checkpoint may only be
used for deterministic systems, because it implements a logical checkpoint using
a physical checkpoint and the operation log.

3 Proposed Algorithm

Basically, the algorithms in [2] use forced checkpoints to prevent a specific condi-
tion from happening (refer to [2] and [5] for the concepts behind this approach)
in the system. If all such conditions are prevented, it is guaranteed that for every
checkpoint Cix

x there exists a tr-consistent global checkpoint that includes Cix
x .

First, we briefly review the two algorithms in [2] and discuss their drawbacks.
Baldoni et al. [2] assume that each data manager DMx managing data item

x has a variable tsx, which stores the timestamp of the last checkpoint of x.
Variable ix denotes the index of the last checkpoint of x. Data managers can
take basic checkpoints independently of each other periodically. To facilitate
this function, a timer is associated with each data manager and when the timer
expires, a checkpoint is taken and the timer is reset. In addition, whenever
the condition that needs to be prevented is detected by means of comparing
timestamps, data managers are directed to take additional forced checkpoints.
The decision to take forced checkpoints is based on the control information
(timestamps) piggybacked by commit messages of transactions.

Let RTi(repectivey, WTi) denote the set of read (respectively, write) opera-
tions issued by a transaction Ti, which is under the management of transaction
manager TMi [2]. Each time an operation of Ti is issued by TMi to a data man-
ager DMx on data item x, besides the execution of the operation, DMx returns
the pair (identity of the data item x, value of its current timestamp tsx). TMi

stores in MAX TSTi the maximum value among the timestamps collected from
all the data items that are read and/or written by Ti. When the transaction
Ti is about to commit, the transaction manager TMi sends a COMMIT mes-
sage to each data manager DMx involved in RTi(WTi ). The COMMIT messages
are piggybacked with MAX TSTi . Whenever a COMMIT message is received
by DMx, if MAX TSTi piggybacked in COMMIT is greater than tsx, a forced
checkpoint is taken on data item x and the local tsx is updated to the value
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of MAX TSTi. In addition, whenever a basic checkpoint is taken (when timer
expires), the local tsx is incremented by 1.

Based on how often the forced checkpoints are taken, two algorithms are
introduced in [2]. In the first algorithm (we call it as Protocol A), a forced
checkpoint is taken whenever the condition MAX TSTi > tsx holds. The second
protocol (we call it as Protocol B) does not take forced checkpoints as often as
Protocol A, because it skips taking some forced checkpoints that are suppose
to be taken in Protocol A, as is called “lazy checkpointing” [6]. This protocol
ensures that ∀x (x is a data item) if there exists a checkpoint timestamped
as a × Z (where a ≥ 0 is an integer and Z is a control constant), then the
global consistent checkpoint consisting that checkpoint exists. If a transaction
Ti happens to access multiple data items and the value MAX TSTi associated
with the transaction happens to be greater than the timestamps of most of the
data items it has accessed, it could result in large number of forced checkpoints
concurrently.

Our algorithm tries to overcome this disadvantage. Our algorithms also main-
tains a variable tsx for each DMx, but it stores the timestamp of the last check-
point of data item x, which may be a physical checkpoint or a marker in the log. ix
denotes the index value of the last physical checkpoint of data item x. In addition,
we have a variable tsphysical that stores the timestamp of the last physical check-
point. In the log, a physical checkpoint is represented by Checkpoint(tsx, Cts

x ),
where Cts

x is a link to the location of the physical checkpoint in the stable storage.
This log entry means a checkpoint Cts

x with timestamp tsx has been taken. We
usually use Checkpoint.tsx to refer to the first element in this tuple. The marker,
on the other hand, uses a pair Marker(tsphysical, tsx). tsphysical is the timestamp
of the previous physical checkpoint that the marker depends on for recovery and
tsx is the current timestamp of the marker. Similarly, we use Marker.tsphysical

and Marker.tsx to refer to the first and second element in this tuple. We also use
a variable called mnum to control the size of the consecutive markers within a
reasonable range, called mmax and initialized as Z. If the number of consecutive
markers exceeds mmax = Z, we will have to take a forced checkpoint rather than
continue placing a marker into the log. The proposed checkpointing algorithm
and the corresponding recovery algorithm is given in Table 1.

We simulated the performance of Protocol A, Protocol B in [2] and our algo-
rithm (we denote our protocol as Protocol C) in a system with 10 data items,
with the same value for Z and a series of random transactions. Figure 1 shows
the total number of checkpoints taken (basic and forced) while the series of ran-
dom transactions are processed. This shows that our algorithm (Protocol C) has
less checkpointing overhead when compared to the two algorithms in [2].

4 Conclusion

Checkpointing has been traditionally used for handling failures in distributed
database systems. An efficient checkpointing algorithm should be non-intrusive
in the sense that it should not block the normal transactions while checkpoints
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Table 1. Proposed Algorithm

Checkpointing Algorithm

– Initiation:
tsx = 0;
ix = 0;
tsphysical = 0;
mnum = 0;
mmax = Z;

– Taking basic checkpoints, when the time expires:
ix ← ix + 1;
tsx ← tsx + 1;
Take checkpoint Ctsx

x ;
tsphysical ← tsx;

Write Checkpoint(tsx , Cts
x ) into the log;

mnum ← 0;
Reset the local timer.

– Taking forced checkpoints or placing makers in the log, when DMx receives
COMMIT (MAX TSTi

) from TMi:
if tsx < MAX TSTi

and mnum ≤ mmax then
ix ← ix + 1;
tsx ← MAX TSTi

;
Place a marker Marker(tsphysical , tsx) into the log;
mnum ← mnum + 1;
Reset the local timer;

else if tsx < MAX TSTi
and mnum > mmax then

ix ← ix + 1;
tsx ← MAX TSTi

;
tsphysical ← tsx;

Take forced checkpoint Cts
x ;

Write Checkpoint(tsx , Cts
x ) into the log;

mnum ← 0;
Reset the local timer;

endif
process the COMMIT message.

Recovery Algorithm

– Whenever a data item x needs to rollback and initiates the recovery:
Locate the latest checkpoint information in the log that is not damaged;
if it is a checkpoint in the form of Checkpoint(tsx, Cts

x )

- Track through the link Cts
x in Checkpoint(tsx, Cts

x ) to the stable storage and restore the
state of the data item;

- Broadcast Recovery(tsx) message to all the data items in the distributed database
system where tsx = Checkpoint.tsx

else if it is a marker in the log in the form of Marker(tsphysical , tsx)

- Continue searching backward in the log until reaching a Checkpoint(tsx, Cts
x ) entry

where Checkpoint.tsx = Marker.tsphysical ;

- Track through the link Cts
x in the Checkpoint(tsx, Cts

x ) to the stable storage and restore
the state of the data item;

- Redo all the operations in the log between Checkpoint(tsx , Cts
x ) and

Marker(tsphysical , tsx);
- Broadcast Recovery(tsx) message to all the data items in the distributed database

system where tsx = Marker.tsx;
endif
Resume normal database processing.

– Whenever a data item y receives Recovery(tsx) message:
Track backward through all the checkpoint or marker entries in the log and locate the one
with the smallest tsy such that tsy ≥ tsx;

if it is a checkpoint in the form of Checkpoint(tsy , Cts
y )

- Track through the link Cts
y in the Checkpoint(tsy , Cts

y ) to the stable storage and restore
the state of the data item;

else if it is a marker in the log in the form of Marker(tsphysical , tsy)

- Continue searching backward in the log until reaching a Checkpoint(tsy , Cts
y ) entry

where Checkpoint.tsy = Marker.tsphysical ;

- Track through the link Cts
y in the Checkpoint(tsy , Cts

y ) to the stable storage and restore
the state of the data item;

- Redo all the operations in the log between Checkpoint(tsy , Cts
y ) and

Marker(tsphysical , tsy);
endif
Resume normal database processing.
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are taken. In this paper, we presented an efficient non-intrusive checkpointing
protocol that decreases the number of checkpoints taken while at the same time
allows the individual data items to be checkpointed at any time.
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Abstract. Switching between protocols based on environment is an ele-
gant idea of enabling adaptation in distributed systems. In this paper, we
give one approach of switching between two connected dominating set
(CDS) construction protocols, one suitable for low load and the other
suitable for higher load. In this method, the two connected dominating
sets are computed in advance and switching is done between the two
precomputed outputs. In addition, some CDS of the network is always
maintained when switching is in progress.

1 Introduction

The performance of a distributed system depends on its environment. The envi-
ronment may change with time. Hence a distributed system should be adaptive
under changing environments. Adaptation is desirable in any distributed system
since it helps the system to perform gracefully under different scenarios.

Most adaptive distributed algorithms are designed from scratch. However, it
generally results in complex algorithms. Moreover, such algorithms are often
application specific and are unable to change the main logic of the algorithm
[1]. A more elegant way to achieve adaptation can be through protocol switch-
ing. If there exists multiple distributed algorithms for the same problem, each
better suited to some particular environmental condition, then adaptation can
be achieved by monitoring the environment and switching to the appropriate
protocol depending on the environment.

In a network, protocol switching can be done using a centralized algorithm
similar to the well-known two-phase commit protocol by asking nodes to stop
working for some time and switch to another protocol. However this approach
requires the whole network to freeze, thereby affecting the availability of the
system. Moreover, it may be desirable to maintain some system property during
the switching. For example, while switching between two distributed mutual
exclusion algorithms, it is essential that no more than one process can enter
the critical section. Similarly, while switching between two routing protocols, we
would like to have each packet routed properly in spite of switching. Thus more
sophisticated ways of protocol switching is needed.
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Protocol switching has two components. The first one monitors the environ-
ment and helps in determining when a switch should be initiated. This can be
done by forming a spanning tree of the network rooted at an initiator, and col-
lecting the status of all nodes on a periodic basis. The second component deals
with the procedure of actually switching between the protocols. In this paper,
we concentrate on the second part and demonstrate one approach of protocol
switching by designing a switching mechanism between two connected dominat-
ing set (CDS) construction protocols. A CDS of a graph G = (V, E) is a set of
nodes V ′ ⊆ V such that for each u ∈ V , either u ∈ V ′ or u is adjacent to some
v ∈ V ′, and the subgraph induced by V ′ is connected. A node v ∈ V ′ is called a
dominator. CDS is commonly used for routing in ad hoc networks. At low net-
work load, a small CDS is preferable. However, at higher load, a degree-bounded
CDS may be better to reduce the load on any one dominator. Thus the system
can adapt to the network load by dynamically switching between the two CDS.
Since CDS construction algorithms are non-reactive protocols, we assume that
the two CDS are computed in advance and switching is done between the two
precomputed CDS i.e. the outputs of the two CDS protocols. This may be termed
as output switching. Given any two CDS algorithms, the output switching algo-
rithm uses their outputs and combines them to provide an adaptive CDS to the
upper layer. Moreover, the switching algorithm ensures that some CDS of the
network is always maintained while switching is in progress, thereby providing
some CDS at all times.

Arora et. al. [2] gave a distributed reset mechanism where a distributed system
can switch from one global state to another without requiring a global freeze.
This can be used for protocol switching but it will not guarantee any property
during the switching and thus is not directly useful in our case. In [1], Liu et. al.
discussed a switching method that can only be used on two protocols that are
derived from the same abstract specification. Therefore it has limited applica-
bility. In [3], Liu et. al. gave a way of switching between two protocols satisfying
certain properties where a process delivers all messages for the old protocol be-
fore delivering any message for the new protocol. Moreover, all application layer
messages are buffered at each node during switching and their delivery is delayed
indefinitely till the switching is over. Thus the overhead is large.

The rest of the paper is organized as follows. Section 2 describes the switching
algorithm and an outline of its correctness. We conclude the work in Section 3.

2 Switching Algorithm

We assume that the system is asynchronous with reliable and FIFO channels.
Each node has a unique ID and it communicates only with its neighbors by
sending messages. Also it is assumed that nodes or links do not fail at any time.

Without loss of generality, let the two CDS algorithms be associated with two
colors, white and black. We shall refer to the two CDS as the white CDS and
the black CDS respectively, and to the algorithms as the whiteCDS algorithm
and the blackCDS algorithm respectively. Each node has a variable color. If
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S1: I = 1 ∧ color = white → I = 0; color = black
∀u ∈ N(v), send CHANGE OUT to u

S2: color = white ∧ b = 1 ∧ (received CHANGE OUT )
→ color = black

∀u ∈ N(v), send CHANGE OUT to u

S3: color = white ∧ b = 0 ∧ w = 1 ∧ (received CHANGE OUT from x)
→ color = gray; g = 1; colorset[x] = black

∀u ∈ N(v), send UPDATE COLOR(v, color) to u

S4: color = white ∧ b = 0 ∧ w = 0 ∧ (received CHANGE OUT )
→ color = black

∀u ∈ N(v), send UPDATE COLOR(v, color) to u

S5: color �= black ∧ (received UPDATE COLOR(x, c)) → colorset[x] = c

S6: color = gray ∧ (received CHANGE OUT from x) → colorset[x] = black

S7: color = gray ∧ (∀u ∈ N(v), colorset[u] �= white)
→ color = black; g = 0

∀u ∈ N(v), send UPDATE COLOR(v, color) to u

Fig. 1. Switching algorithm for node v

the network is currently using the output of the whiteCDS algorithm then at
each node color = white, whereas if the output of the blackCDS algorithm is
being used then at each node, color = black. Thus the aim of the switching
algorithm is to change the color of all the nodes from white to black or black
to white depending on the initial state. However during switching, some nodes
can temporarily have an intermediate color gray. Each node maintains three
boolean variables, w, b, and g. If w = 1 then the node is a dominator according
to the whiteCDS algorithm, and if b = 1 then it is a dominator according
to the blackCDS algorithm. Both these variables are set by the corresponding
CDS algorithms at the beginning and never changed thereafter. The variable
g, however, is set to 1 by the switching algorithm when the node’s color is
changed to gray. A gray node is considered as a temporary dominator. These
gray dominators are needed to ensure that some CDS of the network is always
maintained during the switching. At any instant of time, the CDS in the network
is thus defined by all nodes with (color = white ∧ w = 1) or (color = black ∧ b =
1) or (color = gray ∧ g = 1). Let N(v) denote the set of neighbors of v.

The algorithm to switch from the white CDS to the black CDS is given in
Fig. 1. The algorithm is shown in the form of guarded commands [4]. The al-
gorithm to switch from the black CDS to the white CDS is the same with
interchanging white and black, and w and b. There is a fixed node P that ini-
tiates the switching and is known as the initiator. The algorithm requires that
the initiator must be a dominator of the CDS to which we want to switch. So to
switch both ways it must be a dominator according to both the CDS algorithms
(i.e. at initiator, w = b = 1). Thus we assume that there is at least one node that
is a dominator according to both the algorithms. Later we will show how this
assumption can be relaxed. There is a variable I at each node v which indicates
whether it should initiate a switch. Initially I = 1 at the initiator and I = 0 at all
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other nodes. I can be set by the underlying monitoring protocol when a switch
is necessary. The initiator, in S1, changes its color to black and sends a message
CHANGE OUT to all its neighbors, asking them to switch. When a white node
receives the CHANGE OUT message it sets its color variable to either black
or gray depending on w and b. In S2, a white node with b = 1 becomes black
upon receiving that message and it also forwards the CHANGE OUT message
to its neighbors. In S3, if a white node is not a member of the black CDS but is
a member of the white CDS, then upon receiving the CHANGE OUT message,
it becomes a temporary dominator by setting its color variable to gray, and it
informs its new color to its neighbors by sending an UPDATE COLOR mes-
sage. Also each node remembers the color of its neighbors in the array colorset.
In S4, if a white node v, that is not a member of either CDS, receives the
CHANGE OUT message then it becomes black and informs its neighbors by
sending an UPDATE COLOR message. The node v does not temporarily be-
come gray because the sender of the CHANGE OUT message is its dominator
and no other node needs v as its dominator or for connecting other dominators.
S5 and S6 maintain the color information of all the neighbors which is used in
S7. In S7, a gray node becomes black if and only if all its neighbors have color
either gray or black.

2.1 Outline of Proof of Correctness

Lemma 1. Each node receives the CHANGE OUT message at least once.

Proof. The initiator sends the CHANGE OUT message to all its neighbors.
By S2, if a node with b = 1 receives the CHANGE OUT message for the first
time, it forwards the message to all its neighbors. Also the subgraph induced by
the nodes with b = 1 is a CDS. Hence each node receives the CHANGE OUT
message at least once. ��
Theorem 1 (Partial Correctness). When the algorithm terminates, at each
node color = black.

Proof. After the algorithm terminates, let there be a node v with color = white.
No action can change color from gray or black to white. Thus at v, color was
always set to white. By Lemma 1, v must have received a CHANGE OUT
message. When v received it for the first time, it must have executed A2, A3,
or A4 and thereby changing color to either black or gray. This is a contradic-
tion. Hence at each node, color is black or gray. Let there be a node v with
color = gray. So G7 must be enabled at v. This is again a contradiction since
the algorithm has terminated. Thus color is black at each node. ��

Theorem 2 (Termination). The algorithm executes O(e) actions before it ter-
minates, where e is the total number of edges in the network.

Proof. At a node v, each guard except G5 and G6 can be enabled at most
once since the actions of those guards change the value of color and color
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can only change from white to gray, white to black, and gray to black. Thus
color never attains any of its previous values again. Let us consider guard G5.
It is enabled only when UPDATE COLOR(u, c) message is received. A node
can send this message in A3, A4, or A7, which can only execute at most once.
This means that at node v, A5 is executed O(|N(v)|) times. Also any node can
send CHANGE OUT message at most once (in A1 or A2) and thus A6 can be
executed at most |N(v)| times at a node v. Thus each node v executes O(|N(v)|)
actions. So the algorithm executes O(e) actions before termination. ��
Lemma 2. Some dominating set of the network is always maintained when
switching is in progress.

Proof. We prove that even during switching any node v, that is not a dominator,
is adjacent to a dominator. There are two cases, depending on whether color is
set to white or black at v, since a gray node is a dominator by definition.

Case 1: color = black. So v must have received a CHANGE OUT message.
The sender u of that message must have color = black and b = 1, i.e. u must be
a dominator. Hence v is adjacent to a dominator. Also u will never change its
color again and hence v remains adjacent to a dominator.

Case 2: color = white. If at v, w = 1 then v is a dominator. Otherwise v
must have a neighbor u with w = 1 (due to white CDS). At u, if color = black
then this implies that it executed A2 since it could not have executed A7 due to
the neighboring white node v. From G2 we get that at u, b = 1 and thus it is a
dominator. If at u, color = white then again it is a dominator since at u, w = 1.
Thus in any case u, a neighbor of v, is a dominator. ��
We call a node v a black dominator if (color = black∧ b = 1) at v. Similarly, we
call v a white dominator if (color = white ∧ w = 1) at v, and a gray dominator
if (color = gray ∧ g = 1) at v.

Theorem 3. Some connected dominating set of the network is always main-
tained when switching is in progress.

Proof. By Lemma 2, we only need to show that any two dominators u and v are
connected by a path containing only dominators. There are six possible cases.

Case 1: Both u and v are black dominators. The initiator P is a black domi-
nator. Thus there exists a path between the initiator P and any black dominator
x such that the path contains only black dominators. Thus u and v are connected
through the path u � P � v.

Case 2: u is a black dominator and v is a gray dominator. A node can become
gray only upon the receipt of a CHANGE OUT message (in S3). The sender of a
CHANGE OUT message is always a black dominator. Thus any gray dominator
v is adjacent to a black dominator x. Using case 1, x is connected to u and hence
so is v.

Case 3: Both u and v are gray dominators. From case 2, both u and v are
connected to some black dominator and thus are connected to each other.

Case 4: u is a white dominator and v is a gray dominator. The initiator P
becomes a black dominator. Since all the nodes with w = 1 form a CDS, so there
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exists a node x in N(P ) ∪ {P} with w = 1. So there exists a path between u
and x that contains only nodes with w = 1. Let one such path be u, u1, u2, u3,
. . ., un, x. Traversing from u to x, consider the first node y with color �= white.
If there is no such y then this implies that u is connected to x through a path
containing only white dominators. Since x is adjacent to P , u is connected to P
and thus u is connected to the gray dominator v, using case 2. If y exists and
color = black at y then y must have become black after executing A2 since it
cannot execute A7 due to the white node uk to which it is adjacent. From G2,
we get that at y, b = 1 and thus it is a black dominator. So u is connected to a
black dominator y (via u, u1, u2, . . ., uk, y). Using case 2, y is connected to v
and thus so is u. However, if color = gray at y then y is connected to v using
case 3 and thus again so is u.

Case 5: Both u and v are white dominators. From case 4, both u and v are
connected to some gray dominator and thus are connected to each other.

Case 6: u is a white dominator and v is a black dominator. Using case 2 and
case 4, u and v are connected to some gray dominator and thus are connected
to each other. ��
Theorem 4. During switching, the total number of dominators is at most the
size of the set formed by the union of the white CDS and the black CDS.

Proof. During switching, any node with w = b = 0 never becomes a gray domi-
nator. Hence the theorem is proved. ��

3 Conclusion

The switching algorithm assumed that the two CDS are not disjoint. If they are
disjoint then there must exist at least one non-dominator which is adjacent to
some dominator in both the CDS. Information can be passed through this node
to initiate the switching in either way.

The precomputed output may become invalid due to failure of nodes or links.
Protocol switching, as opposed to output switching, should be used in that case
to recompute the CDS every time there is a switch. We plan to investigate this
in future.

References

1. Liu, X., van Renesse, R.: Fast protocol transition in a distributed environment. In:
ACM PODC. (2000)

2. Arora, A., Gouda, M.: Distributed reset. IEEE Transactions on Computers 43(9)
(1994)

3. Liu, X., van Renesse, R., Bickford, M., Kreitz, C., Constable, R.: Protocol switching:
Exploiting meta-properties. In: International Workshop on Applied Reliable Group
Communication (WARGC). (2001)

4. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. In: CACM. (1975)



An Efficient and Scalable Checkpointing and

Recovery Algorithm for Distributed Systems

K.P. Krishna Kumar and R.C. Hansdah

Dept. of Computer Science & Automation, Indian Institute of Science,
Bangalore 560012, India

{krishna, hansdah}@csa.iisc.ernet.in

Abstract. In this paper, we describe an efficient coordinated check-
pointing and recovery algorithm which can work even when the chan-
nels are assumed to be non-FIFO, and messages may be lost. Nodes are
assumed to be autonomous, and they do not block while taking check-
points. Based on the local conditions, any process can request the pre-
vious coordinator for the ’permission’ to initiate a new checkpoint. Al-
lowing multiple initiators of checkpoints avoids the bottleneck associated
with a single initiator, but the algorithm permits only a single instance
of checkpointing process at any given time, thus reducing much of the
overhead associated with multiple initiators of distributed algorithms.

1 Introduction

Eighty percent of failures in computer systems are of non catastrophic nature,
termed temporary faults. The checkpointing protocols described in the litera-
ture are mainly used to overcome these temporary faults. It is desirable that
the checkpointing and recovery protocols (i) do not depend on a single central
coordinator to avoid the bottleneck problem, (ii) do not assume that the com-
munication channels are reliable and FIFO, (iii) are non-blocking at the time of
taking checkpoints, (iv) permit nodes to take checkpoint at any point in time,
i.e., nodes are autonomous, (v) have low space and message overhead,(vi) have
a low recovery cost, and (vii) are adaptive in the sense that the smaller is the
number of messages lost and the amount of interaction between the processes,
the lower is the space and message overhead. Essentially, there are three cate-
gories of checkpointing and recovery protocols, viz., coordinated, communication
induced, and uncoordinated. Communication induced and uncoordinated check-
pointing protocols generally have high recovery cost and stable storage space
required is also generally high. On the other hand, the centralized checkpoint ini-
tiator schemes like the algorithms in[1, 2] suffers from the bottleneck associated
with a centralized initiator. For other distributed initiator schemes like Prakash
and Singhal’s algorithm[3], there may be multiple instances of checkpointing in
the system at any given time. A detailed description of various checkpoint and
rollback-recovery protocols can be found in [4, 5]. Our aim is to design a check-
pointing algorithm with multiple initiators, but which has only one instance of
checkpointing going on in the system at any point in time and has all of the
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above features. The rest of the paper is organized as follows. Section 2 describes
our checkpointing algorithm and in Section 3, we describe the rollback and re-
covery algorithm. In Section 4, the details of the performance evaluation are
given, and finally, we conclude the paper in section 5.

2 The Checkpointing Algorithm

2.1 Informal Description

The system consists of a set of n processes P1,P2,...,Pn which communicate with
each other using messages only. The channels are assumed to be non-FIFO, but
messages may be lost. The faults are assumed to be transient. The transmission
delays are unpredictable but finite. The messages, if they are delivered at the
receiver’s end, are delivered correctly. The processes are assumed to be asyn-
chronous.

All the processes initiate a checkpoint before they start their computation. A
process is initially nominated to be the coordinator. A coordinator for a check-
point interval is responsible for coordinating the checkpointing activities for a
particular checkpoint interval. Each checkpoint interval is given a unique check-
point ID(CPID), and CPIDs are incremented sequentially. Application messages
from the same node are also numbered sequentially. Both the sequence number
of a message, and the current CPID are piggybacked on the message. If a process
receives a message with a higher CPID than the current CPID, it takes a check-
point before receiving the message. The concepts of CPID and sequence numbers
are the same as those used in [2]. After a checkpointing process is initiated, the
coordinator receives reports from all the processes regarding confirmation of hav-
ing taken a checkpoint and a report of the count of all the messages they have
sent and received. This is used by the coordinator to find out, whether all the
processes have successfully taken a checkpoint and also that no messages sent in
a particular checkpoint interval have been lost. For the next interval, some new
processes may put their claim to be the coordinator and the present coordinator
grants permission to one of them. It is assumed that the loss of control messages
are handled using timeouts, and the failure of coordinator is handled using an
election protocol.

2.2 Messages

There are two kinds of messages, viz., application messages and control messages.
In this paper, the term message refers to application message only, unless stated
otherwise. The various types of messages are as follows.

application message: They are sent by the user application.
control message: They are sent either by the processes or the coordinator as

part of the checkpointing process. They include the following :
send balance report: They are sent by the coordinator to a process if the bal-

ance report from the process has not reached it after a certain time interval.
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balance report: These are forwarded by the processes to the coordinator when
they take a checkpoint. It is the difference between the number of messages sent
and received by a process during a checkpoint interval. Each process also sends a
dependency list which gives the individual balance count with each of the other
processes.

update report: This message is sent by a process to the coordinator when it
receives a message pertaining to a previous checkpoint interval.

reconcile message: This message is sent by the coordinator to a processes
which has received lesser number of messages than sent from a certain sender.

list of messages: The receiver process on getting the message reconcile message
from the coordinator, sends a list of message sequence numbers it has received
from a given sender.

send request coord: This message is sent by the process requesting permission
to initiate a new checkpointing process.

grant permission coord: This message is sent by the coordinator while granting
permission to a process to be the coordinator for the next checkpoint interval.

2.3 The Algorithm

Algorithm at each process

Initially take a checkpoint before computation;
On receipt of an application message:

if( message.CPID > own CPID)
take a checkpoint with new CPID;
send balance report to the coordinator;

if(message.CPID == own CPID)
update the balance count;

if( message.CPID < own CPID)
update balance count;
send update report to coordinator;
log the message in stable storage;

On receipt of message send balance report:
send the latest balance report to coordinator;

On receipt of message reconcile message :
send the list of messages from the given process to the sender;

On receipt of message list of messages :
send the missing messages to the receiver;

On requirement to initiate a checkpoint :
send message send request coord to the present coordinator;

On receipt of message grant permission coord
declare self as coordinator if indicated in the message;
initiate checkpointing process;

To send an application message;
add the present CPID to the message header;
log the message in volatile memory;

Algorithm at the coordinator process

On receipt of message send request coord:
if the present checkpointing process is completed
send message grant permission coord to the process;

On receipt of message balance report from processes:
update the overall balance count;
update the overall process count;
if(process count != 0 after scheduled timeout)
send message send balance report to the concerned processes;
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if (( process count == 0) and (balance count != 0))
// all processes have taken fresh checkpoint.

wait till time-out;
send message request balance report to receiver processes with positive balance count;

// completion of checkpointing process
if((process count == 0) and (balance count == 0))
the checkpointing process is completed;

// to cater for any lost update messages
if balance count != 0 after receipt of fresh balance report
send message reconcile message to the concerned receiver processes ;

3 Rollback Recovery

The processes maintain at most two checkpoints in the stable storage. One check-
point is the fully completed one and the other one is the current checkpoint which
is being coordinated. The checkpoints with the same CPID form a recovery line.
In a modification to the Silva’s algorithm [2], the rollback algorithm tries to min-
imize the number of processes which are required to rollback. On being informed
of a process’s failure, the coordinator asks the processes to take a virtual check-
point and forward the list of processes to which they have sent messages since
the checkpoint indicated in the coordinator’s message. This checkpoint will be
the one coordinator knows has been completed. The processes, forward the list
as asked for and continue their computation. The virtual checkpoint does not
involve saving the state of the process. The processes are allowed to receive mes-
sages. But, processes are not allowed to send messages till further confirmation
is received from the coordinator. Using the lists provided by the processes, the
coordinator calculates the dependencies between processes. It finds out which
all processes have communicated with the failed process(es), either directly or
indirectly.

The rollback control messages are :

request virtual cp: This is sent by the coordinator to all the processes asking
them to forward their dependency lists. The processes further do not send any
more application messages, but continue to receive messages.

rollback request: Message sent by the coordinator to the processes asking them
to rollback to a given CPID, and resume computation.

resume request: Message sent by the coordinator to the processes asking them
to resume computation from the present state.

Algorithm at the coordinator process

On receipt of failure report of a process;
take a virtual checkpoint;
send request virtual cp message to all processes.

On receipt of message balance report from the processes;
calculate dependencies;
send rollback request message to dependent processes;
send resume request message to non-dependent processes;
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Algorithm at each process

On receipt of message request virtual cp;
take a virtual checkpoint;
send balance report to the coordinator;
accept any incoming application message;
do not send any application message ;

On receipt of message rollback request;
rollback to the indicated CPID;
resume computation;

On receipt of message resume request;
resume computation from the present state;

4 Performance Evaluation

Extensive simulation was carried out to test the algorithms and measure various
parameters. The simulations were done using discrete event simulation with the
number of processes varying from 10 to 50. The error percentage of the channel
was also varied from 0 to 10 percent. Exponential distribution was used for
generation of messages. Each of the experiments were performed at least ten
times, and the average values for all the measured parameters were taken.

In terms of checkpointing overhead, we have compared our checkpointing algo-
rithm with uncoordinated algorithm that take periodic checkpointing and with
uncoordinated algorithm that take a checkpoint prior to a message receipt event
provided a message send event has occurred in the same checkpoint interval.
We have also compared our algorithm with communication induced checkpoint-
ing algorithms,viz., Briatico, Ciuffoletti and Simoncini’s(BCS) algorithm [6],
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Manivannan and Singhal’s (MS) algorithm [7] and the Baldoni, Quaglia and
Fornara’s(BQF) algorithm [8]. The comparison of the percentage overhead of
the various classes of algorithm is shown in figure 1. The amount of saving in
computation time in comparison to the situation in which all processes have to
rollback as in [2] in the event of a failure is from 3 to 6% when the number of
processes are upto 30. For further increase in number of processes, the saving is
just over 1%. The saving is due to the fact that only those processes which have
communicated with the failed process(es) are required to rollback.

5 Conclusion

In this paper, we have described an efficient checkpoint and recovery algorithm
which tries to combine the advantages of coordinated, uncoordinated and the
communication-induced protocols and which has all of the desirable features
given earlier. Simulation results indicate that it performs well in terms of check-
pointing overhead compared to other algorithms.
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Abstract. This paper describes the invited talk given at the 8th Inter-
national Conference on Distributed Computing and Networking (ICDCN
2006), at the Indian Institute of Technology Guwahati, India. This talk
was intended to give a partial survey and to motivate further studies
of distributed verification. To serve the purpose of motivating, we allow
ourselves to speculate freely on the potential impact of such research.

In the context of sequential computing, it is common to assume that
the task of verifying a property of an object may be much easier than
computing it (consider, for example, solving an NP-Complete problem
versus verifying a witness). Extrapolating from the impact the separation
of these two notions (computing and verifying) had in the context of se-
quential computing, the separation may prove to have a profound impact
on the field of distributed computing as well. In addition, in the context
of distributed computing, the motivation for the separation seems even
stronger than in the centralized sequential case.

In this paper we explain some motivations for specific definitions, sur-
vey some very related notions and their motivations in the literature,
survey some examples for problems and solutions, and mention some ad-
ditional general results such as general algorithmic methods and general
lower bounds. Since this paper is mostly intended to “give a taste” rather
than be a comprehensive survey, we apologize to authors of additional
related papers that we did not mention or detailed.

1 Introduction

This paper addresses the problem of locally verifying global properties. This
task complements the task of locally computing global functions. Since many
functions cannot be computed locally [29, 42, 41], local verification may prove
more useful than local computing - one can compute globally and verify locally.

In terms of sequential time, there exists evidence that verification is sometimes
easier then computation. For example, verifying that a given color assignment
on a given graph is a legal 3 coloring is believed to consume much less time
than computing a 3 coloring [36]. As another example, given a weighted graph
together with a tree that spans it, it is required to decide whether this tree is an
MST of the graph. This MST verification problem was introduced by Tarjan in
the sequential model. A linear time algorithm for computing an MST is known
only in certain cases, or by a randomized algorithm [35,37]. On the other hand,
the sequential verification algorithm of [34] is (edge) linear.

In the context of distributed tasks, other measures of complexity are used, e.g.,
communication complexity. Still, one can ask a similar natural question. Given

S. Chaudhuri et al. (Eds.): ICDCN 2006, LNCS 4308, pp. 100–114, 2006.
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a distributed representation of a solution for a problem (for example, each node
holds a pointer to one of its incident edges), we are required to verify the legality
of the represented solution (in the example, to verify that collection of pointed
edges forms an MST). Does the verification consume fewer communication bits
than the computation of the solution (e.g., the MST)?

Since faults are much more likely to occur in a distributed setting than in a
sequential one, the motivation for verification in a distributed setting seems to
be even stronger than in a sequential one. A common application of local dis-
tributed verification is in the context of self stabilization. See, for example, the
local detection [31], or the local checking [9], or the silent stabilization [32]. Self
stabilization deals with algorithms that must cope with faults that are rather
sever, though of a type that does occur in reality [27, 28]. The faults may cause
the states of different nodes to be inconsistent with each other. For example,
the collection of pointed edges may not be a tree, or may not be an MST. Self
stabilizing algorithm thus often use distributed verification repeatedly. If the ver-
ification fails, a (much heavier) global MST recomputation algorithm is invoked.
An efficient verification algorithm thus saves repeatedly in communication. We
discuss the use application of distributed verification to self stabilization in more
length in Section 4.

In the simple model for local verification, all nodes are awakened simultane-
ously and start a computation. In a t-local verification algorithm, it is required
that the represented solution is illegal iff after at most t time rounds, at least
one processor outputs 0 (the rest may output 1). Since we want the locality
parameter t to be independent of the network, it would be desired to have t be
a constant.

Note, that for a constant t (even for t = 1), many representations can be
trivially verified. For example, in the legal-coloring verification task, each node
just checks that each of its neighbors has a different color than its own. As
another example, in a distributed representation of a Minimal Independent Set
(MIS), each node holds a flag indicating whether if belongs to the MIS or not.
Clearly, such an MIS representation can be verified in one time round.

In a distributed representation of a subgraph of G, each node may point at
some of its incident edges. The set of pointed edges forms a subgraph of G.
In the spanning tree (respectively, MST) verification problem, it is required to
check whether this subgraph is a spanning tree (resp., MST) of G or not. The
following simple claim indicates that in a too simple model for local verification,
the verifications of some basic representations require Ω(n) time rounds. (We do
not describe the simple model explicitly).

Claim 1. In the simple model for local verification, both the spanning tree and
the MST verification problems require Ω(n) time rounds.

Sketch of Proof: We show the result for the spanning tree case. Let G =
{v1, v2, · · · , vn} be a circle. For simplicity of presentation, we assume n is even.
Consider three distributed representations of G as depicted in Figure 1. In the
first representation, G1, for each 1 ≤ i ≤ n − 1, node vi holds a pointer to
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Fig. 1. The three representations of subgraphs in G. The thick edges correspond to
the pointed edges and the dashed edges correspond to the non-pointed edges.

edge (vi, vi+1). Therefore, the pointed edges in G1 are all the edges except for
(vn, v1). In the second representation, G2, for each 1 ≤ i ≤ n/2 − 1 and each
n/2 + 1 ≤ i ≤ n, node vi holds a pointer to the edge (vi, vi+1) (mod n + 1).
Therefore, the pointed edges are all the edges except for (vn/2, vn/2+1). Note
that in both G1 and G2, the pointed edges form a spanning tree. In G3, for each
1 ≤ i ≤ n, node vi holds a pointer to the edge (vi, vi+1). Therefore, the set of
pointed edges consists of all edges in the circle.

First note that since the pointed edges in G1 and G2 form a spanning tree, no
node in either G1 or G2 outputs 0. Assume by contradiction that the spanning
tree verification can be accomplished in t time rounds, where t < n/4. In this
case, a node can only gather information about the nodes at distance at most t
from it. Therefore, for every 1 ≤ i ≤ n/4 and every 3n/4 ≤ i ≤ n, the output of
vi in G3 is the same as the output of vi in G2. Similarly, for each n/2 ≤ i ≤ 3n/4,
the output of vi in G3 is the same as the output of vi in G1. If follows that the
output of each vertex in G3 is not 0, contradicting the fact that the pointed
edges in G3 do not form a tree. ��
In order to deal with verification tasks such as verifying spanning trees, the
concept of proof labeling schemes was introduced in [40]. The formal definitions
are given in Section 2. Informally, it is assumed that the state of every node
has already been computed by some algorithm (in the above example, the state
may consist of a pointer to an incident edge). The configuration (formed as
the collection of states of all nodes) is supposed to satisfy some predicate (e.g.,
“the pointed edges form an MST of the underlying graph”). To enable local
verification, labels are added to the nodes in preprocessing stage. To perform
the verification, a node computes some local predicate, considering only its own
state, as well as the above mentioned labels of its neighbors but not their states
(!). The global configuration predicate is implied by the conjunction of the local
predicates in the following manner. If the configuration is legal then each node
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outputs 1 (i.e., “I do not detect a problem”). However, if the configuration is not
legal, then for every possible way of labeling the vertices, at least one node should
detect a problem, i.e. output 0. This, in a way, means that if the configuration
is not legal, the adversary cannot fool the verifier by changing the labels. The
restriction of one time round can obviously be generalized to t time rounds
(hopefully t being constant). However, all the results that have been previously
established in the area of proof labeling schemes hold for the case t = 1.

Note, that there is some resemblance between the definition of proof labeling
schemes and the notion of NP. Informally, the collection of assigned labels in the
preprocessing stage can be considered a witness. If the configuration is legal then
there exists a witness (labeling assignment) such that the legality of the config-
uration can be verified in one time round. Otherwise, if the configuration is not
legal then there does not exist such a witness, i.e., for any labeling assignment,
in one time round, at least one node should detect a problem.

We note that the number of bits in a label is the number of information bits
a node needs to convey to its neighbors in the verification. Ideally, this number
is as small as possible, even smaller than the state of the vertex. We evaluate a
proof labeling scheme by its label size, i.e., the maximum number of bits assigned
to a node of the graph in the preprocessing stage.

2 Model ( [40])

We consider distributed systems that are represented by connected graphs. The
vertices of the graph G = 〈V, E〉 correspond to the nodes in the system, and we
use the words “vertex” and “node” interchangeably. The edges of G correspond
to the links, and we use the words “link” and “edge” interchangeably. Denote
n = |V |. Every node v has internal ports, each corresponding to one of the edges
attached to v. The ports are numbered from 1 to deg(v) (the degree of v) by
an internal numbering known only to node v. If G is undirected, then for every
vertex v let N(v) denote the set of edges adjacent to v. If G is directed, then
for any vertex v let N(v) denote the set of edges incoming to v. In either case,
for every vertex v let n(v) = |N(v)|. Unless mentioned otherwise, all graphs
considered are undirected. For two vertices u and v in G, let dG(u, v) denote the
unweighted distance between u and v.

Given a vertex v, let sv denote the state of v and let vs = (v, sv). A config-
uration graph corresponding to a graph G = 〈V, E〉 is a graph Gs = 〈Vs, Es〉,
where Vs = {vs | v ∈ V } and (vs, us) ∈ Es iff (v, u) ∈ E. A family of con-
figuration graphs Fs corresponding to graph family F consists of configuration
graphs Gs ∈ Fs for each G ∈ F . Let FS be the largest possible such family
when every state s is taken from a given set S. Unless mentioned otherwise, let
S denote the set of integers. We sometimes refer to each state sv of a configu-
ration graph as having two fields: sv = (id(v), s′(v)). Field id(v) is v’s identity
and is encoded using O(log n) bits. When the context is clear we may refer to
s′(v) as the state of v (instead of to s(v)). A configuration graph Gs is id-based
if for every pair of vertices v and u it is given that id(u) �= id(v). A graph whose
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identities are arbitrary (including possibly the case where all identities are the
same) is termed anonymous. An id-based (respectively, anonymous) family is a
family of id-based (respectively, anonymous) graphs. Let Fall be the collection of
all directed strongly-connected and all undirected connected graphs with O(n)
vertices. Let Fundirected be the collection of all undirected connected graphs
with O(n) vertices. When it is clear from the context, we use the term “graph”
instead of “configuration graph”, “id-based graph” or “anonymous graph”. We
may also use the notation v instead of vs. Given a family of configuration graphs
Fs, let Fs(W ) denote the family of all graphs in Fs such that, when considered
as weighted, the (integral) weight of each edge is bounded from above by W .

Many of the results in [40] deal with a distributed representation of subgraphs.
Such a representation is encoded in the collection of the nodes’ states. There can
be many such representations. For simplicity, we focus on the case that an edge is
included in the subgraph if it is explicitly pointed at by the state of an endpoint.
That is, given a configuration graph Gs, the subgraph (respectively, directed
subgraph) induced by the states of Gs, denoted H(Gs) (respectively, D(Gs)),
is defined as follows. For every vertex v ∈ G, if sv includes an encoding of one
of v’s ports pointing to a vertex u, then the edge (respectively, directed edge)
(v, u) is an edge in the subgraph. These are the only edges in the subgraph.

Consider a graph G. A distributed problem Prob is the task of selecting a
state sv for each vertex v, such that Gs satisfies a given predicate fProb. This
induces the problem Prob on a graph family F in the natural way. We say that
fProb is the characteristic function of Prob over F .

This model tries to capture adding labels to configuration graphs in order
to maintain a (locally checkable) distributed proof that the given configuration
graph satisfies a given predicate fProb. Informally, a proof labeling scheme in-
cludes a marker algorithm M that generates a label for every node, and a decoder
algorithm that compares labels of neighboring nodes. If a configuration graph
satisfies fProb, then the decoder at every two neighboring nodes declares their
labels (produced by marker M) “consistent” with each other. However, if the
configuration graph does not satisfy fProb, then for any possible marker, the
decoder must declare “inconsistencies” between some neighboring nodes in the
labels produced by the marker. It is not required that the marker be distributed.
However, the decoder is distributed and local, i.e., every node can check only the
labels of its neighbors (and its own label and state).

More formally, A marker algorithm L is an algorithm that given a graph
Gs ∈ Fs, assigns a label L(vs) to each vertex vs ∈ Gs. For a marker algorithm L
and a vertex vs ∈ Gs, let N ′

L(v) be a set of n(v) fields, one per neighbor. Each
field e = (v, u) in N ′

L(v), corresponding to edge e ∈ N(v), contains the following.
(1) The port number of e in v; (2) the weight of e (if G is unweighted we regard
each edge as having weight 1); (3) L(u).

Let NL(v) = 〈(sv, L(v)), N ′
L(v)〉. Informally, N ′

L(v) contains the labels given
to all of v’s neighbors along with the port number and the weights of the
edges connecting v to them. NL(v) contains also v’s state and label. A decoder
algorithm D is an algorithm which is applied separately at each vertex v ∈ G.
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When D is applied at vertex v, its input is NL(v) and its output, D(v, L), is
boolean.

A proof labeling scheme π = 〈M,D〉 for some family Fs and some character-
istic function f is composed of a marker algorithmM and a decoder algorithm
D, such that the following two properties hold:

1. For every Gs ∈ Fs, if f(Gs) = 1 then D(v,M) = 1 for every vertex v ∈ G.
2. For every Gs ∈ Fs, if f(Gs) = 0 then for every marker algorithm L there

exists a vertex v ∈ G so that D(v, L) = 0.

We note that all the proof labeling schemes constructed so far use a polytime
decoder algorithm. The size of a proof labeling scheme π = 〈M,D〉 is the maxi-
mum number of bits in the labelM(vs) over all vs ∈ Gs and all Gs ∈ Fs. For a
family Fs and a function f , we say that the proof size of Fs and f is the smallest
size of any proof labeling scheme for Fs and f .

3 Basic Examples

To illustrate the definitions, we now present a basic proof labeling scheme [40]
concerning agreement among all vertices. Note that v’s neighbors cannot ‘see’ the
state of v but they can see v’s label. This is different than what is assumed e.g. in
[31]. We note that the following lemma also demonstrates a connection between
the notion of proof labeling scheme and that of communication complexity [43].

Lemma 2. [40] The proof size of Fall
S and fAgreement is Θ(m).

Proof. We first describe a trivial proof labeling scheme π = 〈M,D〉 of the desired
size m. Given Gs such that fAgreement(Gs) = 1, for every vertex v, let M(v) =
sv. I.e., we just copy the state of node v into its label. Then, D(v, L) simply
verifies that L(v) = sv and that L(v) = L(u) for every neighbor u of node v. It
is clear that π is a correct proof labeling scheme for Fall

S and fAgreement of size
m. We now show that the above bound is tight up to a multiplicative constant
factor even assuming that Fall

S is id-based. Consider the connected graph G
with two vertices v and u. Assume, by way of contradiction, that there is a proof
labeling scheme π = 〈M,D〉 for F all

S and fAgreement of size less than m/2. For
i ∈ S, let Gi

s be G modified so that both u and v have state s(u) = s(v) = i.
Obviously, fAgreement(Gi

s) = 1 for every i. For a vertex x, letMi(x) be the label
given to x by marker M applied on Gi

s. Let Li = (Mi(v),Mi(u)). Since the
number of bits in Li is assumed to be less than m, there exist i, j ∈ S such that
i < j and Li = Lj . Let Gs be G modified so that su = i and sv = j. Let L be
the marker algorithm for Gs in which L(u) =Mi(u) and L(v) =Mj(v). Then
for each vertex x, D(x, L) = 1, contradicting the fact that f(Gs) = 0. ��
Note, that the corresponding computation task, that of assigning every node the
same state, requires only states of size 1.

By the above lemma, it is clear that for any m there exists a family Fs and a
function f with proof size Θ(m). A somewhat stronger claim is presented in [40],
namely, that a similar result exists also for graph problems (that is, problems
where the input is only the graph topology).
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Corollary 3. For every function 1 ≤ m < n2, there exists a graph problem on
an id-based family with proof size Θ(m).

Let us now show a family with a smaller proof size. The following example
concerns the representation of various spanning trees in the system. The upper
bound employs structures and ideas used in many papers including [3, 5, 31, 14,
4,40]. The lower bound is taken from [40]. A lower bound in the different model
of silent stabilization for one of the tasks below was presented in [32]. Consider
five different problems, obtained by assigning states to the nodes of G so that
H(Gs) (respectively, D(Gs)) is a (respectively, directed) (1) forest; (2) spanning
forest; (3) tree; (4) spanning tree; (5) BFS tree of G (for some root vertex r).
Let fNo−cycles (respectively, f ′

No−cycles) be the characteristic function of either
one of the five problems above.

Lemma 4. [40] The proof size of Fall
S and fNo−cycles (respectively, f ′

No−cycles)
is Θ(log n).

Proof. For proving the upper bound, construct the proof labeling scheme πspan =
〈Mspan,Dspan〉 for FS and f being “H(Gs) is a spanning tree”. The other cases
are constructed in a similar manner. Given Gs so that f(Gs) = 1, the marker
algorithmMspan operates as follows. If H = H(Gs) is a spanning tree, then it
has n − 1 edges. Therefore, either there is only one vertex r in Gs whose state
is not an encoding of one of its port numbers or there exist exactly two vertices
whose states point at each other. In the second case let r be the vertex with the
smaller identity among the two and in both cases r is considered as the root.
Note that the state of each non-root vertex points at its parent in the rooted tree
(H, r). LetMspan(v) = 〈id(r), dH(v, r)〉. For a vertex vs and a marker algorithm
L, the first field L(v) is denoted by L1(v) and the second by L2(v). The decoder
Dspan(v, L) = 1 iff all the following easy to verify events occur.

1. For every neighbor u of v, L1(u) = L1(v) ∈ S. I.e., all vertices agree on the
identity of the root.

2. If id(v) = L1(v) then L2(v) = 0.
3. If id(v) is not L1(v) then sv is an encoding of a port number of v leading to

a vertex u such that L2(v) = 1 + L2(u).
4. If L2(v) = 0 then either sv is not an encoding of a port of v or an encoding

of a port of v leading to vertex u and L2(u) = 1.

Obviously, the size of πspan is O(log n) so we only need to prove that the scheme
is correct. Given Gs so that f(Gs) = 1. W show that Dspan(v, L) = 1 for for all
u, v ∈ V . The first fields ofMspan(u) andMspan(v) are the same since they are
both the identity of the root r. If v �= r then sv is the identity of v’s parent in
the tree H , therefore distH(v, r) = 1 + distH(sv, r). Also, (2) above holds for r.
Hence, D(v,Mspan) = 1 for each vertex v ∈ G.

If, for some marker algorithm L ,D(v, L) = 1 for every vertex v, then by
(1), all vertices must agree in the first field of their label. Denote this value x.
Since the identities of the vertices are disjoint, there can be at most one vertex r
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satisfying id(r) = x. Also, by (3), such a vertex must exist. By (3), for every
vertex u such that id(u) �= x corresponds a directed edge leading to some vertex
w and L(u) − 1 = L(w). Therefore all directed paths must reach the special
vertex r (satisfying id(r) = x). Therefore the edges corresponding to all vertices
but r, form a spanning tree T and the only case to be inspected is whether
the edge that correspond to r (if this edge exists), belongs to this tree. This is
verified by (4). The upper bound for the case of a spanning tree follows.

In the case were f (respectively, f ′) is a “(respectively, directed) BFS tree”,
the decoder D(v, L) also checks that |L2(u)− L2(v)| ≤ 1 for each (respectively,
directed) neighbor u of vertex v.

Remark: a similar approach applies also to BFS trees on weighted id-based
graphs except that the size of the scheme changes to O(log n + log W ). Note
that in the above schemes if the decoder satisfies D(v, L) = 1 for every v then
L2(v) = dG(v, r). Therefore, using this scheme we can also prove that each vertex
holds its distance to the root.

Let us next prove the lower bound (the proof is essentially the same for all five
problems). Let P be the horizontal path of n vertices. For the sake of analysis
only, enumerate the vertices of P from left to right, i.e., P = (1, 2, · · · , n). For
i < n, let si be the port number of the edge leading from vertex i to i + 1.
Obviously, f(Ps) = 1 and f ′(Ps) = 1. Assume, by way of contradiction, that
there exists a proof labeling scheme π = 〈M,D〉 for Fs and either f or f ′

which is of size less than log(n/2) − 2. Let L(i) be the label given by M to
vertex i in the above path Ps. Since the number of bits in each L(i) is less than
log(n/2)− 2, there exist two pairs of vertices (i, i + 1) and (j, j + 1) where 1 < i
and i + 1 < j < n− 1 so that L(i) = L(j) = L′ and L(i + 1) = L(j + 1) = L′′.
We now build the following ring R consisting of j − i vertices whose identities
are clockwise ordered from i to j−1. For i ≤ k < j−1 let sk be the port number
of vertex k leading from k to k +1 and let sj−1 be the port leading from j−1 to
i. Let us give Rs the same labeling L asM gives Ps, i.e., each vertex i ≤ k < j
in Rs is labeled L(k). By the correctness of π on Ps we get that for each vertex
v ∈ Rs, D(v, L) = 1. This is a contradiction to the fact that f(Rs) = 0 and
f ′(Rs) = 0.

Note that the proof applies to all the cases in the lemma, including the case
that a (not necessarily spanning) subgraph does not have a cycle. ��
Note that the above lemma implies a lower bound of Ω(log n) for proof labeling
schemes for the Minimum Spanning Tree problem (MST). A proof in the spirit
of the proof of lemma 2 was then used in [40] to increase this lower bound to
Ω(log n+logW ) where W is the maximum weight of an edge in the graph. This
lower bound was later increased in [38] to Ω((log n log W )). The proof of the lower
bound in [38] is quiet involved. It uses a new combinatorial structure termed
(h, μ)-hypertrees that is a combination between (h, μ)-trees and a hypercube.
That is, an (h, μ)-hypertree is constructed by connecting (via a weighted path)
every node in one (h − 1, μ)-hypertree to the corresponding node in another
(h−1, μ)-hypertree. This doubling of the hypertree is partially responsible for the
logarithmic behavior of the lower bound. The intuition behind this construction
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is that (1) the proof needed a structure with many cycles; and (2) the proof
needed to make many nodes neighbors, since proof labeling schemes deal only
with neighboring nodes. In the construction, h is the hight of the hypertree
and μ is the weight of the weight of some edges that are crucial for the MST.
That proof follows the general structure of [39] in the sense that labels for some
(h−1, μ2)-hypertree H ′ are computed using the labels for some (h, μ)-hypertree
H . However, the specifics are more complex and require some new tricks. For
example, the verifier described in the construction for the lower bound, at any
node v, has to guess labels for some other nodes.

Two general approaches to constructing proof labeling schemes are presented
in [40]. One is a modular construction of a scheme from modules that are other
schemes. The other is a simulation of the execution of a distributed algorithm
that computes the function to be verified. The second method bears some sim-
ilarity to the idea of the roll back compiler of [9], that is described briefly in
Section 4. This method is used in [40] together with ad hoc improvements to
derive an upper bound of O(log2 n + log n log W ) for the MST problem. This
was improved later in [38] to match their improved lower bound.

Additional upper and lower bounds given in [40] for a number of graph
problems, including many basic building block problems. Other results therein
demonstrated the role and the cost of identities in this model. It was also shown
that every predicate has a proof labeling scheme in id-based families of graphs.

4 Self Stabilization: An Application of Distributed
Verification

In this section we mention the notion of self stabilizing algorithms. It turns out
that distributed verification, in addition to its theoretical interest, can be very
useful for the design of such algorithms.

The notion of self stabilization was suggested by Dijkstra in 1974 ( [10], see
also [12]). Dijkstra’s paper later won the ACM-PODC influential paper award,
that shortly after that became the Dijkstra Prize in Distributed Computing
awarded by the ACM (the Association for Computing Machinery) at the Annual
Symposium on the Principles of Distributed Computing (PODC). Starting in
2007, this prize will be given by the ACM and EATCS (the European Association
for Theoretical Computer Science). It took some years until the importance of
that paper became evident, as highlighted first by Lamport [17]. However, since
then, a lot of attention has been invested in self stabilization, and this sub-area
now even has its own conference (SSS).

In the above mentioned paper, Dijkstra studied the example of a token ring.
This is a network of processors arranged in a circle, where each processor can
“see” the whole state of one processor that immediately precedes it (e.g. in a
clockwise order). The state of the processor (and of the preceding one) may
imply that the processor “has a token”, or that it “does not have a token”. It
is required that exactly one of the processors in the whole ring is in the state of
“having a token” at any given time. A second requirement was that each node
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“passes the token” eventually to the processor succeeding it on the ring. When
this action was taken, the passing processor no longer had a token, while the
successor started to have one. Thus, the token circulates the ring.

This example was based on a commercial network where if two processors “had
a token” their actions could have collided, while if no processor had a token the
network could deadlock. Hence, if either more or less than one processor has a
token, the network is in an illegal global state (configuration). The designers of
the commercial network assumed that it could sometimes reach an illegal state
because of either an incorrect initialization, or some equipment error, or bug, etc.
(It was proven by [27] that in actual network, even simple and rather common
faults may drive protocols into an arbitrary global state.) Hence, the commercial
products had a mechanism to recover from an illegal state. This mechanism was
based on a timing assumption- one processor serving as a leader (a “station”)
waited for a certain time (“timeout”) to receive the token from each predecessor.
If the token is not received, then it is assumed lost, and the leader generates a
new token. A similar method is used to destroy a redundant token.

In some sense, the commercial solution involved a global verification. That is,
the length of the timeout had to be large enough so that the token could visit
every processor in the ring. Moreover, the decision about the size of the timeout
had to take into account the durations the various processors needed to hold
the token. For example, if some processors were slower than others, the decision
about the timeout had to take this into consideration.

Dijkstra replaced the global timeout by a local action- each processor consid-
ered its own state and the state of its predecessor only, and acted. He showed
that the network converged into a correct global state in spite of this distributed
control. It is worth mentioning that Dijkstra’s solution nevertheless involved a
global computation. For example, assume that the network was in a legal state,
and some adversary changes the state of one processor. In this case, it is pos-
sible to return to a correct global state by changing the state of one processor.
However, Dijkstra’s solution involves changes in the states of all the processors,
as well as time that is long enough for all of them to be involved in the compu-
tation. (Moreover, a causal chain of events [18] of length Ω(n), where n is the
number of the processors, may result.)

A part of the elegance in Dijkstra’s algorithms was that they never really
detected an illegal state. Instead, when the network was put in an illegal state,
it “somehow” converged towards a legal state, and then stayed in the set of legal
states. This was also a characteristic of many later algorithms. While elegant, this
approach makes the design of algorithms difficult. Katz and Perry [16] suggested
a method of partitioning the design of self stabilizing algorithms:

1. Design an algorithm- the base algorithm, that is not necessarily self stabiliz-
ing (this implies a definition of the legal global states).

2. Detect, in a self stabilizing manner, that the above algorithm reached an
illegal state.

3. In the case that an illegal global state is detected, restart the execution of
the algorithm from some global legal state.
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In fact, they presented a method to perform the detection, given a leader node.
The detection (distributed verification) was performed in a rather centralized
manner. That is, their algorithm collected all the state information from all the
nodes to the leader node. The leader then checked whether the collection of
the states was a legal global state. (Collecting local states such that they form a
consistent global state is not a trivial task even in a non- self stabilizing network,
since in an asynchronous network local states are collected in different times, and
may thus not be parts of the same global state [11].)

In terms of complexity, note, first, that the time complexity of the verification
task above was linear in the number of nodes. Clearly, the communication cost
for the above approach may be large.

The paradigm of local detection was developed independently in [31]. This
can be viewed as replacing the second step above. The idea was to replace the
definition of a correct global state by a collection of definitions for correct local
states. Somewhat more formally, assume that the correctness of a global state is
defined as a global predicate P , that is, P is defined over all the variables in all
the states of the nodes in the network. Let us say that a predicate is local if it is
defined only over the state of a single node v together with the states of all of
v’s neighbors. Now assume that the conjunction of local predicates implies P . If
none of the local predicates is violated, then P holds.

The above allows to replace the detection step of the Katz and Perry’s algo-
rithm by a local detection. Each node collects the states of its neighbors and
computes its local predicate repeatedly. If the local predicate is violated at any
node, this node starts the recovery phase. The recovery may involve a computa-
tion that may not be local. However, the recovery may never be needed, while
the attempt to detect an illegal state is performed infinitely often. Hence, it is
much more important to have an efficient verification.

A self stabilizing algorithm for a spanning tree construction was presented in
[31] for several purposes. First, it demonstrated the local detection by detecting
potential cycles in the “tree” using the distance variables (see Section 3). Second,
it demonstrated that the local detection could be used also for a dynamically
changing state, as opposed to a state that contains already the desired spanning
tree and thus is not supposed to change. Specifically, in the algorithm of [31], a
node who wished to join a tree sent a message all the way to the tree root to
ask for a permission. This message was forwarded by the nodes over the tree.
In a self stabilizing environment, it is possible that the node never actually sent
that request, even though it “remembers” in its state that it did. Hence, had the
algorithm at the node just waited for an answer, a deadlock may have resulted,
since such an answer may never arrive (e.g. if the request has never actually
been sent). This non- local predicate- “a request message from node v is on its
way to the root” is replaced in the algorithm of [31] by a set of local predicates
at the nodes on the route of the request message. If the request message is not
there, then some node on its assumed route would detect that illegal state.

Another motivation for the tree algorithm in [31] was to enable a self stabi-
lizing reset instead of the third step of [16] (the recovery step). A distributed
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reset protocol restarts the base algorithm from a predetermined initial state. It
was observed by Awerbuch, Patt-Shamir, Varghese, and Dolev [8] that it is not
trivial to show that a general self stabilizing reset algorithm together with local
detection can perform the transformation of any algorithm to a self stabilizing
one correctly. However, it is rather easy to show that a self stabilizing reset that
uses a spanning tree suffices. Several other self stabilizing tree algorithms were
suggested independently. They defer in some of their properties (e.g., one as-
sumed a leader, antoher used an upper bound on the number os nodes) but they
too suggested, at least implicitly, the distributed verification of cycle freedom
described in Section 3, see the work by Dolev, Israeli, and Moran, and by Arora
and Gouda [13, 4].

The notion of local checking was presented in [9]. It bears similarities to the
notion of local detection. Instead of a local predicate involving a node and all
its neighbors, the local predicates in [9] are defined over the two endpoints of
one edge. This has a potential of simplifying algorithms using these predicates.
In [7], Awerbuch, Patt-Shamir, and Varghese extended the methodology of lo-
cal detection and global correction to local detection and local correction. The
methodology is applied in [7] to develop self-stabilizing interactive distributed
protocols, such as, end-to-end communication and network reset.

As described above, the verification step using the method of [16] consumes
Ω(n) time, while the verification using e.g. the approach of [31] takes O(1)
time. Methods suggested in [20,15,6,21,19] to detect cycles sacrificed some time
efficiency in order to reduce the total sizes of variables used in the local predicates
compared to that of [31]. This suggests the existence of a size- time trade-off. On
the other hand, it is not clear whether the total communication cost for these
methods is inherently smaller. Indeed, these algorithms communicate a smaller
number of bits, but those are communicated to larger distances.

A specific subset of problems allows for a specific kind of self stabilization
called silent stabilization. These are studied in Dolev, Gouda, and Schneider
in [32]. Informally, when silent stabilization is obtained, the only activity a pro-
cessor can be involved in is collecting the state information of its neighbors that
appear in its local predicates, and computing its local predicates. In a sense, this
too is a form of a local detection- if the desired property of the network does
not hold (that is, if the network is in an illegal state) this should be detected
at least by one node that will take additional actions to correct the state. This
captures input output relations- for example, this can be useful for protocols
that compute a spanning tree. When the tree is correct, no additional activity
is required except for the checking. On the other hand, this does not capture an
interactive problem, e.g. that of a token ring.

Some of the latter can be captured by the Roll-back compiler introduced by
Awerbuch and Varghese in [9]. It can be applied to any deterministic protocol
(however, if this protocol is not for an input-output problem, then the space
used by the compiler may not be bounded). Each node maintains its own log of
its events and states, and sends the log often to all its neighbors. Thus, every
node can check every transition it made in the past, to see whether its view of
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this transition is consistent with the view of its neighbors. These are the local
predicates. The global predicate Phistory is that “the current global state is a
result of a legal run of the base algorithm”. Local checking is also used in [9] for
designing self stabilizing algorithms directly for several tasks such as shortest
paths, topology update, leader election, and computing the maximum flow.

Beauquier, Delaet, Dolev, and Tixeuil(in [33]) assumed that only the part of
the state meant to be visible to the outside can be read by other nodes. (The
output is the part that appears in the specification of the task to be performed.)
It was shown in [33] that this assumption may imply the need for a very large
memory usage (e.g. for verifying a spanning tree).

Multiple self stabilizing algorithms have since used the idea of first detecting
that the global state is illegal, and then correcting it. This makes a large body
of work a potential application of distributed verification. We do not have the
space here to survey them all. A rather comprehensive survey (but not up to
date) of self stabilization by Herman and Johnen can be found in [1].

We note the following major difference between the model of proof labeling
schemes and the ones used by past self stabilization algorithms. In the latter
models, the design of the computation stage was intertwined with that of the
verification stage, and the designers sought to design a computation process that
will be easy for verification, and vice versa. This approach may lead to a low
cost local verification. However, this approach might also have the disadvan-
tage of making the design process less modular. In proof labeling schemes, it
is assumed that the distributed representation of the structure or function at
hand is already given, and the computed labels are required to verify this spe-
cific representation. This allows for more modular algorithm design and frees
the algorithm designer to consider other goals when designing the distributed
representation. The approach of proof labeling schemes may sometimes be useful
also in verifying properties on existing structures, even when the original design
of those structures was done without verification in mind.

To illustrate this difference, let us point out to one of the results in proof
labeling schemes, which states that local checking sometimes requires labels that
are longer even than the states (such as the states used in previous local checking
methods). This occurs in the natural setting where vertices are required to have
distinct states. For example, this can happen in an algorithm that hashes unique
identities of nodes into shorter unique states. In the case where the underlying
graph is an n-vertex path, the size of vertex labels that are required in order to
verify that all the states are unique is Ω(n). This is longer than the state, which
is O(log n). On the other hand, were we allowed to compute the states (rather
than prove the given hashing), labels of size zero would have sufficed in the case
of unique identities: just have the state equal the identity. (Since the identities
are assumed in this example to be unique, the states “computed” in that way are
unique too.) We note that in many other cases, “small” proof labeling schemes
exist even under the stronger requirements that the state to prove was developed
independently, and now it is required to develop the scheme.



On Distributed Verification 113

References

1. A Comprehensive Bibliography on Self-Stabilization. A Working Paper in the
CJTCS, http://cjtcs.cs.uchicago.edu/.

2. Y. Afek and G. M. Brown. Self-stabilization over unreliable communication media.
Distributed Computing Journal, 7:27–34, 1993.

3. S. Aggarwal. Time optimal self- stabilizing spanning tree algorithms. M.Sc Thesis,
MIT, May 1994.

4. A. Arora and M. Gouda. Distributed reset. In Proc. of the 10-th FSTTCS:
Springer-Verlag LNCS 472, pp. 316–331, September 1990.

5. B. Awerbuch, S. Kutten, Y. Mansour, B. Patt-Shamir, and G. Varghese. Time
optimal self stabilizing synchronization. In Proc. 25th STOC, pp. 652–661, May
1993.

6. B. Awerbuch and R. Ostrovsky. Memory efficient and self stabilizing network reset.
In PODC, August 1994.

7. B. Awerbuch, B. Patt-Shamir, and G. Varghese. Self-stabilization by local checking
and correction. In Proc. of the 32nd IEEE FOCS , pp. 268–277, October 1991.

8. B. Awerbuch, B. Patt-Shamir, G. Varghese, and S. Dolev. Self stabilization by
local checking and global reset. in the Proc. of WDAG 94, Springer-Verlag LNCS,
pp. 226–239, October 1994.

9. B. Awerbuch, , and G. Varghese. Distributed program checking: a paradigm for
building self-stabilizing distributed protocols. In 32nd IEEE FOCS , pp. 258–267,
October 1991.

10. E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. CACM,
17:643–644, November 1974.

11. K. Mani Chandy, Leslie Lamport. Distributed Snapshots: Determining Global
States of Distributed Systems. ACM Trans. Comput. Syst. 3(1): 63-75 (1985).

12. E.W. Dijkstra. A belated proof of self-stabilization. Distributed Computing,
1(1):5-6, 1986.

13. S. Dolev, A. Israeli, and S. Moran. Self-stabilization of dynamic systems assuming
only read/write atomicity. Distributed Computing Journal, 7, 1994.

14. S. Dolev, A. Israeli, and S. Moran. Uniform dynamic self-stabilizing leader election.
IEEE Trans. Parallel Distrib. Syst. 8(4): 424-440 (1997).

15. G. Itkis, and L Levin. Fast and Lean Self-Stabilizing Asynchronous Protocols. In
Proc. of the 35th IEEE FOCS , pp. 226-239, October 1994.

16. S. Katz and K. J. Perry. Self-stabilizing extensions. Distributed Computing,
7, 1994.

17. L. Lamport. Solved problems, unsolved problems and nonproblems in concurrency.
Proceedings of the 3rd PODC, pp. 1-11August 1984.

18. Leslie Lamport: Time, Clocks, and the Ordering of Events in a Distributed System.
Commun. ACM 21(7): 558-565 (1978).

19. A. Mayer, R. Ostrovsky, and M. Yung. Self-stabilizing algorithms for synchronous
unidirectional rings. In Proc. 7th SODA, Jan. 1996.

20. A. Mayer, Y. Ofek, R. Ostrovsky, and M. Yung. Self-stabilizing symmetry breaking
in constant space. In Proc. 24th STOC, pages 667-678, May 1992.

21. G. Parlati and M. Yung. Non-exploratory self stabilization for constant-space
symmetry-breaking In Proc. 2d ESA’94, pages 183–201. LNCS 855 Springer Verlag.

22. M. Naor and L. Stockmeyer. What can be computed locally. In Proc. 25th STOC,
pp. 185–193. ACM, May 1993.



114 A. Korman and S. Kutten

23. Schieber and Snir. Calling names on nameless networks. Information and Com-
putation (formerly Information and Control), 113, 1994. also in: Proc. of PODC
1989, pp. 319–328, August 1989.

24. A. Segall. Distributed network protocols. IEEE Trans. on Information Theory,
IT-29(1):23–35, January 1983.

25. J. Spinelli and R. G. Gallager. Broadcast topology information in computer net-
works. IEEE Trans. on Comm., 1989.

26. G. Varghese. Dealing with Failure in Distributed Systems. PhD thesis, MIT, 1992.
27. G.M. Jayaram and Varghese. Crash failures can drive protocols to arbitrary states.

PODC 1996, pp. 247-256.
28. M. Jayaram, G. Varghese. The Complexity of Crash Failures. PODC 1997,

pp. 179-188.
29. M. Naor and L. Stockmeyer. What can be computed locally? Proc. 25th STOC,

pp. 184–193, 1993.
30. R.G. Gallager, P.A. Humblet, P.M. Spira. A distributed algorithm for minimum-

weight spanning trees. TOPLAS 5 (1983) 66-77.
31. Y. Afek, S. Kutten, and M. Yung. The Local Detection Paradigm and Its

Application to Self-Stabilization. Theor. Comput. Sci. 186(1-2): 199-229 (1997).
32. S. Dolev, M. Gouda, and M. Schneider. Requirements for silent stabilization.

Acta Informatica, 36(6): 447-462, 1999.
33. Beauquier, J., Delaet, S., Dolev, S., and Tixeuil, S., “Transient Fault Detectors”.

Proc. of the 12th DISC, Springer-Verlag LNCS:1499, pp. 62-74, 1998.
34. B. Dixon, M. Rauch, and R. E. Tarjan. Verification and Sensitivity Analysis of

Minimum Spanning Trees in Linear Time. SIAM Journal on Computing, Vol. 21,
No 6, pp. 1184-1192, December 1992.

35. M.L. Fredman and D.E. Willard. Trans-Dichotomous algorithms for minimum
spanning trees and shortest paths. Proc. 31st IEEE FOCS, Los Alamitos, CA,
1990, pp. 719-725.

36. M. Garey and D. Johnson. Computers and Intractability. W.H. Freeman and
Company, New York, 1979.

37. D. R. Karger, P.N. Klein, and R.E. Tarjan. A Randomized Linear-Time Algorithm
to Find Minimum Spanning Trees. JACM Vol. 42, No. 2, pp. 3210328, 1955.

38. Amos Korman and Shay Kutten. “Distributed Verification of Minimum Spanning
Trees”. in Proc. 25th PODC 2006, July 23-26 2006, Denver, Colorado, USA.

39. M. Katz, N.A. Katz, A. Korman, and D. Peleg. Labeling schemes for flow and
connectivity. In 19th SODA, Jan. 2002.

40. Amos Korman, Shay Kutten, and David Peleg. “Proof Labeling Schemes”. Pro-
ceedings of the 24th PODC 2005, Las Vegas, NV, USA, July 2005.

41. Nathan Linial. Distributive Graph Algorithms-Global Solutions from Local Data.
FOCS 1987: 331-335.

42. Fabian Kuhn, Thomas Moscibroda, Roger Wattenhofer. What cannot be computed
locally! PODC 2004: 300-309.

43. Andrew C. Yao. Some Complexity Questions Related to Distributed Computing.
STOC 1979, 209-213.



The Price of Defense and Fractional Matchings�

Marios Mavronicolas1, Vicky Papadopoulou1, Giuseppe Persiano2,
Anna Philippou1, and Paul Spirakis3

1 Department of Computer Science, University of Cyprus, Nicosia CY-1678, Cyprus
{mavronic, viki, annap}@ucy.ac.cy

2 Dipartimento di Informatica ed Applicazioni “Renato M. Capocelli”,
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Abstract. Consider a network vulnerable to security attacks and
equipped with defense mechanisms. How much is the loss in the provided
security guarantees due to the selfish nature of attacks and defenses?
The Price of Defense was recently introduced in [7] as a worst-case mea-
sure, over all associated Nash equilibria, of this loss. In the particular
strategic game considered in [7], there are two classes of confronting ran-
domized players on a graph G(V, E): ν attackers, each choosing vertices
and wishing to minimize the probability of being caught, and a single
defender, who chooses edges and gains the expected number of attackers
it catches.

In this work, we continue the study of the Price of Defense. We obtain
the following results:

– The Price of Defense is at least
|V |
2 ; this implies that the Perfect

Matching Nash equilibria considered in [7] are optimal with respect
to the Price of Defense, so that the lower bound is tight.

– We define Defense-Optimal graphs as those admitting a Nash equi-

librium that attains the (tight) lower bound of
|V |
2 . We obtain:

• A graph is Defense-Optimal if and only if it has a Fractional Per-
fect Matching. Since graphs with a Fractional Perfect Matching
are recognizable in polynomial time, the same holds for Defense-
Optimal graphs.

• We identify a very simple graph that is Defense-Optimal but has
no Perfect Matching Nash equilibrium.

– Inspired by the established connection between Nash equilibria and
Fractional Perfect Matchings, we transfer a known bivaluedness re-
sult about Fractional Matchings to a certain class of Nash equilibria.
So, the connection to Fractional Graph Theory may be the key to
revealing the combinatorial structure of Nash equilibria for our net-
work security game.
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1 Introduction

Motivation, Framework and Summary. Consider a complex distributed system
such as the Internet with security attacks and corresponding defense mechanisms.
Assume that both attacks and defenses exhibit a selfish behavior, aiming at max-
imizing the security harm and the security protection, respectively. How much is
the loss in security due to this selfish behavior? In a recent work, Mavronicolas
et al. [7] introduced the Price of Defense as a worst-case measure for this loss.

More specifically, Mavronicolas et al. [7] focused on the concrete case where
the distributed system is a network modeled as a graph G(V, E); nodes are
vulnerable to infection by ν threats, called attackers. Available to the network is
a security software (or firewall [3]), called the defender, cleaning a limited part
of the network. This model has been motivated by Network Edge Security [6], a
new distributed firewall architecture. (For details on motivation, see [7, Section
1.1].) The model was introduced in [8] and further studied in [4,7,9].

Each attacker (called vertex player) targets a node of the network chosen
via its own probability distribution on nodes; the defender (called edge player)
chooses a single edge via its own probability distribution on edges. A node chosen
by an attacker is harmed unless it is incident to the edge protected by the
defender. The Individual Profit of an attacker is the probability that it escapes;
the Individual Profit of the defender is the expected number of caught attackers.
In a Nash equilibrium [12,13], no single player can unilaterally deviate from
its randomized strategy in order to increase its Individual Profit. The Price of
Defense is the worst case ratio, over all Nash equilibria, of the ratio of ν over the
Individual Profit of the defender. For a particular Nash equilibrium, this ratio
is called its Defense Ratio. The Price of Defense can be cast as the particular
case of Price of Anarchy [5] induced by taking Social Cost to be the Individual
Profit of the defender.

In this work, we continue the study of the Price of Defense. More specifically,
we provide a tight lower bound on the Price of Defense, and we determine a
characterization of graphs admitting a Nash equilibrium that attains this lower
bound. The characterization establishes a connection to Fractional Graph Theory
[14]; we further investigate this connection to shed some light into the combi-
natorial structure of Nash equilibria for our graph-theoretic network security
game.

Contribution. We obtain the following results:

– We prove that the Price of Defense is at least |V |2 (Theorem 5). This implies
that the Perfect Matching Nash equilibria, a special class of Nash equilibria

considered in [7] and known to have a Defense Ratio equal to |V |2 , are optimal
with respect to the Price of Defense. It also naturally raises the question
whether Perfect Matching Nash equilibria are the only such optimal Nash
equilibria; more generally, which are the graphs that admit optimal Nash
equilibria with respect to the Price of Defense?
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– To address the last question, we introduce the class of Defense-Optimal
graphs: a graph is Defense-Optimal if it admits a Nash equilibrium whose

Defense Ratio is |V |2 . Clearly, the class of graphs admitting a Perfect Match-
ing Nash equilibrium is contained in this class; an efficient characterization
for that class is shown in [7, Theorem 6.2] (repeated as Theorem 2 in this
paper). (This class is a strict subclass of the class of graphs with a Perfect
Matching.) We have obtained the following results:
• A graph is Defense-Optimal if and only if it has a Fractional Perfect

Matching (Theorem 8). Our proof is constructive: Given a Fractional Per-
fect Matching, we construct a Defense-Optimal Nash equilibrium (The-
orem 6), and vice-versa (Theorem 7). These dual constructions exhibit
an interesting, perhaps unexpected connection between Nash equilibria
for our graph-theoretic game and Fractional (Perfect) Matchings [14,
Chapter 2] in graphs.

– We observe that the class of graphs admitting Perfect Matching Nash equi-
libria is strictly contained into the class of Defense-Optimal graphs. Towards
this end, we identify the simplest Defense-Optimal graph that does not admit
a Perfect Matching Nash equilibrium (Theorem 9).

– We further investigate the established equivalence between (Defense-Optimal)
Nash equilibria and Fractional PerfectMatchings. Our starting point is a result
from Fractional Graph Theory [14] stating that for any graph, there is a Frac-
tional Maximum Matching with only two distinct (non-zero) values on edges
[14, Theorem 2.1.5]. We establish a corresponding fact for Defender Uniform
Nash equilibria. (These are Nash equilibria where the defender uses a uniform
probability distribution on its support.) Specifically, we prove that from a De-
fender Uniform Nash equilibrium, one can obtain in polynomial time another
(Defender Uniform) Nash equilibrium where the expected number of vertex
players choosing each vertex may take only two distinct (non-zero) values
(Theorem 11).

We believe that a further investigation of the connection between Nash
equilibria for our graph-theoretic game and Fractional Matchings will pro-
vide further key insights into the (yet not so well understood) combinatorial
structure of these Nash equilibria.

Related Work and Significance. Our work continues the study of the game-
theoretic virus model with attackers and a defender introduced by Mavronicolas
et al. [8] and further studied in [4,7,9]. In particular, our work continues the
study of the Price of Defense introduced in [7].

A different game-theoretic model of virus attack and propagation has been
introduced by Aspnes et al. [1] and recently studied by Moscibroda et al. [11].
Moscibroda et al. [11] introduced the Price of Malice to quantify the impact of
malicious players on the Price of Anarchy (without malicious players) for the
game of Aspnes et al. [1]. Note that we do not consider malicious players for our
game; we assume that all players are strategic. So, there is no apparent relation
between Price of Malice and Price of Defense.
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Our work is part of a currently major effort to introduce game-theoretic mod-
els in Computer Science in order to obtain insights into the reality of contempo-
rary distributed systems such as the Internet. Work on game-theoretic analysis of
complex distributed systems is now featured in major conferences of Distributed
Computing.

2 Background, Definitions and Preliminaries

Graph Theory. Throughout, we consider an undirected graph G = 〈V, E〉 with
no isolated vertices. We sometimes treat an edge as the set of its two vertices.
For a vertex v ∈ V , denote as NeighG(v) the set of neighboring vertices of v
in G; denote EdgesG(v) the set of edges incident to v. For a vertex set U ∈ V ,
NeighG(U) = {v ∈ V \U : u ∈ U and (v, u) ∈ E}. For a vertex v ∈ V , denote
dG(v) the degree of vertex v in G. For an edge set F ⊆ E, denote G(F ) the
subgraph of G induced by F . For any integer n ≥ 1, denote as Kn the clique
graph of size n.

A vertex set IS ⊆ V is an Independent Set if for all pairs of vertices u, v ∈ IS,
(u, v) /∈ E. A Maximum Independent Set is one that has maximum size; denote
α(G) the size of a Maximum Independent Set of G. A Vertex Cover is a vertex
set V C ⊆ V such that for each edge (u, v) ∈ E either u ∈ V C or v ∈ V C. An
Edge Cover is an edge set EC ⊆ E such that for every vertex v ∈ V , there is an
edge (v, u) ∈ EC. A Matching is a set M ⊆ E of non-incident edges. A Maximum
Matching is one that has maximum size. A Perfect Matching is a Matching that
is also an Edge Cover.

A Fractional Matching is a function f : E → [0, 1] such that for each vertex
v ∈ V ,

∑
e∈Edges(v) f(e) ≤ 1. (If f(e) ∈ {0, 1} for each edge e ∈ E, then f is

just a Matching, or precisely, the indicator function of a Matching.) The Frac-
tional Matching Number α′

F (G) of a graph G is the supremum of
∑

e∈E f(e)
over all Fractional Matchings f . A Fractional Maximum Matching is one that

attains the Maximum Matching Number. It is a basic fact that α′
F (G) ≤ |V |2

(see, for example, [14, Lemma 2.1.2]). A Fractional Perfect Matching is a Frac-
tional Matching f with

∑
e∈Edges(v) f(e) = 1 for all vertices v ∈ V . Hence, for a

Fractional Perfect Matching f ,
∑

e∈E f(e) achieves the upper bound on α′
F (G),

so that
∑

e∈E f(e) = |V |2 .
Note that the Fractional Matching Number of a graph can be computed in

polynomial time by formulating (and solving) the Fractional Matching Number
problem as a polynomial size (in fact, |V |·|E| size) Linear Program. (See, also, [2]
for an efficient combinatorial algorithm.) Since a graph G = (V, E) has a Frac-
tional Perfect Matching if and only if its Fractional Matching Number is equal

to |V |2 , it follows that the class of graphs with a Fractional Perfect Matching is
recognizable in polynomial time.
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Game Theory. We consider a strategic game Π(G) = 〈N , {Si}i∈N , {IP}i∈N 〉:

– The set of players is N = Nvp ∪ Nep, where Nvp has ν vertex players vpi,
called attackers, 1 ≤ i ≤ ν and Nep has edge player ep, called defender.

– The strategy set Si of vertex player vpi is V , and the strategy set Sep of the

edge player ep is E. So, the strategy set S of the game is S =
(
×

i ∈ Nvp
Si

)
×

Sep = V ν × E.
– Fix any profile s = 〈s1, . . . , sν , sep〉 ∈ S, also called a pure profile.
• The Individual Profit of vertex player vpi is a function IPs(i) : S →
{0, 1} such that IPs(i) =

{
0, si ∈ sep

1, si �∈ sep
; intuitively, the vertex player

vpi receives 1 if it is not caught by the edge player, and 0 otherwise.
• The Individual Profit of the edge player ep is a function IPs(ep) : S → N

such that IPs(ep) = |{i : si ∈ sep}|; intuitively, the edge player ep
receives the number of vertex players it catches.

A mixed strategy for player i ∈ N is a probability distribution over Si. A (mixed)
profile s = 〈s1, . . . , sν , sep〉 is a collection of mixed strategies, one for each player;
si(v) is the probability that vertex player vpi chooses vertex v, and sep(e) is the
probability that the edge player ep chooses edge e.

The support of player i ∈ N in the mixed profile s, denoted Supports(i), is
the set of pure strategies in its strategy set to which i assigns a strictly positive
probability in s. Denote Supports(vp) =

⋃
i∈Nvp

Supports(i). Set Edgess(v) =
{(u, v) ∈ E : (u, v) ∈ Supports(ep)}. So, Edgess(v) contains all edges incident to
v that are included in the support of the edge player. For an edge e = (u, v) ∈ E,
set Verticess(e) = {w ∈ {u, v} : w ∈ Supports(vp)}.

A profile s is Fully Mixed [10] if for each vertex player vpi, Supports(i) = V and
Supports(ep) = E; so, the support of each player is its strategy set. A profile s is
Uniform if each player uses a uniform probability distribution on its support; that
is, for every vertex player vpi ∈ Nvp and v ∈ Supports(i), si(v) = 1

|Supports(i)| ,
and, for the edge player ep, for each e ∈ Supports(ep), sep(e) = 1

|Supports(ep)| .
A profile s is Attacker Symmetric [7] if for all vertex players vpi, vpk ∈ Nvp,
si(v) = sk(v), for each v ∈ V . An Attacker Symmetric and Uniform profile is
an Attacker Symmetric profile where each attacker uses a uniform probability
distribution on the common support; an Attacker Symmetric, Uniform and Fully
Mixed profile is an Attacker Symmetric and Uniform profile where the common
support is V . A profile is Defender Uniform [7] if the edge player uses a uniform
probability distribution on its support.

For a vertex v ∈ V , the probability that the edge player ep chooses an
edge that contains the vertex v is denoted by Ps(Hit(v)). So, Ps(Hit(v)) =∑

e∈Edgess(v) sep(e). For a vertex v ∈ V , denote as VPs(v) the expected num-
ber of vertex players choosing vertex v according to s; so, VPs(v) =

∑
i∈Nvp

si(v).
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Further, in an Attacker Symmetric and Uniform profile s, for a vertex
v ∈ Supports(vp), VPs(v) =

∑
i∈Nvp

si(v) = ν
|Supports(vp)| . For each edge

e = (u, v) ∈ E, VPs(e) is the expected number of vertex players choosing ei-
ther the vertex u or the vertex v; so, VPs(e) = VPs(u) + VPs(v). We provide a
preliminary observation which will be useful later.

Lemma 1. In a profile s,
∑

v∈V Ps(Hit(v)) = 2.

A mixed profile s induces an Expected Individual Profit IPs(i) for each player
i ∈ N , which is the expectation according to s of the Individual Profit of player i.
One may easily show that for the edge player ep, IPs(ep) =

∑
i∈Nvp

(∑
v∈V si(v)·

(Ps(Hit(v))); alternatively, IPs(ep) =
∑

v∈V VPs(v) · Ps(Hit(v)).
The mixed profile s is a (mixed) Nash equilibrium [12,13] if, for each player

i ∈ N , it maximizes IPs(i) over all mixed profiles that differ from s only with
respect to the mixed strategy of player i. By Nash’s result [12,13], there is at
least one Nash equilibrium. We use a characterization of them from [8]:

Theorem 1 ([8]). A profile s is a Nash equilibrium if and only if (1) for each
vertex v ∈ Supports(vp), Ps(Hit(v)) = minv′∈V Ps(Hit(v′)), and (2) for each edge
e ∈ Supports(ep), VPs(e) = maxe′∈E VPs(e′).

Call minv′∈V Ps(Hit(v′)) the Minimum Hitting Probability associated with s.
We continue to introduce the class of Perfect Matching Nash equilibria from

[7]. A Covering profile is a profile s such that (1) Supports(ep) is an Edge Cover
of G and (2) Supports(vp) is a Vertex Cover of the graph G(Supports(ep)). It
is shown in [8] that a Nash equilibrium s is a Covering profile, but not vice
versa. An Independent Covering profile [8] is an Attacker Symmetric and Uniform
Covering profile s such that (1) Supports(vp) is an Independent Set of G and
(2) each vertex in Supports(vp) is incident to exactly one edge in Supports(ep).
In the same work, it was proved that an Independent Covering profile is a Nash
equilibrium, called a Matching Nash equilibrium [8]. A Perfect Matching Nash
equilibrium is a Matching Nash equilibrium such that the support of the edge
player is a Perfect Matching of G. Call a graph Perfect-Matching if it admits
a Perfect Matching Nash equilibrium. (This should not be confused with the
strictly larger class of graphs with a Perfect Matching.) A characterization of
Perfect-Matching graphs is provided in [7]:

Theorem 2 ([7]). A graph G is Perfect-Matching if and only if G has a Perfect

Matching and α(G) = |V |2 .

A Defender Uniform Nash equilibrium is a Defender Uniform profile that is
a Nash equilibrium. Call a graph Defender-Uniform if it admits a Defender
Uniform Nash equilibrium. We use a characterization from [7]:

Theorem 3 ([7]). A graph G is Defender-Uniform if and only if there are non-
empty sets V ′ ⊆ V , partitioned as V ′ = V ′

i ∪ V ′
r , and E′ ⊆ E, and an integer

r ≥ 1 such that:

(1/a) For each v ∈ V ′, dG(E′)(v) = r.
(1/b) For each v ∈ V \V ′, dG(E′)(v) ≥ r.
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(2/a) For each v ∈ V ′
i , for each u ∈ NeighG(v), it holds that u /∈ V ′.

(2/b) The graph 〈V ′
r , EdgesG(V ′

r ) ∩ E′〉 is an r-regular graph.
(2/c) The graph 〈V ′

i ∪ (V \V ′), EdgesG(V ′
i ∪ (V \V ′)) ∩ E′〉 is a (V ′

i , V \V ′)-
bipartite graph.

An inspection of the proof of Theorem 3 in [7] implies a partial but more specific
version of Theorem 3 that suffices for our purposes.

Theorem 4. Consider a Defender Uniform Nash equilibrium s. Then, for the
choices

– V ′ = Supports(vp), with (i) V ′
i := {v ∈ V ′ | VPs(v) = maxe′∈E VPs(e′)} and

(ii) V ′
r := V ′\V ′

i ;
– E′ = Supports(ep);
– r = dG(Supports(ep))(v) for any vertex v ∈ Supports(vp),

the graph 〈V ′
r , EdgesG(V ′

r ) ∩ E′〉 is an r-regular graph.

We prove a useful property of Defender Uniform Nash equilibria:

Lemma 2. Consider a Defender Uniform Nash equilibrium s and the induced
subgraph 〈V ′

r , EdgesG (V ′
r ) ∩ E′〉, where V ′

r = V \ {v ∈ V ′ | VPs(v) = maxe′∈E

VPs(e′)} and E′ = Supports(ep). Then, over all vertices v in each connected
component of the subgraph, the variable VPs(v) takes on at most two distinct
(non-zero) values, which occur an equal number of times.

For a Nash equilibrium s, the ratio ν
IPs(ep) is called the Defense Ratio of s. The

Price of Defense [7], denoted PoDG, is the worst-case Defense Ratio of s, over all
Nash equilibria s. It is known that the Defense Ratio of every Perfect Matching

Nash equilibrium is |V |2 [7, Theorem 6.4]. Hence, restricted to Perfect Matching

Nash equilibria, the Price of Defense is |V |2 .

3 A Lower Bound on the Price of Defense

We first use Theorem 1 to evaluate the Defense Ratio of a Nash equilibrium:

Proposition 1. For a Nash equilibrium s, ν
IPs(ep) = 1

minv′∈V Ps(Hit(v′)) .

Using Lemma 1 we show:

Proposition 2. Assume a Nash equilibrium s. Then, minv′∈V Ps(Hit(v′)) ≤ 2
|V | .

Theorem 5. The Price of Defense is at least |V |2 .

Proof. Consider any Nash equilibrium s. By Proposition 1, we get that ν
IPs(ep)

= 1
minv′∈V Ps(Hit(v′)) . By Proposition 2, this implies that ν

IPs(ep) ≥
|V |
2 . Since

PoDG ≥ ν
IPs(ep) , the claim follows. ��
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A Nash equilibrium s is Defense-Optimal if its Defense Ratio ν
IPs(ep) equals

to |V |2 . A graph G is Defense-Optimal if it admits a Defense-Optimal Nash
equilibrium. Proposition 1 immediately implies:

Corollary 1. Consider a Defense-Optimal Nash equilibrium s. Then, minv′∈V

Ps(Hit(v′)) = 2
|V | .

Together with Proposition 2, Corollary 1 implies that Defense-Optimal Nash
equilibria maximize the Minimum Hitting Probability.

4 Defense-Optimal Graphs

We provide a characterization of Defense-Optimal graphs. We first prove:

Theorem 6. Assume that G has a Fractional Perfect Matching. Then, G is
Defense-Optimal.

Sketch of Proof. Consider a Fractional Perfect Matching f : E → [0, 1]. Define
an Attacker Symmetric, Uniform and Fully Mixed profile s as follows:

– For each edge e ∈ E, sep(e) = 2
|V | · f(e).

It can be easily shown that sep is a probability distribution for the edge player.
We first prove that s is a Nash equilibrium. It suffices to prove Conditions (1)
and (2) in the characterization of Nash equilibria (Theorem 1).

– For Condition (1), consider any vertex v ∈ V . Clearly,

Ps(Hit(v))
=

∑
e∈Edgess(v) sep(e)

=
∑

e∈Edgess(v)
2
|V | · f(e)

= 2
|V | ·

∑
e∈Edgess(v) f(e)

= 2
|V | (since f is a Fractional Perfect Matching).

Thus, in particular, for any vertex v ∈ Supports(vp), Ps(Hit(v)) = minv′∈V

Ps(Hit(v′)) and Condition (1) holds.
– For Condition (2), consider any edge e = (u, v) ∈ E. Clearly,

VPs(e)
= VPs(u) + VPs(v)
= ν

|V |+
ν
|V | (since s is Attacker Symmetric, Uniform and Fully Mixed)

= 2ν
|V | .

Thus, in particular, for any edge e ∈ Supports(ep), VPs(e) = maxe′∈E VPs(e′)
and Condition (2) holds.
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It follows that s is a Nash equilibrium. We finally prove that s is Defense-Optimal.
Clearly, for any edge e ∈ Supports(ep), IPs(ep) = VPs(e), so that ν

IPs(ep) =

ν
VPs(e)

= |V |2 , so that s is Defense-Optimal. The claim follows. ��

Theorem 7. Assume that G is Defense-Optimal. Then, G has a Fractional Per-
fect Matching.

Sketch of Proof. Consider a Defense-Optimal Nash equilibrium s for G. By
Proposition 1, minv′∈V Ps(Hit(v′)) = 2

|V | . By Lemma 1,
∑

v∈V Ps(Hit(v)) = 2.

It follows that for each vertex v ∈ V , Ps(Hit(v)) = 2
|V | . Define a function

f : E → [0, 1] as follows:

– For each edge e = (u, v) ∈ E, f(e) = sep(e)
Ps(Hit(v)) .

Clearly, for each edge e = (u, v) ∈ E, Ps(Hit(v)) ≥ sep(e), so that f(e) ≤ 1.
Moreover, for each vertex v ∈ V ,

∑
e∈Edgess(v)

f(e) =
∑

e∈Edgess(v)

sep(e)
Ps(Hit(v))

=
1

Ps(Hit(v))
·

∑
e∈Edgess(v)

sep(e)

= 1.

Hence, f is a Fractional Perfect Matching, as needed. ��
Theorems 6 and 7 together imply:

Theorem 8 (Characterization of Defense-Optimal Graphs). A graph is
Defense-Optimal if and only if it has a Fractional Perfect Matching.

Since the class of graphs with a Fractional Perfect Matching is recognizable in
polynomial time, Theorem 8 immediately implies:

Corollary 2. Defense-Optimal graphs are recognizable in polynomial time.

By Theorem 2, the class of Perfect-Matching graphs is (strictly) contained in the
class of graphs with a Perfect Matching. Since a Perfect Matching is a special case
of a Fractional Perfect Matching, it follows that the class of Perfect-Matching
graphs is (strictly) contained in the class of graphs with a Fractional Perfect
Matching. Hence, Theorem 8 implies that the class of Perfect-Matching graphs
is (strictly) contained in the class of Defense-Optimal graphs. We provide a
particular example to demonstrate the strict inclusion.

Theorem 9. K3 is a Defense-Optimal graph but not a Perfect-Matching graph.
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5 Bivalued Nash Equilibria

Our starting point is a bivaluedness result about Fractional Maximum Match-
ings, which appears in [14, Theorem 2.1.5].
Theorem 10. For any graph G, there is a Fractional Maximum Matching f

such that for each edge e ∈ E, f(e) ∈
{
0, 1

2 , 1
}
.

Weprove a game-theoretic analog ofTheorem10withNash equilibria (ofDefender-
Uniform graphs) in place of Fractional Maximum Matchings.
Theorem 11. For a Defender-Uniform graph G, there is a Defender Uniform

Nash equilibrium s such that for each v ∈ Supports(vp), VPs(v)
maxe′∈E VPs(e′)

∈{
1
2 , 1

}
.

Sketch of Proof. Transform a Defender Uniform Nash equilibrium s′ for G
into an Attacker Symmetric (and still Defender Uniform) profile s:

1. s′ep := sep.
2. For each player vpi ∈ NPvp, for each vertex v ∈ V :

si(v) :=

⎧⎪⎨
⎪⎩

maxe′∈E VPs′(e′)
ν , if VPs′(v) = maxe′∈E VPs′(e′)

maxe′∈E VPs′(e′)
2ν , if 0 < VPs′(v) < maxe′∈E VPs′(e′)

0, if VPs′(v) = 0

Note that, by construction, Supports(ep) = Supports′(ep) and Supports(i) =
Supports′(vp). We prove:
Lemma 3. For each edge e = (u, v) ∈ Supports(ep), VPs(e) = maxe′∈E VPs(e′).

Lemma 4.
∑

v∈V VPs(v) = ν.

Sketch of Proof. By Theorem 4, the graph G(E′) is partitioned into two
subgraphs: (i) the r-regular graph 〈V ′

r , EdgesG(V ′
r ) ∩E′〉, and (ii) the graph

〈V ′
i ∪ (V \V ′), EdgesG(V ′

i ∪ (V \V ′)) ∩ E′〉. We will separately calculate the sums∑
v∈V ′

r
VPs(v) and

∑
v∈V ′

i ∪(V \V ′) VPs(v).
We consider first the sum

∑
v∈V ′

r
VPs(v) and show that

∑
v∈V ′

r
VPs(v) =∑

v∈V ′
r
VPs′(v). We next consider the sum

∑
v∈V ′

i ∪(V \V ′) VPs(v) and show that∑
v∈V ′

i ∪(V \V ′) VPs(v) =
∑

v∈V ′
i ∪(V \V ′) VPs′(v). Thus,∑

v∈V

VPs(v)

=
∑

v∈V ′
r
VPs(v) +

∑
v∈V ′

i ∪(V \V ′) VPs(v)

=
∑

v∈V ′
r
VPs′(v) +

∑
v∈V ′

i ∪(V \V ′) VPs′(v)

=
∑

v∈V VPs′(v)
= ν (since s′ is a profile). ��
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Lemma 5. s is a profile.

It remains to prove that s is a Nash equilibrium. We prove that s satisfies con-
ditions (1) and (2) in the characterization of Nash equilibria (Theorem 1).

– By the construction of s, sep = s′ep. This implies that for each vertex v ∈
V , Ps(Hit(v)) = Ps′(Hit(v)). Hence, in particular, minv′∈V Ps(Hit(v′)) =
minv′∈V Ps′(Hit(v′)).
Consider any vertex v ∈ Supports(vp). Since Supports(vp) = Supports′(vp),
v ∈ Supports′(vp). Hence, by Condition (2) in the characterization of Nash
equilibria (Theorem 1), Ps′(Hit(v)) = minv′∈V Ps′(Hit(v′)). Hence,

Ps(Hit(v)) = Ps′(Hit(v))
= min

v′∈V
Ps′(Hit(v′))

= min
v′∈V

Ps(Hit(v′)),

which proves Condition (1).
– Condition (2) is established in Lemma 3.

The proof is now complete. ��

6 Epilogue

In this work, we continued the study of a network security game with attackers
and a defender, introduced in [8]. We focused on the Price of Defense, introduced
in [7] as a worst-case measure of security loss. We proved an optimal lower
bound on the Price of Defense, and we provided an efficient characterization of
graphs attaining the optimal lower bound. The characterization revealed a rich
connection to Fractional Graph Theory, which we explored to show an interesting
combinatorial (bivaluednsess) property of Nash equilibria.

Understanding the combinatorial structure of Nash equilibria for our network
security game (and, more generally, for strategic games modeling security attacks
and defenses) will provide key insights into the design of defense mechanisms.
Quantifying the Price of Defense for other, more realistic variants of the network
game remains a thrilling challenge. It will be interesting to see if Fractional Graph
Theory will still be handy in this endeavor.

Extending Theorem 11 to the class of all graphs, or proving that such an
extension is not possible, remains an interesting open problem.
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Abstract. Many current IDSs are constructed by manual encoding of expert 
knowledge; changes to IDSs are expensive and slow. In this paper, we describe 
adaptively building Intrusion Detection (ID) models. The Central idea is to 
utilize auditing programs to extract an extensive set of features that describe 
each network connection or host session, and apply data mining programs to 
learn rules that accurately capture the behavior of intrusions and normal 
activities. We used an efficient algorithm for rule generation IREP++, which is 
able to produce rule sets more quickly and often express the target concept with 
fewer rules and fewer literals per rule resulting in a concept description that is 
easier for humans to understand. A new data structure (T-tree) for Association 
Rule Mining (ARM) is described. 

1   Introduction 

Currently building an effective IDS is an enormous knowledge engineering task. 
System builders rely on their intuition and experience to select the statistical measures 
for anomaly detection [1]. Experts first analyze and categorize attack scenarios and 
system vulnerabilities, and hand-code the corresponding rules and patterns for misuse 
detection. Because of the manual and ad hoc nature of the development process, 
current IDSs have limited extensibility and adaptability. Many IDSs only handle one 
particular audit data source, and their updates are expensive and slow. 

Our research aims to develop a more systematic and automated approach in 
building IDSs. We are developing a set of tools that can be applied to a variety of 
audit data sources to generate intrusion detection models. We take a data-centric point 
of view and consider intrusion detection as a data analysis process.  The central theme 
of our approach is to apply data mining programs to the extensively gathered audit 
data to compute models that accurately capture the actual behavior (i.e., patterns) of 
intrusions and normal activities. This automatic approach eliminates the need to 
manually analyze and encode intrusion patterns, as well as the guesswork in selecting 
statistical measures for normal usage profiles. More importantly, the same data 
mining tools can be applied to multiple streams of evidence, each from a detection 
module that specializes on a specific type(s) of intrusion or a specific component 
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(e.g., a mission critical host) of the network system, to learn the combined detection 
model that considers all the available evidence. Thus our framework facilitates the 
construction of adaptive IDSs. 

2   Systematic Frame Work 

Data mining generally refers to the process of extracting descriptive models from 
large stores of data [2]. The recent rapid development in data mining has made 
available a wide variety of algorithms, drawn from the fields of statistics, pattern 
recognition, machine learning, and databases. Several types of algorithms are 
particularly useful for mining audit data: 

We are developing a framework, first proposed in [3], of applying data mining 
techniques to build intrusion detection models. This framework consists of programs 
for learning classifiers and meta-classification [4], association rules [5] for link 
analysis, frequent episodes [6] for sequence analysis, and a support environment that 
enables system builders to interactively and iteratively drive the process of 
constructing and evaluating detection models. The end products are concise and 
intuitive rules that can detect intrusions, and can be easily inspected and edited by 
security experts when needed. 

3   Mining Audit Data 

In this section we describe our data mining algorithms, and illustrate how to apply 
these algorithms to generate detection models from audit data.  Here audit data refers 
to pre-processed time-stamped audit records, each with a number of features. 

3.1   Classification 

In our approach, the learned rules replace the manually encoded intrusion patterns and 
profiles, and system features and measures are selected by considering the statistical 
patterns computed from the audit data. Meta-learning is used to learn the correlation 
of intrusion evidence from multiple detection models, and produce a combined 
detection models. IREP++ [7], a classification rule learning program, generates rules 
for the classifying the telnet records. 

While RIPPER is a very fast algorithm, the training time was too long for an 
information assurance application of interest to the authors. Our application required 
an algorithm that could be trained on data sets with over one million training patterns 
and more than thirty features fast enough to be used in an interactive environment 
where training times of more than a few minutes would be unacceptable. We 
therefore used RIPPER as a starting point and attempted to develop an algorithm that 
achieved comparable accuracy but ran faster. The result of these efforts is IREP++. 
The algorithm has proven to have equivalent accuracy while being significantly faster  
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at developing new rule sets. The speed improvements were achieved by making 
several changes to the RIPPER algorithm including a better pruning metric, some 
novel data structures, and more efficient stopping criteria.  The algorithm is as shown 
below.  

 
Algorithm 1: Algorithm Overview 
Input: A training data set 
Output: A rule set 
LEARN(TrainingData) 
(1) RuleSet NULL 
(2) repeat 
(3) (GrowSet, PruneSet) = SPLIT(TrainingData) 
(4) NewRule GROWRULE(GrowSet) 
(5) NewRule PRUNERULE(NewRule, PruneSet) 
(6) if KEEP(NewRule) 
(7) RuleSet RuleSet + NewRule 
(8) TrainingData NOTCOVERED(RuleSet, TrainingData) 
(9) until stopping criteria is met 
(10) return RuleSet 

3.2   Association Rules 

There is empirical evidence that program executions and user activities exhibit 
frequent correlations among system features. For example, certain privileged 
programs only access certain system files in specific directories, programmers edit 
and compile C files frequently, etc. These consistent behavior patterns should be 
included in normal usage profiles. The goal of mining association rules is to derive 
multi feature (attribute) correlations from a database table. Given a set of records, 
where each record is a set of items, support(X) is defined as the percentage of records 
that contain item set X. An association rule is an expression X  Y [C,S] [1]. Here X 
and Y are item sets, and X  Y =  ¢ ; s = support (X U Y) is the support of the rule, 
and c = support(XUY)/support(X) is the confidence. 

The most well-known ARM algorithm that makes use of the downward closure 
property is Agrawal and Srikant’s Apriori algorithm. Agrawal and Srikant used a 
hash tree data structure, however, Apriori can equally well be implemented using 
alternative structures such as set enumeration trees [5]. Set enumeration trees impose 
an ordering on items and then enumerate the item sets according to this ordering. If 
we consider a data set comprised of just three records with combinations of six items: 
{1,3,4}, {2,4,5} and {2,4,6}(and a very low support threshold), then the tree would 
include one node for each large l (with its support count). The top level of the tree 
records the support for 1-itemsets, the second level for 2-itemsets, and so on. The 
implementation of this structure can be optimized by storing levels in the tree in the 
form of arrays, thus reducing the number of links needed and providing direct 
indexing. For the latter purpose, it is more convenient to build a “reverse” version of 
the tree, as shown in Fig. 1a. The authors refer to this form of compressed set 
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enumeration tree as a T-tree (Total support tree). The implementation of this 
structure is illustrated in Fig. 1b, where each node in the T-tree is an object 
(TtreeNode) comprised of a support value (sup) and a reference (chldRef) to an 
array of child T-tree nodes. 

 

Fig. 1. Total Support Tree (T-tree) 

4   Feature Construction 

We apply the frequent episodes program to both normal connection data and intrusion 
data, and compare the resulting patterns to find the “intrusion only” patterns. The details 
of the pattern comparison algorithm are described in [6]. Briefly, since the number of 
patterns may be very large and there are rarely exactly matched patterns from two data 
sets, this heuristic algorithm considers two episodes related to two different sets of axis 
features as more different, and outputs (the user-specified) top percentage of the most 
“intrusion only” patterns. Here the attacker used may spoofed source addresses to send a 
lot of S0 connections (i.e., only the first SYN packet is sent) to a port (e.g., http) of the 
victim host in a very short time span (e.g., all in timestamp 1.1).  

 
– A count of these connections; 
– Let F1 be service, src dst or dst host other than F0. If the same F1 value (e.g., 

“http”) is in all the item sets of the episode, add a percentage of connections that 
share the same F1 value as the current connection; otherwise, add a percentage 
of different values of F1.  

– Let V2 be a value (e.g., “S0”) of a feature F2 (e.g.,flag) other than F0 and F1. If 
V2 is in all the item sets of the episode, add a percentage of connections that 
have the same V2; otherwise, if F2 is a numerical feature, add an average of the 
F2 values. 
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5   Audit Data and Intrusion Detection 

We were provided with about 4 gigabyte of compressed tcpdump data of 2 weeks of 
network traffic. This data can be processed into about 5million of connection records 
of about 100 bytes each. kept only the filename extensions.  

5.1   Misuse Detection 

The training data includes “list files” that identify the timestamp, source host and port, 
destination host and port, and the name of each attack. We used this information to 
select intrusion data to perform pattern mining and feature construction, and to label 
each connection record with “normal” or an attack type to create training data for 
building classification models. Since the amount of audit data is huge, for example, 
some days have several millions of connection records due to the nasty DOS attacks; 
we did not aggregate all the connection records into a single training data set. Instead, 
we extracted all the connection records that fall within a surrounding time window of 
plus and minus 5 minutes of the whole duration of each attack to create a data set for 
each attack type. We also randomly extracted sequences of normal connections 
records to create the normal data set 

5.2   User Anomaly Detection 

“Insiders” misusing their privileges can be hard to detect since they don’t normally need 
to break-in, and IDSs and security personnel tend to focus on guarding outside attacks. 
Insider problems are some of the most vexing problems for security personnel. (Indeed, 
who checks the checkers, i.e., the person to whom the IDS reports?) 

To analyze a user login session, we mine the frequent patterns from the sequence 
of commands during this session. This new pattern set is compared with the profile 
pattern set and a similarity score is assigned. Assume that the new set has n patterns 
and among them, there are m patterns that have “matches” (i.e., rules that they  
can be merged with) in the profile pattern set, then the similarity score is simply m n. 
Obviously, a higher similarity score means a higher likelihood that the user’s behavior 
agrees with his or her historical profile. 

 

Table 1. User Anomaly Description 
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6   Conclusions  

In this paper, we outline a data mining framework for constructing intrusion detection 
models. The key idea is to apply data mining programs to audit data to compute 
misuse and anomaly detection models, according to the observed. 

We extend the traditional intrusion detection systems through automatic feature 
construction thus avoiding manual encoding, and used efficient data structures and 
algorithms to find the association rules like T-tree and IREP++. 
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Abstract. A convergence time is the time to construct the attack path.
In FMS, each router sends its IP by fragments, and the victim should
wait until the last router sends its last IP fragment. Therefore, the con-
vergence time is determined by the slowest router. Kim et al.[1] pro-
posed a new sampling theory, so called Distance-Weighted Sampling
that did not penalize the furthest router. They showed that the sam-
pling probability p = f(d) where the f(d) is a decreasing function of
distance d traveled by the target packet. Since the convergence time will
be determined by the slowest router, we have to maximize the mini-
mum number of IP fragments incoming at each router station. The op-
timal choice was stated as f(d) = 1

2(d+1)
and a small sample simulation

study supported their claim. In this article we are going to prove rig-
orously that 1

2(d+1)
is indeed the optimal sampling probability under

mild assumptions.

1 Introduction

Recently, an efficient IP trace-back technique called FMS (Fragment Marking
Scheme) based on IP marking has been suggested[3,2]. FMS is efficient and
allows automatic attack path discovery. However it suffers a long convergence
time when building the attack path.

A convergence time is the time to construct the attack path. In FMS, each
router sends its IP by fragments, and the victim should wait until the last router
sends its last IP fragment. Therefore, the convergence time is determined by
the slowest router. Kim et al.[1] proposed a new sampling theory, so called
Distance-Weighted Sampling that did not penalize the furthest router. They
showed that the sampling probability p = f(d) where the f(d) is a decreasing
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function of distance d traveled by the target packet. Since the convergence time
will be determined by the slowest router, we have to maximize the minimum
number of IP fragments incoming at each router station. The optimal choice
was stated as f(d) = 1

2(d+1) and a small sample simulation study supported
their claim.

In this article we are going to prove rigorously that the chosen function is in-
deed the optimal one under mild assumptions. The rest of the paper is organized
as follows: Section 2 explains some background concepts needed later, Section 3
gives the formal proof for the optimality of the probability function, and Section 4
provides concluding remarks.

2 Preliminary

Before embarking on the full proof, we need to clarify a few concepts. Let’s
assume that we have n routers ahead or n number of hops in the attack path,
R1, R2, . . . , Rn.

Whenever packets pass through a router, the router samples a part of them
and overwrite IP fragments of its own. Rest of the packets’ IP fragments are
XORed with previous IP fragments, if any. If the router writes its own IP frag-
ment, we define the distance of packets to be zero. If you do XOR, then those
packets’ distance increased by one. So the distance of packet tells you how far
you have to trace back to find their origin. One can only trace back up to that
number(distance) of past routers. Let’s suppose R1 is the first router in the possi-
ble attack path. All packets are marked with R1’s IP and having distance d = 0.
Upon receiving these packets, R2 samples them with probability f(0) = f0 and
overwrites its IP fragment and the rest are XORed with past R1’s IP fragment.
So at R2 we have two types of packets, d = 0 and d = 1, with probability f0 and
1− f0 respectively.

Now R3 receives two kinds of packets: packets with d = 0 and d = 1. Under
our new sampling scheme, different sampling probabilities f0 and f1 are applied
to packets with d = 0 and d = 1, respectively. Let Rm(d) denote the size of
packet with distance d at router Rm. After sampling and marking process on
router R2, we have R3(0), R3(1), R3(2) packets at R3 as follows:

R3(0) = R2(0)× f0 + R2(1)× f1

R3(1) = R2(0)× (1− f0)
R3(2) = R2(1)× (1− f1).

The same fragment marking system and sampling process continues.
In order to achieve optimality, we try to maximize the number of the smallest

distance packets at each router given the total number of packets fixed. Let
f0, f1, . . . , fn represent the sampling probability from packets with distances
d = 0, d = 1, . . . , d = n, respectively. At R1, sampling probability f0 should be
1/2 to give equal number of packets of R2(0) and R2(1) to R2. So the value of f0

is determined. The rest of fi, i = 1, . . . will be determined sequentially at each
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even numbered router under the principle of maximizing the minimum number
of packets. The details will be shown in the next section.

3 Main Results

At router Rm, we have m different distance packets, Rm(0), Rm(1), . . . ,
Rm(m − 1) and the size of each packets is determined by the sampling proba-
bilities, f0, f1, . . . , fm−2. Let Pm(·) denote the probability distribution at router
Rm. That is, Pm(i) is the probability of finding packets with distance i at Rm.
Then by the law of probability

∑m−1
i=0 Pm(i) = 1.

We are going to determine the sampling probability distribution based on the
strategy of maximizing the minimum of Pm(·) at each router Rm, i.e.,

max
f0,...,fm−1

min{Pm(0), . . . , Pm(m− 1)}.

Computation of Pm(d) follows the rule mentioned in Kim et al.[1].

Pm(0) =
m−2∑
i=0

Pm(i)fi (1)

Pm(d) = Pm−1(d− 1)(1− fd−1) for d = 1, . . . , m− 1. (2)

By following the rule above we can get the probability distribution easily for the
first few routers. From the first few trials we can observe a few interesting points
to note as follows.

– The sequence of the values of fd’s should be a nonincreasing sequence.
– The value of fd is determined at even numbered router R2(d+1).
– The value of fd determines the probabilitiy distribution Pd+2(·) of the router

Rd+2, which are symmetric.

To generalize these findings, we employ the famous mathematical induction
idea. Let Ak be the k-th statement of induction as follows:

Ak : fk−1 =
1
2k

, Pk+1(·) has symmetric distribution.

We have shown that Ak is true for k = 1, 2, 3. So if we can show that Am is true
under the assumption that Ak is true for k = 0, . . . , m−1, then we can conclude
that Ak is true for all nonnegative integer k.

The following theorem states the main result.

Theorem 1. Under the condition that f0 ≥ f1 ≥ f2 · · · , the following statements
are true. For nonnegative integer m,

– the optimal sampling probability fm = 1
2(m+1) ,

– Pm(·) is symmetric i.e. Pm(i) = Pm(m− i− 1) for i = 0, . . . , m− 1.



136 J. Kim et al.

Proof: We would follow the mathematical induction on Ak’s. Once we have
proved that Ak is true for k = 1, 2, 3, we only need to follow the next steps:

1. Assume Ak is true for k = 1, . . . , m− 1,
2. Set P2m(m− 1) = P2m(m).
3. Determine fm−1.
4. Symmetry of Pm+1(·) is obtained, which imply Am.

Even though the proof goes slightly different for the cases that m is even or m
is odd, the basic idea is the same, so we only follow the case of even number m
closely.

From the assumption that f0 ≥ f1 ≥ f2 · · · , the ordering of bottom half of
P2m(·) is P2m(2m− 1) > P2m(2m − 2) > · · · > P2m(m) and that of top half is
P2m(0) > P2m(1). We do not have enough information for complete ordering of
P2m(·) at this stage, however, from the fact that for d = 1, . . . , m− 2,

P2m(d) = P2m−d(0)(1− f0) · · · (1− fd−1)

and P2m−d(0) includes one of {fd : d = m, . . . , 2m−2}, we know that P2m(m−1)
is the only term determined by fm−1 among the top half of the router R2m, and
is an increasing function of fm−1. Together with the fact that P2m(m) is the
minimum among the bottom half of the router R2m and is a decreasing function
of fm−1. it is natural to find the optimum sampling probability fm−1 by setting
P2m(m− 1) = P2m(m).

From the assumption that fk = 1
2(k+1) for k = 0, . . . , m− 2, for m ≥ 2,

Pm(m− 1) =
m−2∏
i=0

(1− fi) =
1
2

3
4
· · · (2m− 3)

(2m− 2)
.

Let c1 = 1 and cd = Pd(d − 1) for d = 1, . . . , m, then symmetry assumption of
Pd(·) gives us Pd(0) = Pd(d− 1) = cd.

From the symmetry of Pm(·), we can derive the following form at router R2m:

P2m(m− 1) = Pm+1(0)(1− f0) · · · (1− fm−2) = Pm+1(0)× cm (3)
P2m(m) = Pm(0)(1− f0) · · · (1− fm−1) = c2

m × (1− fm−1). (4)

By setting equations (3) and (4) are equal, we have

Pm+1(0) = cm × (1− fm−1). (5)

To solve this equation for fm−1, we need to look at Pm+1(0) closely. The proba-
bility Pm+1(0) is obtained from the probability distribution Pm(·) of the previous
router Rm as follows:

Pm+1(0) = Pm(0)f0 + Pm(1)f1 + · · ·+ Pm(m− 2)fm−2 + Pm(m− 1)fm−1.

By the symmetry assumption on Pm(·), we can get

Pm(k) = Pm(m− 1− k) = Pm−k(0)(1− f0) · · · (1− fk−1) = cm−kck+1 (6)

for k = 0, . . . , m− 1, and hence
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Pm+1(0) = cm

(
1
2

+ fm−1

)
+ c2cm−1

(
1
4

+
1

2(m− 1)

)
+ c3cm−2 ×(

1
6

+
1

2(m− 2)

)
+ · · ·+ cm

2
cm

2 +1

(
1

2(m/2)
+

1
2(m/2 + 1)

)
.

By plugging this in the equation (5), we have

2fm−1 =
1
2
−B

where

B =
c2cm−1

cm

(
1
4

+
1

2(m− 1)

)
+

c3cm−2

cm

(
1
6

+
1

2(m− 2)

)

+ · · ·+ cm
2
cm

2 +1

cm

(
1
m

+
1

m + 2

)
.

Since 2fm−1 = 1
2−B and B can be simplified to be m−2

2m , the optimal sampling
probability is fm−1 = 1

2m .
Now we are ready to prove the symmetry of Pm+1(·). Since Pm(0) = Pm(m−

1) = cm, from the equation (5) and fm−1 = 1
2m , we get Pm+1(0) = cm(1− 1

2m ).
And Pm+1(m) = Pm(m− 1)(1 − fm−1) = cm(1 − 1

2m ), which shows Pm+1(0) =
Pm+1(m). For i = 1, . . . , m− 1, it is true that

Pm+1(i) = Pm(i− 1)(1− fi−1) = ci+1cm−i+1 = Pm+1(m− i),

by the equations (2) and (6). Therefore the symmetry of Pm+1(·) holds and our
proof of theorem 1 is now completed.

4 Conclusion

FMS(Fragment Marking Scheme) is an important technique to track down the
attacking path even under IP spoofing. However it suffers a long convergence time
when computing the attack path. DWS(Distance-Weighted Sampling) has been
suggested to minimize the convergence time by allowing close-to-equal chance for
the marked IP fragments of each router to survive and reach the victim system.
They achieved that by varying the sampling probability based on the distance
the packet has traveled so far: packets traveled for longer path are favored over
packets traveled shorter. They found an efficient probability function through
experimentation. In this paper, we have proved rigorously that the function is
indeed optimal.
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Abstract. With several critical services being provided over the Internet it has 
become imperative to monitor the network traffic to prevent malicious attackers 
from depleting the resources of the network. In this paper, we propose a 
mechanism to protect a web-server against a Distributed Denial of Service 
(DDoS) attack. Incoming traffic to the server is continuously monitored to 
immediately detect any abnormal rise in the inbound traffic. This detection 
activates a traffic-filtering rule that pushes down the network traffic to an 
acceptable level by discarding packets according to measured relative traffic 
levels of each of the active sources. The proposed mechanism does not affect 
legitimate users and is thus more effective and robust. We have presented 
simulation results to demonstrate the effectiveness of the proposed mechanism.  

Keywords: DDoS, Buffer overflow, Security, Traffic level measurement. 

1   Introduction 

A Denial of Service (DoS) attack is an attempt by a malicious user to prevent 
legitimate users from availing the services by consuming the resources of a server or a 
network. DoS attacks, like SYN flooding, UDP flooding, DNS-based flooding, ICMP 
directed broadcast, Ping flood attack, IP fragmentation, and CGI attacks, typically 
involve flooding with a huge volume of traffic, thereby consuming network resources 
such as bandwidth, buffer space at routers, CPU time and recovery cycles of target 
servers. A DoS attack, when launched from multiple coordinating machines is 
referred to as Distributed Denial of Service (DDoS) attack, which owing to its 
distributed nature is very difficult to defend. In order to make the server resources 
available, it is highly critical to be able to detect such attacks as quickly as possible. 

In this paper, we have proposed a robust mechanism to protect a web server from 
DDoS attack, utilizing some easily accessible information in the server, such that it is 
impossible for an attacker to disable the server by creating an overload. Moreover, as 
soon as the attempted overload disappears, the normal service quality resumes 
automatically. While the malicious attack is handled, the mechanism also minimizes 
the number of legitimate clients affected. This aspect of handling DDoS attacks is not 
taken into account in many of the current commercial solutions. 
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The rest of the paper is organized as follows: Section 2 presents some related 
work in the area of protection against DoS attacks. Section 3 describes the major 
component of the proposed system and the algorithms for detection and prevention 
of attacks. Section 4 presents the simulation results and Section 5 concludes the 
paper. 

2   Related Work 

Several protection mechanisms have been proposed against DoS attack. Network 
Ingress Filtering [1] prevents attacks using spoofed source addresses. However, it is 
unable to curtail a flood attack originating from within a network. Deterministic 
Packet Marking (DPM) [2] relies on routing information that is inscribed in the 
packet header by the routers as the packet traverses the network, which linearly 
increases the size of IP packet header with the number of hops traversed, involving 
complex processing at the routers. Probabilistic Packet Marking [3] for IP 
Taceback improves DPM. Here each router probabilistically inscribes local path 
information onto a packet that traverses it. However, the increase in distributed 
nature of an attack makes it more difficult to localize the attacker. In MULTOPS 
[4], the routers detect bandwidth attacks based on packet sending rates. However, 
due to memory limitations, its efficiency degrades with randomized IP source 
addresses. Client Side Puzzle [5] is an effective tool to make protocols less 
vulnerable to resource depletion attacks, but in case of distributed attacks its 
effectiveness is an open question. 

3   The Proposed System and Algorithms 

In this section, we describe our traffic model and attack model on which we have 
developed our security system. A major system component - interface module is 
described with all the important algorithms for detection and prevention of attacks.  

3.1   Traffic Model and Attack Model 

In our model packets from the network means small independent queries to the 
server. We assume that every query causes same workload on the server, as with 
some enhancements (protocol enhancements, crypto hardware, caching etc.) the 
workload of different queries can be very similar. We also assume that the attacking 
machines use real addresses to establish two-way communication with the server 
just like a legitimate client. Let us suppose that there are N(t) legal sources and A(t) 
attacking sources in time slot t. The attacker reaches his goal only if attacking 
traffic is much higher than normal traffic. Several attacking machines could be used 
by the attacker, making it more difficult for the server to identify and foil them all. 
However, this makes it is more difficult for the attacker to hide. Hence, we assume 
that the attacker limits the number of attacking hosts, i.e., A(t) is low. In fact, a 
tradeoff can be identified between the ability to hide and the efficiency of the 
attack. 
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3.2   The Interface Module 

A DDoS interface module is attached to the server from the network side. This 
interface can be a software or a special-purpose hardware component of the server or 
an independent autonomous hardware component attached to the server. The 
incoming traffic enters a FIFO buffer. Traffic is modeled and analyzed over unit time 
slot using discrete time model. The server CPU empties  packets per time slot from 
the buffer. Random traffic ensures a non-zero probability of buffer overflow situation. 
When a DdoS attack begins the buffer becomes full and most of the incoming packets 
are dropped, degrading the quality of service of the server. At this point, the interface 
module disrupts traffic from attacking sources effectively.  

Let the attack begin at time t* and at time t* +  the interface buffer become full. 
The first task is to detect the point of commencement of the attack, by accurately 
estimating t*. The next task is to identify the sources of the attack, and to disrupt their 
traffic. The interface module can identify all active sources, measure the traffic 
generated by them and classify them into specific sets. The traffic level measurements 
are to be done in time slots between t* and t* + . The effectiveness of the mechanism 
heavily depends on . Larger the value of , higher is the time for traffic 
measurements. It is achieved using a very large buffer. We propose that the buffer (L) 
is divided into two parts. The first part (L1) is designed to serve the normal state of the 
server, and is chosen according to the service rate and the accepted probability of 
packet loss due to buffer overflow. The size of the second part (L2) corresponds to the 
buffer introduced to gain enough time for traffic measurements during the start-up 

phase of the attack. Let t̂ denote the expected value of t*. It is also assumed that the 
set of active sources is constant during the period of the attack. Let Tn(t) be the 
aggregate legal traffic and Ta(t) be the aggregate attacking traffic. n and a are the 
corresponding mean values, denoting the expected normal and expected attack traffics 

respectively. As t* is earlier than the time of its detection ( t̂ ), we miss some time for 
efficient traffic measurements, which is minimized by estimating the aggregate traffic 
level continuously using sliding window method. The interface module handles two 
sliding time windows, a longer (with capacity of wl slots) and a shorter (with capacity 

of ws slots). This way we measure both a long time average level λ (t) and a short 

time average level λ̂ (t), of incoming aggregate traffic per slot at time slot t. 

3.3   Algorithms of the Interface Module 

Four algorithms in the interface module are executed in the following order. Details 
of the algorithms are out of the scope of this paper due to space constraints. 

1. Detection of attack: The beginning of an attack is assumed to take place at 

time t̂ . The determination of t̂ can be done in any of the following two ways: 

A. t̂   is that point of time when the buffer L1 becomes full. 

B. t̂   is that point of time when the following inequality holds:              

)ˆ()1()ˆ(ˆ trt λλ +> , where, r > 0 is a design parameter. (1) 
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    2. Identification of attack sources: The interface module distinguishes between the 
attacking traffic and the normal traffic by the corresponding means of their aggregate 
traffic ( a and n), where a > n. It measures the traffic characteristics of all active 
sources by recognizing their network addresses and thereby identifies the attack 
sources. 

3. Disruption of traffic from attack sources: Once the attacking sources are 
identified, the disruption of the traffic emanating from them is done by discarding all 
the incoming packets with source addresses in the set of clients identified as attackers. 

4. Checking the success of disruption of traffic: On successful execution of above 
algorithms, the available buffer size should come back to the level of L1 within a 
timeout interval. If this does not happen, more packets from active sources are to be 
discarded repeatedly until the buffer size is restored to the level of L1. 

4   Simulation and Results 

The simulation program, written in C is executed on Red Hat Linux with a MySQL 
database that stores the traffic-data. The time interval is set at 10-6 seconds. Statistical 
data are collected in every second. The simulation is done with first 100 seconds as 
the normal traffic, attack starting at the 100th second and the attack continuing till 
200th second. The simulation was ended with another 100 seconds of normal traffic to 
have an insight into the efficiency of the recovery function of the system. 

Parameter setting for simulation: The arrival pattern at the interface module is 
modeled as a Poisson process. The interface module stores the packets in a buffer 
before passing them on to CPU for processing. The queue type is assumed to be 
M/M/1, with inter-arrival time and service time both following exponential 
distribution. The number of sources is kept constant throughout the simulation 
process. ICMP, NTP (Network time Protocol) and DNS clients send many small 
packets of constant size with uniformly distributed inter-packet arrival time. Thus 
these protocols resemble very close to our modeling assumptions. The number of 
simultaneous legitimate clients can vary over a broad range depending on the 
application scenario. We consider three different cases: 

Case 1: For a small corporate server, N(t) is low, say 5, and thus the average load 
on the server is low. In this case, A(t) should be high, 40. Thus here N(t) << A(t). 

Case 2: For a server of medium size, say N(t) = 50, an attacker can launch a 
successful attack from a fewer number of hosts, say A(t) = 50. As in this case N(t)  
A(t), the attacker can easily hide himself.  

Case 3: For a global portal server, N(t) is very large, say 10000, making it difficult 
for the attacker to appropriately estimate A(t). We assume that the attacker chooses 
A(t) = 5000 and a very high attacking rate: a = n *10.  In this case, N(t) > A(t).  

Simulation 1: We have chosen a large number of hosts to test the effectiveness of 
our mechanism. The simulation parameters are listed in Table 1. With 10000 legal 
clients and n = 0.1, the capacity of the server should be at least 1000. The attack is 
successful only when the service rate ( ) is less than 3000 ( a *A(t) + n*N(t)). We 
have used  = 1500. We have taken the buffer size, L1 = 40 (packets). As the normal 
traffic rate is 1000 packets/sec, we have taken a safe value of L2 = 3000 (packets). 
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Table 1. Parameters for Simulation 1 

Parameter Value 
Number of legal clients (N(t)) 10000 
Number of attacking hosts (A(t)) 5000 
Mean normal traffic rate ( n) 0.1 
Mean attack traffic rate ( a) 0.4 
Service rate ( ) (packets/sec) 1500 
Sliding window size (ws) 10 s 
Tolerance for traffic jump (r) 0.6 
Time frame for last correct value of 45 s 

The estimation of  is crucial, as the available time for traffic analysis depends on 
this. We have used a constant limit ( δδ ≤ˆ ) for traffic analysis. Let us suppose that 
we know the total traffic is Tn + Ta = 3000. As  = 1500, we can expect L1 to be full 
after 40/(3000-1500)  0.3 s. The whole buffer (L) will be full in 30040/(3000-1500) 

 200 s. We take  = 10. In real world, as we have no apriori knowledge about 
attacks,  is estimated over a period of time. For simplicity, we set ws = .  

Table 2 shows the results of the simulation on a large system with parameters 
mentioned in Table 1. It is observed that larger values of ws make more accurate 
identification of attacks, though the system is more likely to enter into a buffer 
overflow situation. In an attack situation, the buffer will allow us to measure traffic 
only for 20 sec, after which, the attack identification algorithm will produce 
inaccurate and unpredictable results. Thus the value of ws cannot be increased at our 
will. In summary, our mechanism provides good protection, if the parameters are well 
estimated and a large buffer size is available in the system. 

Table 2. Results of simulation 1 

=δδ ˆ(ˆ ws )  Observed metrics 
5 10 20 30 40 

Correctly identified attackers 2982 3784 4529 4784 4892 
Filtered legal clients 1 557 260 132 59 
Dropped packets 0 0 0 14251 28765 
Max buffer level  and corresponding 
timeframe 

29717 
(200 s)

14941
(110 s)

29732 
(119 s)

30040 
(120 s) 

30040 
(120 s) 

Time to restore (after t*) 149 104 73 71 81 

Simulation 2: We have simulated a smaller system with parameters listed in Table 3. 
We have taken L1 = 40 (packets), L2 = 160 (packets) and  = ws = 10. The experiments 
are repeated on 500 different sets of input data to obtain statistical information of  
the system. It was observed that the attack was detected by algorithm in Section 3.3 I A 
in 4 cases. Algorithm in Section 3.3 I B was faster in detecting the attack in 454  
cases. In 42 cases, the attack was correctly identified by both these algorithms. Table 4 
summarizes the simulation results. 
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Table 3. Parameters for Simulation 2 

Parameter Value 
Number of legal clients (N(t)) 50 
Number of attacking hosts (A(t)) 50 
Mean normal traffic rate ( n) 0.1 
Mean attack traffic rate ( a) 0.2 
Service rate ( ) (packets/sec) 8 

Table 4. Results of simulation 2 

Observed values Observed metrics 
Minimum Average Conf. Intrvl. (95%) 

Time to restore (after t*) 49 114.732 1.942 
Packets dropped 0 0.695 0.321 
Normal user filtered (type II error) 1 7.115 0.231 
Attackers filtered 21 32.413 0.235 
Attack detection time (after t*) 0 2.950 0.090 

5   Conclusion 

In this paper, we have presented a mechanism for detection and prevention of DDoS 
attacks on a server by inbound traffic analysis on it. We also described a simple yet 
robust model of solution for this problem. We have conducted simulation on our 
propose model. The simulation results confirm the effectiveness of our model and 
enable us to make a sensitivity analysis of the parameters of different algorithm for 
detection of an attack. 
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Abstract.  Auctions have been used as the market mechanism for allocating 
resources to users in a grid. However, most of the existing work either consider 
only homogeneous resources, or pick a resource randomly for bidding to 
increase the number of jobs finishing within their deadlines. Random selection 
does not consider resource capabilities and hence, do not optimize other 
important metrics like the average turnaround time and the average budget 
spent per job etc. In this paper, we consider the resource allocation problem in a 
grid with heterogeneous resources. We present allocation policies using sealed-
bid auction that reduce the average turnaround time and the average budget 
spent per job, while still maintaining a high number of jobs finishing within 
their deadlines. Simulation results are presented to evaluate the performance of 
the policies.  

Keywords: Grid, Resource, Allocation, Auction. 

1   Introduction 

Grid computing is defined as “coordinated resource sharing and problem solving in 
dynamic, multi-institutional virtual organizations”[7]. A grid allows the sharing of a 
wide variety of geographically distributed resources owned by different organizations 
[1]. Grid computing is generally used for problems with large computational, data 
storage, and/or collaboration requirement. Some applications of grid include 
simulations in astrophysics, climate modeling, modeling for drug design, high energy 
physics, infrastructure for multiplayer games etc. [2, 7, 8]. 

A grid may typically contain resources with comparable but different capability 
and availability. In such a system, it is necessary to assign each job to the most 
appropriate resource. Viewing the resources as suppliers and the users as consumers 
of services provided, markets for computing services/resources have been examined 
as a mechanism for allocating resources to jobs [12]. A market is where goods and 
services are bought and sold and a market mechanism is the process by which the 
market controls this buying and selling of goods [15]. There are several market 
mechanisms like commodity markets, tendering/contract net, auctions etc. [3]. 
Framing the resource allocation problem in economic terms is useful for several 
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reasons [13]. Resource usage may not be free and to make girds successful 
commercially, resource owners and users should get adequate rewards to motivate 
them to participate in the grid.  

In this work, we investigate the use of auctions as the market mechanism for 
resource allocation in grids. The auction model supports one-to-many negotiation 
between a resource provider and multiple consumers. Auctions require little of global 
price information, are decentralized, and are easy to implement in grid settings [3]. 
There exist several studies on applying auctions to solve resource allocation problem 
in grids [6, 9, 10, 11, 13, 14]. Most of these works assume that the resources are 
homogenous. For example, most of them assume that all resources have the same 
speed and cost. But in a real world environment, resources can be heterogeneous and 
different parameters like resource type, resource speed, available memory, price of 
resource etc. need to be considered. The choice of a proper resource for an application 
will thus be based on various parameters. The studies in [9, 11] considered resources 
with different capabilities. However, resources are just selected randomly for bidding. 
The problem with random selection is that the resource capabilities are not considered 
for bidding and hence, important metrics like the average turnaround time and the 
average budget spent per job etc. increases. 

In this paper, we consider resources with different capabilities (speeds) and prices. 
A set of users, each with a set of jobs, wish to use these resources. Each job has a 
deadline and an allowed maximum budget. We focus on two parameters, time and 
budget. The problem is to define resource allocation policies that allocate resources to 
the jobs while increasing the number of jobs finishing within their deadline and 
decreasing the average turnaround time and the average budget spent per job for these 
sets of jobs. We first present two simple policies that show better average turnaround 
time per job and average budget spent per job respectively compared with the random 
policy where a resource is chosen randomly for bidding. However, the number of jobs 
finishing within their deadlines is less in both these policies as compared to the 
random policy. We next present two parameterized policies that increase the number 
of jobs finishing within their deadlines while still maintaining a lower average 
turnaround time and average budget spent per job respectively. Simulation results are 
provided for all the policies to evaluate their performance.  

In related work, Buyya et al. proposed Nimrod-G [4] which supports several 
economic models like commodity market, spot market, and contract net. It 
implements two resource selection policies for the above market models, time 
optimization, and budget optimization policies. However, they have not applied those 
policies to auctions. In auctions, we cannot directly use those policies. 

The rest of this paper is organized as follows. Section 2 presents our system model. 
Section 3 presents two simple resource allocation policies that try to optimize time 
and budget respectively. Two modified policies are presented in Section 4. Finally, 
Section 5 concludes the paper. 

2   System Model 

The grid computational environment consists of resource consumers or users and 
resource providers. Resource consumers have jobs to be done and are willing to pay 
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for it. Resource providers have computational resources and are willing to rent them 
for profit. We use sealed bid auction as our market mechanism. In the sealed bid 
auction, the auctioneer accepts bids from users in which the users will not know the 
other users’ bid amount. At the end of the auction period, the auctioneer opens the 
bids and gives the resource to the highest bidder. 

Each resource consumer or user has its corresponding resource broker and submits 
its jobs to the resource broker. A resource broker will search for a suitable resource 
provider and submit the job to it. Let U1, U2, U3 … UN be the users participating in the 
grid and J1, J2, J3 … JK be the corresponding jobs for each user. Each job specification 
Ji includes the job length, deadline, and budget. The jobs have to be completed within 
its deadline and its cost of execution must not exceed its allocated budget. The job 
length is specified in millions of instructions (MI). The deadline includes the time 
spent on the auctions also. 

A resource provider executes jobs for resource consumers and charges them for 
usage of resource. Let R1, R2 … RM be the resources participating in the grid. Each 
resource Ri is modeled by a single processor with some speed and unit price. The 
capability of resources is expressed in terms of millions of instructions the resource 
can process in one second (MIPS). The unit price is the minimum amount a user must 
pay for using the resource for one second. In our work we considered resources with 
single processor. Each resource Ri will conduct auction Ai. Users who want to use the 
resource have to participate in the auction. In the rest of this paper, the speed of the 
resource Ri is referred to as Ri.speed, the start time for using the resource by a job is 
referred to as Ri.resource_usage_start_time, and the unit price of the resource is 
referred to as Ri.price. 

The main function of a resource broker is to find an appropriate resource according 
to the user policy and to bid for that resource. Let Rb1, Rb2 … RbN be the resource 
brokers for the users U1, U2 … UN respectively. A user will specify which resource 
selection policy the resource broker has to use and the resource broker in turn selects 
resources to bid for accordingly. In the rest of the paper, we have used the terms 
resource broker and user interchangeably.   

A Grid Information Service (GIS) contains complete information about current 
auctions. Each auction description Ai includes the resource provider id, the auction 
number, the starting time of resource usage, the auction end time, the reserve price, 
and the capability of the resource. It does not include the resource usage end time as 
that depends on the job it accepts in the auction. The resource broker will first contact 
the GIS for auction information. Resource providers will periodically update their 
auction information in the GIS.  

Each resource provider will conduct sealed-bid auction and accept the bids until 
the end of the auction period. Here the bidding amount is in terms of cost/sec. The 
bidding amount should be greater than the reserve price for that resource. The exact 
bidding amount depends on the policy being used. At the end of the auction, the 
resource provider will open the bids and inform the resource brokers whether they 
won in the auction or not. The maximum bid amount is not revealed to others. This is 
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to prevent resource brokers fro m behaving strategically. A resource broker may learn 
the bid amount to bid by participating in repeated auctions, but we do not consider it 
here. If no one participated in the bidding by the end of the auction, the above process 
is repeated. After the end of the current auction, the resource providers will start new 
auctions for the next available time slot. The starting time of the next usage is 
changed in accordance with the current accepted job. 

S = 
for i = 1 to n do
          exec_time = job_length / Ri.speed      
          completion_time = Ri.resource_usage_start_time + exec_time 
          if ((budget >= (Ri.price*exec_time))  AND  (completion_time <= deadline) )  
                       S = S  Ri

 

Fig. 1.  Algorithm to form resource set S for a job 

    sort S by price 
    select R1 from S
    penalty = R1.speed / max_speed 
    min_amount_needed = (job_length / R1.speed)*R1.price 
    bid_amount = budget – (budget –   min_amount_needed)*penalty 
    use bid_amount to bid for R1

 

Fig. 2.  Algorithm for the BudgetOptimized policy 

3   Two Simple Resource Selection Policies 

In this section, we first implement two simple policies for resource allocation – 
TimeOptimized and BudgetOptimized policies. For each of the policies, the first step 
involves forming a set S of resources that can complete the job within its deadline and 
its allocated budget. The algorithm to form S is simple and is shown in Fig. 1. The 
variables job_length and budget refers to the length of the job and the budget 
allocated to it respectively. 

After S has been formed, the two policies are defined as follows: 

• TimeOptimized Policy: In the TimeOptimized policy, a user bids for a resource that 
can complete the job the earliest within the deadline and budget allocated for it. To 
do this, the resources in S are sorted in increasing order of completion time of the 
job, and the first resource in the list is bid for. The whole budget allocated to the 
job is used for bidding for the selected resource to maximize the chance of winning 
in the auction. If it fails in the current auction, it then chooses the next resource in 
the sorted list and bids for it. This continues until the job either finds a resource or 
misses its deadline.  
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• BudgetOptimized Policy: In the BudgetOptimized policy, a user will always bid for 
a resource that costs less but can still complete the job within the deadline and 
budget allocated for it. To do this, the resources in S are sorted in increasing order 
of their costs, and the first resource in the list (the lowest cost resource) is bid for. 
However, unlike the TimeOptimized policy, in the BudgetOptimized policy, the 
whole amount allocated to the job is not used for bidding. Instead, a penalty is 
calculated and the bid amount is obtained by reducing the allocated amount in 
proportion to the penalty. Here penalty is the degradation in performance a user is 
getting by choosing a lower speed resource. The penalty is high for low speed 
resources and low for high speed resources. So it bids less for a low speed resource 
and higher for a high speed resource. If it fails in the current auction, it then 
chooses the next higher cost resource from the sorted list. This continues until the 
job either finds a resource or misses its deadline. The pseudocode for the 
BudgetOptimized policy is shown in Fig. 2. 

3.1   Simulation Results 

We evaluate the above two policies by comparing it with the Random policy which 
has been used in the literature for heterogeneous resources. In the Random policy, a 
resource is chosen at random from the set S and is then bid for with the whole amount 
allocated to the job. If the user fails to win the resource, a resource is again chosen at 
random from S and the process is repeated. 

We have used GridSim [5] for evaluating the proposed user selection policies. 
GridSim is a java based discrete event grid simulation toolkit. The simulated grid 
environment consists of 15 resources and 10 users. Resources have different 
processing speeds and reserve prices as given in Table 1. The reserve prices for these 
machines are chosen in such a way such that the price per MI is increasing when we 
go from low speed resource to high speed resource. The increase in the amount per 
MI is the premium paid to the resource for executing the job faster. If we have given 
the same price per MI for all resources, then the user will always choose high speed 
resources only. We assumed that each machine executes one job at a time. After 
completion of the present job it will again start a new auction. There are a total of 50 
jobs for each user.  

Table 1. MIPS and cost of each machine 

M/c MIPS Rating 400 800 1200 1600 2000
Cost/Sec 2 6 10 14 18 
No of machines 3 3 3 3 3 

Incoming jobs for each user come according to Poisson distribution with mean . 
For all experiments we have taken  to be 0.01. If we choose a higher  then most of 
the jobs fail because of high load. The job deadline includes auction participation 
time, execution time of job, and waiting time at the resource end. For each job i, the 
deadline is set according to the following expression. 

Ji.deadline = Eij + Rand(Eij) + α (1) 
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where Ji.deadline is the deadline for job i, Eij is the execution time of Ji on Rj where 
Rj is the slowest resource available in the grid. Execution time is calculated as job 
length / MIPS of the resource, Rand(Ei) is a random value between 1 and Eij, and α is 
positive constant. The constant is added to alleviate the effect of time spent on 
auctions. For all our experiments we took α as 30. This value is equal to the default 
auction time.  

The budget for each job is distributed uniformly over the interval [μ1, μ2] following 

other works in the literature. The lower limit μ1 is given by the product of the smallest 

length of a job and the lowest reserve price of a resource while the upper limit μ2 is 
given by the product of the largest length of a job and the highest reserve price of a 
resource. 

In the first experiment, we implemented Random, TimeOptimized, and 
BudgetOptimized policies. The job length in this experiment varies from 10000 MI to 
20000 MI. Fig. 3. and Fig. 4. show the number of jobs finishing within their deadlines 
and the average turnaround time per job in the TimeOptimized and the Random 
policies. Fig. 5. and Fig. 6. show the number of jobs finishing within their deadlines 
and the average budget spent per job  in the BudgetOptimized and the Random policy.  

From Fig. 3. and Fig. 4., it is clear that the TimeOptimized policy reduces the 
average turnaround time but the number of jobs finishing within deadline is less than 
that in the Random policy. Similarly, in the BudgetOptimized policy, the average 
budget spent per job is less than that in the Random policy but the number of jobs 
finishing within deadline is also less in the BudgetOptimized policy. The advantage of 
the Random policy is that as each user selects the resource randomly, overall there 
will be less contention for resources, so most of the time users will win in auctions. In 
the TimeOptimized policy there will be high contention for high speed resources and 
only one user wins in auction and the rest who participated in the auction will fail. 
These failed jobs again participate in a new auction. This process repeats and 
eventually many of the jobs miss their deadlines before winning any resource. 
However, the jobs that actually finish within their deadlines are done on higher speed 
resources, thereby reducing the average turnaround time. A similar phenomenon 
happens in the BudgetOptimized policy.  

Thus the job success rate (the percentage of jobs finishing within their deadlines) 
in the TimeOptimized and the BudgetOptimized policies is less when compared with 
the Random policy.  In the next section, we present two simple modifications of the 
TimeOptimized and the BudgetOptimized policies to improve their job success rate. 

4   k-TimeOptimized and k-BudgetOptimized Policies 

In this section we propose two new policies. The first one, k-TimeOptimized, tries to 
minimize the average turnaround time while increasing the number of jobs finishing 
within their deadlines. The second one, k-BudgetOptimized, tries to minimize the 
average budget spent per job while increasing the number of jobs finishing within 
their deadlines. 
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Fig. 3. Job success rate in TimeOptimized and 
Random policies 

Fig. 4. Average turnaround time per job in 
TimeOptimized and Random policies 
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Fig. 5. Job success rate in BudgetOptimized 
and Random policies 

Fig. 6. Average budget spent per job in 
BudgetOptimized and Random policies 

4.1   k-TimeOptimized Policy 

In the k-TimeOptimized policy, we sort the set S of resources in increasing order of 
completion time and then select one resource randomly from the top k resources for 
bidding. The value of k is specified by the user. For k = 1 this policy is equivalent to 
the TimeOptimized policy and for k = n this policy is equal to the Random policy, 
where n is the total number of resources in the system. As k increases, the number of 
jobs finishing within their deadline increases, but the average turnaround time also 
increases. The pseudocode for this policy is shown in Fig. 7. 

4.1.1   Simulation Results 
We conducted the experiment for three different job lengths, 10000MI to 20000MI, 
50000MI to 100000MI and 100000MI to 200000MI. For each experiment, we varied 
k from 1 to 15 and we measured the average turnaround time and job success rate. It 
shows how the job success rate and the average turnaround time vary when we move 
from the TimeOptimized policy to the Random policy. Fig. 8. and Fig. 9. show the job 
success rate and the average turnaround time respectively for different values of k and 
for different job lengths. 
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sort S by completion_time
for   i = k + 1  to   S.length  do
            remove Si  from S 
select randomly one resource Ri from S
use complete amount allocated to job to bid for  Ri

 

Fig. 7. Algorithm for the k-TimeOptimized policy 

From Fig. 8. and Fig. 9., it is clear that when we go from k = 1 to k = 15,  
in general, the job success rate increases and at the same time the average 
turnaround time also increases. This is because, at k = 1, the behavior is exactly 
the same as that of the TimeOptimized policy. When we increase k, users will start 
choosing resources randomly and the competition for resources will become less. 
At the same time the average turnaround time is increasing because of choosing 
lower capability resources. The job success rate is higher and the average 
turnaround time is lower for lower job lengths as for high job lengths, once a job 
gets a resource, the resource stays busy for a longer time, thereby making some 
other jobs miss their deadlines. 
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Fig. 8. Job success rate in k-TimeOptimized policy for different values of k 

At k = 4 the success rate is fairly high as compared with that at k = 15. At k = 15  
all the users will choose resources randomly and distribution of jobs is random. 
However, resources with high capability can execute more number of jobs than 
resources with lower capability. Ideally any policy should distribute more number of 
jobs to high capability resources and less number of jobs to low capability resources. 
But when we follow the Random policy, jobs will not get distributed in the above 
manner. So the number of jobs executing is higher at k = 4 than forsay, k = 15. 

4.2   k-BudgetOptimized Policy 

In the k-BudgetOptimized policy, we sort the set S of resources according to cost and 
we select one resource randomly from the top k resources for bidding. At k = 1 this 
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policy is equivalent to the BudgetOptimized policy, and at k = n this is equal to the  
 

Random policy. As k increases, the number of jobs finishing within deadline increases 
but the average budget spent per job also increases. The pseudocode for the k-
BudgetOptimized policy is shown in Fig. 10. 
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Fig. 9. Average turnaround time in k-TimeOptimized policy for different values of k 

4.2.1   Simulation Results 
Similar to the k-TimeOptimized policy, we conducted the experiment for three 
different job lengths. For each experiment, we changed k from 1 to 15 and we 
measured the average budget spent per job, the job success rate, and the average 
turnaround time. Fig. 11., Fig. 12., and Fig. 13. show how the average budget spent 
per job, the job success rate, and the average turnaround time vary when we move 
from the BudgetOptimized policy to the Random policy. 

From Fig. 11., Fig. 12., and Fig. 13., we see that when we go from k = 1 to k = 15, 
the average budget spent per job increases slightly and the job success rate also 
increases. Similar to the k-TimeOptimized policy, at k = 4, the job success rate is high 
and at the same time the average budget spent per job remains low. The reason for 
this is the same as in the k-TimeOptimized policy. As we increase k, the competition  
 

    Sort S by price
    max_speed = RS.length

     for  i = k + 1  to  S.length  do 
     remove Si from S 

     select randomly one resource Ri from S 
     penalty = Ri.speed / max_speed 
     min_amount_needed = (job_length / R1.speed)*R1.price 
     bid_amount = budget – (budget –min_amount_needed)*penalty  
     use bid_amount to bid for Ri

 

Fig. 10. Algorithm for the k-BudgetOptimized Policy 
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for low cost resources will be decreased, so the number of jobs getting executed 
within their deadlines will be increased. As we increase k, we start choosing resources 
randomly so the budget spent per job will be increased. The average turnaround time 
is very high at k = 1 because of choosing low cost resources. 
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Fig. 11. Average budget spent per job in k-BudgetOptimized policy for different k 
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Fig. 12. Job success rate in the k-BudgetOptimized policy for different k 
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Fig. 13. Average turnaround time in the k-BudgetOptimized policy for different k 
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5   Conclusion 

In this paper, we proposed and evaluated several auction based resource selection 
policies for users in grid. In all these policies we tried to optimize the average 
turnaround time, the average budget spent per job, and the job success rate. It would 
be interesting to investigate the case when the user provides his or her preference on 
the degree of importance he/she places on time over budget.  
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Abstract. A computational grid is a widespread computing environment that 
provides huge computational power for large-scale distributed applications. 
Load balancing, has a considerable effect on the grid middleware performance. 
Current load balancing methods cannot satisfy all necessities for the grid. In this 
paper, a Multi-level Load Balancing Method (MLBM) is proposed. Cooperation 
among different levels in this method, removes disadvantages of each level, 
while satisfy most of load balancing requirements needed. Simulation results 
indicate that this new mechanism surpasses its predecessors in increasing effi-
ciency and decreasing communication overhead. 

1   Introduction 

A computational grid is a hardware and software infrastructure that provides consis-
tent, pervasive and inexpensive access to high end computational capacity. An ideal 
grid middleware should provide access to all the available resources seamlessly and 
fairly [1].  

ARMS is an agent-based resource manger for grid computing which is aimed at 
provisioning scalability and adaptability [1]. In this system, agents cooperate with 
each other to achieve resource discovery. Each agent organizes all service information 
of a resource into Agent Capability Tables (ACTs). The agents are equipped with a 
performance prediction toolkit called PACE [1], [2] to predict available efficiency of 
resources. Experiments testify a high level of precision attained through PACE.  

Considering the largeness, dynamic resources, and other specifications of the grid, 
it is impossible to utilize resources in equilibrium, unless using efficient load balanc-
ing methods. However, lack of a well-organized load balancing method is a crucial 
problem in most of grid resource managers, like ARMS.  

Taking into account the ARMS specifications and the importance of load balanc-
ing, in this work, we attempt to propose a multi layer load balancing mechanism for 
ARMS.  

Load balancing methods are designed essentially to spread the load on resources 
equally and maximize their utilization while minimizing the total task execution time 
[3]. Recently, some methods have been suggested for load balancing in the grid [1], 
[4], [5]. Heuristic approaches are applied in most of these methods. 
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J. Cao implemented a load balancing method in ARMS [1]. As stated in [1], the ef-
ficiency of the mechanism highly depends on the number of cooperating ants (n) as 
well as their step count (m) which is defined by the grid user itself. 

Some load balancing methods, like QLBVR [6], are periodical. It balances the ex-
tra load among neighboring nodes according to their average queue length and request 
arrival rate. This method uses virtual routing [6] method for checking the balancing 
profitability. Virtual routing changes the load balancing difficulty to an optimal rout-
ing problem by adding a virtual node in the network system.  

In our proposed method, which is provided in the next section, we intend to use the 
advantages of both attitudes. Furthermore, there is an effective load balancing method 
in ARMS, which provides an optimal scheduling within a node [2]. We call this 
method a ‘local-level’ load-balancing and we use it as the first level of load balancing 
in our new multi-layer approach, MLBM. 

The rest of the paper is organized as follows: Section 2 contains a survey on cur-
rent load balancing methods. In Section 3, different levels of MLBM method are de-
scribed. Performance metrics and simulation results are included in Section 4. At last, 
we will present the conclusion as well as the relevant future works. 

2   Proposed Method 

In this section, firstly, a new load balancing method based on ant colony heuristic is 
proposed, and then a complementary method, which tries to compensate its defects, is 
suggested. Coupling these two methods with local-level will construct MLBM.  

In this paper, the number of waiting jobs is considered as a criterion for measuring 
load in a node. 

2.1   Grid-Level Load Balancing 

In this level, an echo system of intelligent ants is suggested. Interactions between 
these ants will result in load balancing throughout the grid. Here, echo system means 
that the ants are created on demand to achieve load balancing. They may bear off-
spring or they commit suicide according to their environmental conditions. Every ant 
in the new mechanism hops ‘m’ steps and then balances ‘k’ overloaded nodes with ‘k’ 
underloaded. In the next subsections, we will describe the grid-level method. 

2.1.1   Creating, Moving and Deciding of Ants 
If a node understands that it is overloaded, it can create a new ant with a few steps to 
balance the load quickly. A memory space, which is divided into an underloaded list 
(Min-List) and an overloaded list (Max-List), is allocated to each ant in which the ant 
records specifications of the overloaded and underloaded nodes while wanders. 

After entering a node, the ant should determine state of the node, i.e. overloaded, 
underloaded or equilibrium, using its acquired knowledge from the environment. As 
the state of the node is determined relative to the system conditions, decision making 
is performed adaptively by applying adaptive fuzzy logic. To make a decision, the ant 
deploys the node’s current workload and its (i.e. the ant’s) remained steps as two in-
puts to the fuzzy inference system. Then, the ant determines the state of the node. 
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Therefore, If the result is “overloaded” or “underloaded”, the node specifications 
must be added to the ant’s max-list or min-list. Subsequently, the corresponding 
counter for Max, Min, or Avg increases by one.  

In special circumstances, especially when an ant’s life span is long while the ant is 
continuing its wandering, its memory may get full, but it still encounters nodes which 
are overloaded or underloaded. In this situation, if a node load is overloaded, the ant 
bears a new one with predefined steps. Here, adaptability translates into increasing the 
number of the ants automatically, whenever there are many overloaded nodes.  

2.1.2    Load Balancing, Starting New Itineration 
When the ant’s hops end, it must start the balancing operation between its overloaded 
(Max) and underloaded (Min) elements gathered. After load balancing, the ant must 
reinitiate to begin a new itineration. One of the fields that must be initiated is the ant’s 
step counts. However, the ant’s step counts (m) must be relative to system conditions 
[1]. Therefore, if most of the nodes visited were underloaded or in equilibrium, the ant 
should prolong its wandering steps, i.e. decrease the load balancing frequency and 
vice versa. Doing this requires the ant’s knowledge about the environment. Adaptive 
fuzzy logic is again used in determining the next itineration step counts. The 
controller determines the next step counts (NextS) based on the number of overloaded, 
underloaded and equilibrium nodes visited, along with the step counts during the last 
itineration (LastS). Actually, the former indicates recent condition of the environment, 
while later reports lifetime history of the ant. This fuzzy system can be stated as a 
relation as follows:  

><>→<
><><><

DeadthhmltlNextSthhmltlLastS

hmlAvgCnthmlMinCnthmlMaxCntRA

,,,,,,,,,*

,,*,,*,,:
 (1) 

If an ant’s step counts extend to extreme values, its effect tends to be zero. Based 
on this premise, one can conclude that an ant with too long step counts does not have 
any influence on the system balance. In this circumstance, the ant must commit sui-
cide i.e. NextS is fired in the “Dead” membership function.  

2.2   Neighbor-Level Load Balancing 

As mentioned before, we use neighbor-level load balancing as the second layer in 
MLBM. The algorithm of this level works as follows: 

In ARMS, agents use PACE to obtain their resource capabilities information. 
Agents periodically exchange this information with their neighbors. An agent adver-
tises its load information only among its neighbors. Load characteristics of the nodes 
could be attached to this exchanging information. Moreover, the receiver agent can 
estimate the time gap between sending and receiving the information as the transmis-
sion cost. The agents in the system exchange their status information at periodic  
interval of time Ts . We opportunistically append our favorite fields to them.  

Based on the load information received in the last Ts, the agents estimate the cur-
rent load of their neighbors in each interval. Then, the agent computes the average 
load on its neighboring agents. An agent calls itself “overloaded” if its load is greater  
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than the average load of its neighbors. Neighbors, whose estimated load is less than 
the average, form an active set. However, because of the transmission cost, sending 
the agent load to all of the active set members might not be profitable [7]. We com-
pass the problem of profitability using virtual routing [6].  

2.3   MLBM: Multi-level Load Balancing Mechanism 

Each of the two proposed methods has some defects. Neighbor-level method has a 
limited vision and grid-level method imposes too much communication overhead and 
is not fair. Combining these two methods with the local-level, would satisfy most of 
requirements for an ideal load balancing method. Now, MLBM works as follows: 

Agents, periodically, exchange their state information in ARMS. Load information 
is attached to this exchanging data. Each agent uses local-level method to make its re-
sources balance. Moreover, each overloaded agent uses neighbor-level method, to 
balance its load with adjacent neighbors. At the same time, some ants may pass 
through that agent and choose it for further balancing. However, if a node is over-
loaded, for several periods of time, and it has not been visited during this time, then 
the node itself creates a new ant to balance its load throughout a wider area.  

Consider that in neighbor-level method, scattering radius is limited; however this 
flaw was compensated using ants. On the other side, using neighbor-level, the load 
inequality decreases. This causes fewer ants and less communication overhead. 
Moreover, as each node uses neighbor-level method, even if it is not visited by any 
ant, it can achieve load balancing. Thus the mechanism is fair. 

3   Performance Evaluation 

There are a number of performance metrics used to describe grid scheduling systems 
which are investigated. Let P be the number of agents of ARMS system and Wpk (p=1, 
2… P) be the workload of the agent p at period k. The average workload is:  

P

W
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P

p
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k
== 1  (2) 

The mean square deviation of Wpk, which characterizes the load balancing level of 
the system, is defined as (3). Let Tk be the total time spent in all agents to achieve a 
load balancing level Lk. Then, load balancing efficiency ek , is calculated according 
to (4). 
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In this work, Agent system, Workload, and Resources are modeled as follows: 

• Agents. Agents are mapped to a square grid. This simplification has been done in 
similar works [1], [4], and [5]. All of experiments described later include 400 
agents. 

• Workload. A workload value and corresponding distribution are used to charac-
terize the system workload. The value is generated randomly in each agent. 

• Resources. Resources are defined in the same way as workload.  

4   Simulation Results 

First experiment involves total network connections needed. As shown in Fig.1, total 
communication needed (C), in MLBM, is drastically less than the conditions only 
grid-level or seminal method [1] is used. It can be seen that the communication count 
goes flat in the last seconds, when the load balancing frequency decreases.  

 

Fig. 1. Comparing communications needed (C) in MLBM, Grid-level, and Seminal method 
during the time (T(s)) 

In second experiment, convergence speed is compared between the three methods.  

 

Fig. 2. Convergence speed in MLBM, Grid-level and Neighbor-level methods 

For the sake of comparison, we examined balancing level (L) achieved during the 
time. The results are illustrated in Fig.2. As stated before, slow convergence speed 
was a defect in neighbor-level method. However, Fig.2 explains that the combination 
of the two methods cope the disadvantage.  

In the last experiment, system efficiency is discussed. Efficiency (e) is calculated 
for MLBM, grid-level, and seminal ant method [1] during the time (T). Fig.3 proves 
that MLBM has the best efficiency between others. 
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Fig. 3. Comparing efficiency (e) between MLBM, grid-level, seminal method in time (T) 

5   Conclusion and Future Works 

In this research, we proposed a multi-level load balancing method (MLBM) for grid 
environment; overloaded nodes get balances through these layers. In the first layer, 
which is ‘node-level’, an efficient scheduler tries to use node’s resources equally. The 
second level, which is called ‘neighbor-level’, periodically scatters the extra load of 
overloaded nodes to a limited domain. The third level, which is ‘grid-level’, is a col-
ony of intelligent ants which spread the regional extra load throughout the grid.  

Cooperation of these layers in a multi-layer framework (MLBM) alleviates their 
disadvantages and, as exhibited in the paper, results in better efficiency. 

In our future works, we plan to prove MLBM mathematically, promoting ant’s  
intelligence and adaptation as well as adding billing contracts between resources as 
they exchange customer loads and overcome security considerations. 
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Abstract. This paper presents a new design and implementation of the DHash 
distributed hash table based on erasure encoding. This design is both more  
robust and more efficient than the previous replication-based implementation. 

DHash uses erasure coding to store each block as a set of fragments. Erasure 
coding increases availability while saving storage and communication costs 
compared to a replication based design. DHash combines Chord's synthetic  
coordinates with the set of fragments to implement server selection on block  
retrieval. 

Experiments with a 270-node DHash system running on the PlanetLab and 
RON testbeds show that the changes to DHash increase the rate at which the 
system can fetch data by a factor of six, and decrease the latency of a single 
fetch by more than a factor of two.The maintenance protocols ensure that 
DHash is robust without penalizing performance.  

1   Introduction 

DHTs have been proposed as a way to simplify the construction of large-scale distrib-
uted applications. DHTs store blocks of data on a collection of nodes spread through-
out the Internet. Each block is identified by a unique key. The goals of these DHTs 
are to spread the load of storing and serving data across all the nodes and to keep the 
data available as nodes join and leave the system. 

This paper presents a new design, based on erasure coding, for distributing and 
storing blocks within DHash, an existing DHT implementation. These changes make 
DHash a robust, efficient and practical DHT for demanding applications such as  
cooperative backup. Such an application requires that the DHT keep data available 
despite faults and that the DHT efficiently serve bulk data (unlike, for example, a 
naming system).  

The main contribution of this paper is the way Dhash combines erasure encoded 
storage with the other techniques and properties of Chord to provide robust and effi-
cient operation.These other techniques include proximity routing, server selection, 
and successor lists.  

1.1   Peer-to-Peer Off-Site Backup 

In order to help guide design decisions for DHash, we implemented a cooperative off-
site backup system. The off-site backups are intended to complement conventional tape 
or disk- to-disk backups by adding an extra level of availability and providing a browse 
able archive of backups. The off-site backup system can be used alone if desired. 
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The off-site backup system's goals are to support recovery after a disaster by keep-
ing snapshots of file systems at other Internet sites. The system spreads the data over 
many sites in order to balance storage and network load. This striping also allows 
very large file systems to be backed up onto a set of hosts with individually limited 
disk space. The backup system performs daily incremental backups; each new backup 
shares storage with the unchanged part of the previous backups. 

The intended users of the backup system are informal groups of people at geo-
graphically distributed sites who know each other; for example, colleagues at differ-
ent university computer science departments. Each site is expected to make available 
spare disk space on workstations. These workstations are likely to be reasonably  
reliable and have fairly fast network connections. 

Since the backup system sends file system copies over the Internet, communication 
performance is important; it must be possible to back up a full day's incremental 
changes to a typical server file system in a few hours. Performance is more sensitive 
to network throughput than to latency, since the backup system usually has large 
quantities of data that can be sent concurrently. 

1.2   Background: Chord 

DHash uses Chord to help determine on which host to store each piece of data. Chord 
implements a hash-like lookup operation that maps 160-bit data keys to hosts. Chord 
assigns each host an identifier drawn from the same 160-bit space as the keys. This iden-
tifier space can be viewed as a circle, in which the highest identifier is followed by zero. 

Each Chord host maintains information about a number of other hosts, to allow it 
to efficiently map keys to hosts and to allow it to tolerate failures. Chord ensures that 
each host knows the identity (IP address, Chord identifier, and synthetic coordinates) 
of its successor: the host with the next highest identifier. This knowledge organizes 
the hosts into a circular linked list sorted by identifier. 

In order to maintain the integrity of this organization if nodes fail, each node actu-
ally maintains a successor list, which contains the identities to the ‘r’ hosts that  
immediately follow the host in the identifier circle. If a node's successor is not respon-
sive, the node replaces it with the next entry in its successor list.  

1.2.1   Chord API 
Get successor list(n) is a simple accessor method for the Chord node n. It is imple-
mented as a single network RPC call. lookup(k, m), on the other hand, must send 
O(log N) RPC s in order to determine the m successors of key k. 

Table 1.1. Chord API 

Function Description 
 

Get successor list(n) Contacts Chord node n and returns 's successor list. Each 
node in the list includes its Chord ID, IP address and  
synthetic coordinates 

lookup(k, m) Returns a list of at least m successors of key k. Each node  
in the list includes its Chord ID, IP address and synthetic 
coordinates 
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2   DHash: Distributed Hash Table 

The DHash servers form a distributed hash table, storing opaque blocks of data named 
by the SHA-1 hash of their contents. Clients can insert and retrieve blocks from this 
hash table. The storage required scales as the number of unique blocks, since identical 
blocks hash to the same server, where they are coalesced. 

DHash allows nodes to enter or leave the system at any time and divides the bur-
den of storing and serving blocks among the servers. To increase data availability, 
DHash splits each block into 14 fragments using the IDA erasure code. Any 7 of these 
fragments are sufficient to reconstruct the block.  

2.1   DHash API 

Table 2.1. DHash API 

Function Description 
 

put(k, b) Stores the block b under the key k, where k = SHA-1(b). 
Get(k) Fetches and returns the block associated with the key k. 

2.2   Block Availability 

Like many fault-tolerant storage systems, DHash uses erasure coding to increase 
availability with relatively little cost in extra storage and communication. DHash uses 
the IDA erasure code. Given an original block of size s, IDA splits the block into f 
fragments of size s/k. Any k distinct fragments are sufficient to reconstruct the origi-
nal block. Fragments are distinct if, in an information theoretic sense, they contain 
unique information.   

IDA has the ability to randomly generate new, probabilistically distinct fragments 
from the block alone; it does not need to know which fragments already exist. From  
f randomly generated fragments, any k are distinct with probability greater than 
( p-1 / p), where p is the characteristic prime of the IDA implementation. 

2.3   Block Insert: put(k, b) 

When an application wishes to insert a new block, it calls the DHash put(k, b) proce-
dure. The DHash code running on the application's node implements put as follows: 

Void  put (k, b)   // place one fragment on each successor 
{   frags = IDAencode (b) 
    succs = lookup (k, 14) 
    for i (0..13) 
     send (succs[i].ipaddr, k, frags[i])  } 

Fig. 2-1. An implementation of DHash's put(k, b) procedure 



166 R. Sonar and D.M. Thakore 

2.4   Block Fetch: get(k) 

In order to fetch a block, a client must locate and retrieve enough IDA fragments to 
reassemble the original block. The interesting details are in how to avoid communi-
cating with high-latency nodes and how to proceed when some fragments are not 
available.  

When a client application calls get(k), its local DHash first initiates a Chord call to 
lookup(k, 7), in order to find the list of nodes likely to hold the block's fragments. The 
lookup call will result in a list of between 7 and 16 of the nodes immediately succeed-
ing key k. get() then chooses the seven of these successors with the lowest latency, 
estimated from their synthetic coordinates. It sends each of them an RPC to request a 
fragment of key k, in parallel.  

   block get (k) 
{  // Collect fragments from the successors. 
frags = []; // empty array 
succs = lookup (k, 7) 
sort_by_latency (succs) 
for (i = 0; i < #succs && i < 14; i++) { 
// download fragment 
<ret, data> = download (key, succ[i]) 
if (ret == OK) 
frags.push (data) 
// decode fragments to recover block 
<ret, block> = IDAdecode (frags) 
if (ret == OK) 
return (SHA-1(block) != k) ? FAILURE : block 
} }  return FAILURE  } 

Fig. 2-2. An implementation of the DHash's get(k) procedure 

3   Fragment Maintenance 

A DHash system is in the ideal state when three conditions hold for each inserted 
block: 

1. multiplicity  : 14, 15, or 16 fragments exist. 
2. distinctness  : All fragments are distinct with high probability. 
3. location        : Each of the 14 nodes succeeding the block's key store a fragment; 

the following two nodes optionally store a fragment; and no other nodes store 
fragments. 

3.1   Global DHash Maintenance 

The global maintenance protocol pushes misplaced fragments to the correct nodes. 
Each DHash node scans its database of fragments and pushes any fragment that it 
stores, but which fail the location condition, to one of the fragment's 14 successor 
hosts. For efficiency, the algorithm processes contiguous ranges of keys at once.  
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global_maintenance (void) 
{ a = myID 
while (1) { 
<key, frag> = database.next(a) 
succs = lookup(key, 16) 
if (myID isbetween succ[0] and succ[15]) 
// we should be storing key 
a = myID 
else { 
// key is misplaced 
for each s in succs[0..13] { 
response = send_db_keys (s, database[key .. succs[0]]) 
for each key in response.desired_keys 
if (database.contains (key)) 
upload (s, database.lookup (key)) 
database.delete (key) 
}  database.delete_range ([pred .. succs[0]]) 
a = succs[0] 
}  }  } 

Fig. 3-1. An implementation of the global maintenance protocol 

the key. Otherwise, the DHash host is storing a misplaced fragment and needs to push 
it  to one of the fragment's 14 successors, in order to restore the location condition. 

4   Experiments and Their Interpretation 

4.1   Fetch Latency 

While we are mainly interested in throughput, the optimizations presented here also 
improve the latency of an individual block fetch. Figure 4-1 shows the latency of a 
block fetch with different sets of optimizations. Each bar represents the average of 
384 fetches of different blocks, performed one at a time. The dark part of each bar 
indicates the average time to perform the Chord lookup, and the light part of each bar 
indicates the time required by DHash to fetch the fragments. 
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Fig. 4-1. The effect of various optimization techniques on the time required to fetch an 8K 
block using DHash 
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Adding fragment selection reduces the amount of time required to fetch the block 
by fetching fragments from the 7 nodes (of the 14 with fragments) closest to the ini-
tiator. This effect of this optimization is visible in the reduced size of the fetch time in 
the second bar (labeled `Frag Sel'). The lookup time is unchanged by this optimization 
(the slight variation is likely experimental noise). The third bar adds an optimization 
that terminates the Chord lookup on a node close to the target key in ID space, but 
also close to the originating node in latency. This optimization reduces the lookup 
time while leaving the fragment fetch time unchanged. It shows the importance of 
avoiding being forced to contact a specific node during the last stages of a lookup. 

5   Related Work 

DHash closely resembles a number of other storage systems in spirit. The systems 
include the original replication-based DHash, Tapestry/Pond, and Pas try/PAST. 
These systems store data in a DHT-like organization, aim to provide high reliability, 
and efficiency by exploiting proximity. DHash differs from these systems in its im-
plementation approach: DHash's implementation techniques (proximity routing, 
server selection, congestion control algorithm) are based on a synthetic coordinate 
system and a protocol for efficient synchronization of data. The advantages of using 
the synthetic coordinate system are (1) proximity routing, server selection, and con-
gestion control becomes simple and (2) reduces communication traffic, because nodes 
don't have to be probed. 

6   Conclusions 

This paper presented the DHash distributed hash table and the mechanisms it uses  
to provide robust and efficient operation. The design combined have techniques in a 
novel way. The techniques include erasure coding, replica synchronization, synthetic 
coordinates, proximity routing, and server selection to provided robust and efficient 
operation. The design centers around a storage representation which stores each block 
as a set of erasure encoded fragments. The fragment maintenance protocols restore 
any destroyed or misplaced fragments caused by system membership changes. The 
fragments combine with the synthetic coordinates to provide high-throughput and 
low-latency block fetch and store. 
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Abstract. In this paper, we present a novel search algorithm called Dynamic 
Random Walk Team (DRWT), which achieves a better tradeoff between per-
formance and overhead. The main difference between DRWT and the tradi-
tional Random Walk algorithms contains two aspects: (1) all nodes advertise 
their resource sharing information and maintain and broadcast the information 
with the EDBF-like manner, which discards the information dynamically when 
transmitted to neighbors; and (2) DRWT extends the concept of walker in tradi-
tional Random Walk to search team, which selects its search direction based on 
the resource location information at each intermediate node. Furthermore, each 
search team periodically contacts the requesting node and may be required to 
enhance its search intensity by sending out more walkers based on the distribu-
tion of the resource location information to accelerate the search process. 

1   Introduction 

Random Walk [1] algorithm, including its variations, retains the “blind” nature of 
query forwarding and then suffers a long delay when searching the resources in large-
scale P2P networks. Recently, researchers proposed “informed search”, with the main 
idea that the resource hosting nodes advertise their resource information first [2]. 

The maintenance and dissemination of the resource information consumes much 
storage space and bandwidth. To solve this problem, researchers propose schemes to 
compress the information with Bloom Filter (BF) technology [3,4]. These methods 
focus on different objectives and can achieve different trade-offs between delay and 
overhead respectively. 

In this paper, we present a novel search mechanism called Dynamic Random Walk 
Team (DRWT), which achieves a better tradeoff between performance and overhead 
over previous methods. In DRWT, all nodes advertise their resource sharing informa-
tion based on a EDBF-like manner, which discards the information dynamically when 
transmitting it to neighbors to reduce the overhead of the maintenance and dissemina-
tion. Each node maintains a neighbor information table to store the resource location 
information received from its neighbors to forward later queries more efficiently. To 
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make sufficient use of the information maintained at each node, DRWT extends the 
concept of walker in traditional Random Walk to search team. When requesting re-
sources, the requesting node sends out k query messages (search teams) and each 
team selects its search direction according to the resource location information at each 
intermediate node. Furthermore, each team periodically contacts the requesting node 
and may be required to enhance its search intensity by sending out more walkers (or 
descendent teams) based on the distribution of the resource location information to 
accelerate the search process. 

2   DRWT Design 

In this section, we will introduce the design of DRWT algorithm in detail. 

2.1   Dissemination of Resource Information 

In DRWT, each node maintains a neighbor information table to store the resource 
location information to guide queries more efficiently. To reduce the overhead of the 
maintenance and updating of the tables, we propose an extension of Exponentially 
Decaying Bloom Filter (EDBF) [3], called Proportional Discarding Bloom Filter 
(PDBF). 

EDBF was proposed to discard some information by a predefined decay factor dur-
ing the dissemination process [3]. To check if element x is in set S, EDBF returns a 
value representing the matching degree instead of a simple answer of yes or no. The 
algorithm to compute the matching degree is as follows. First, describe element x by a 
vector U of m bits initialized to all 0; second, Use k hash functions to compute h1(x), 
h2(x), …, hk(x) and the bits indexed by these results in U are set to 1; third, compute 
the vector V representing set S by means of the traditional Bloom Filter; last, compute 
the matching degree of element x with set S by (1) (we use A(x, S) and A’(U, V) to 
represent it). 

==

==
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In EDBF, a node with degree d has a neighbor information table consisting of d en-
tries, each of which is a Bloom Filter vector corresponding to one of its neighbors and 
maintaining the information of the accessible resources through that neighbor. All 
nodes advertise their resource sharing information based on an exponentially decay-
ing manner, resetting a certain percentage of bits to 0 at each hop when transmitting 
to neighbors. The decay factor is predefined and won't change during the whole sys-
tem lifetime. However, this static, uniform predefined parameter can't adapt to the 
dynamic and heterogeneous characteristics of P2P systems.  

To solve this problem, we present an extension of EDBF, called Proportional Dis-
carding Bloom Filter (PDBF). When disseminating the resource location information 
to neighbors, PDBF resets (discards) a dynamically selected percentage of bits which 
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are set to 1 in traditional Bloom Filter. The percentage can be adjusted according to 
the limits such as storage, bandwidth, false positive rate, and so on. 

In the rest of this paper, we (1) use BF(x) to represent the Bloom Filter vector of 
the target resource x; (2) use BFlocal(A) to represent the Bloom Filter vector of the set 
of the local resources of node A; (3) use BF(A, B) to represent the Bloom Filter vector 
of the set of the resources which can be accessed by node A through its neighbor node 
B (one entry of the neighbor information table of node A); (4) use BFneighbors(A) to 
represent the Bloom Filter vector of the set of all resources which can be accessed by 
node A through all of its neighbors; and (5) use PDBF (A, B) to represent the updates 
which node A sends to its neighbor node B. 

The algorithm for handling the updates received by a node (for example, node A) 
and generating new updates to its neighbors is shown in Fig. 1. 

Procedure ReceiveAndCreateUpdate (Node A)
//Update NIT of node A and generate new updates //from 
node A to each of its neighbors 
1 for each )(AneighborsU

//Update the entry of NIT related to node U
2 ),()^,(),( AUPDBFUABFUABF ;

//Clear the updates to node U
3 0),( UAPDBF ;

4   for each UVAneighborsV ),(
// Take the union of all PDBFs received from 
// neighbors other than node U

5 ),(|),(),( AVPDBFUAPDBFUAPDBF ;
//Add updates of local resources to PDBF(A, U)

6 ))((|),(),( ABFUAPDBFUAPDBF local
;

// Only 1/d information survives 
7 d = SelectDiscardProportion();
8 dUAPDBFUAPDBF /),(),( ;

 

Fig. 1. Algorithm for receiving updates and creating new updates 

In order to reduce the bandwidth consumption of the dissemination of the resource 
location information, all updates are sent to neighbors periodically and created by 
taking the union (bitwise-OR) of all PDBFs received from neighbors other than the 
target neighbor and resetting a certain percentage of bits which are set to 1 in the 
union.  

2.2   Dynamic Random Walk Team 

To make sufficient use of the information maintained in the neighbor information 
tables and reduce the query delay, we present DRWT algorithm. 

Traditional Random Walk forwards k query messages (walkers). The method of 
statically setting the value of k works well in small-scale networks, but it is difficult to 
choose a proper value of k to make a reasonable tradeoff between performance and 
overhead in large-scale P2P networks. 
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To solve this problem, we propose a scheme to adjust the value of k dynamically 
based on the resource location information distributed at intermediate nodes so as to 
get a better tradeoff between performance and overhead. Dynamic Random Walk 
Team (DRWT) extends the concept of walker in traditional Random Walk to search 
team. Unlike the walkers in traditional Random Walk, search teams have the ability to 
select the next direction to search and enhance its search intensity under some circum-
stances. Initially the requesting node sends out k query messages (search teams), and 
at the intermediate nodes each query is forwarded to the neighbors with the maximum 
matching degree computed by formula (2) of the target resource x with the accessible 
resources set S. Each team periodically contacts the requesting node and may be re-
quired to enhance its search intensity by sending out more walkers (or descendent 
teams) based on the distribution of the resource location information. Furthermore, 
the requesting node can limit the total number of the queries by terminating some 
uninformed teams. 

Procedure ForwardQuery (Node B, Team T, Resource x) 
// forwarding queries 
1 if (HasSeenBefore (B, T))

//If this query has been processed before 
2    Terminate (T);
3    Return 0; 

// This query has not been processed before 
4 if ( 1))(),((' BBFxBFA )
5    Return B; //Target resource is found at node B.
6 0MaxBF ;//The max matching degree 
7 }{nulletCandidateS ; //The neighbors with MaxBF 

8 for each )(BneighborsU
9    if ( MaxBFUBBFxBFA )),(),((' )
10 )),(),((' UBBFxBFAMaxBF ;

11 }{UetCandidateS ; //Replace current set 

12   if ( MaxBFUBBFxBFA )),(),((' )

13 )),(),((' UBBFxBFAMaxBF ;
14 }{UetCandidateSetCandidateS ; //Add to current set 

15 for each etCandidateSV
16    SendTeamTo (V);//Forward query to all proper nodes 

// Contact requesting node and send descendent search 
// team if asked 

17 ContactRequestingNode(B, MaxBF, CandidateSet);
18 Return 0;  

Fig. 2. Algorithm for forwarding queries 

During the process of searching resource x, DRWT enhances the search intensity 
mainly in the following three cases. 

(1) In large-scale P2P networks, the resource location information from the resource 
sharing node may decay to 0 long before reaching the questing nodes. Therefore, when 
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all search teams find nothing about the target resource in n continuous hops, i.e. exist 
node U, 0))(),(('0))(),((' =∧= UBFxBFAUBFxBFA neighborslocal

, each team will 

send out l new walkers (or descendent teams) to accelerate the search process. All the 
new walkers (teams) have the same initial TTL (Tmax). 

(2) The first team which finds some location information about the target resource 
0))(),((' >UBFxBFA neighbors

 and contacts the requesting node, e.g. team ST at node U, 

will be required to send out l new walkers (or descendent teams) to enhance the 
search. Meanwhile, the total number of the queries in the network can be hold by 
terminating some uninformed teams. Furthermore, to avoid the influence of the bits 
which are set to 1 in the Bloom Filter vector by other resources, the requesting node 
may enhance the first m teams (not including the descendents of the enhanced teams) 
which find some location information. 

(3) When a search team finds at a certain node (e.g. node A) ) that the probability of 
accessing resource x through one of its neighbor (e.g. node C) equals that through 
another neighbor (e.g. node D), i.e. 0)),(),((')),(),((' DABFxBFACABFxBFA , 
or the difference of the two probabilities is smaller than a certain threshold, the search 
team will send out a descendent team to each of the two neighbors. 

The algorithm of DRWT for forwarding queries at a certain node (e.g. node B) is 
shown in Fig 2. 

3   Analysis and Evaluation 

We implement and evaluate DRWT in Neurogrid simulator [5]. 

3.1   Simulation Environments 

Table 1 shows the simulation configurations. 

Table 1. Simulation Configurations 

Configurations Value Configurations Value 
common DRWT 

No. of Nodes 2000 Width of Bloom Filter 64k bit 
Average degree of all nodes 4 No. of hash functions 8 
Distribution of the degrees Random DP (Discard Proportion) 50% 
Size of the pool of resources 2000 No. of initial search teams 1 
No. of resources per node 1 NH (described as follows) 2 
Size of the pool of keywords 1000 NT (described as follows) 3 
No. of keys per resource 1 Initial TTL 10 

In DRWT, when disseminating the resource location information to neighbors, 
PDBF resets (discards) DP bits which are set to 1 in traditional Bloom Filter; and 
when all search teams find nothing about the target resource in NH continuous hops, 
each team will send out NT new descendent search teams to accelerate the search 
process. 
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3.2   Query Delay and Overhead 

We carry out 10,000 searches for each algorithm and calculate the average delay and 
overhead. In DRWT, if there is at least one team finds 25.0),( ≥SxA  according to (1), 

the requesting node terminates all the teams which find nothing about the target re-
source and stops the search enhancements, and while in DRWT’, the requesting node 
does nothing to limit the total number of the queries. 

Table 2 shows the average query delay and overhead of different algorithms. 

Table 2. Average Query Delay and Overhead of Different Algorithms 

 Delay (Hops) Overhead (Messages) 
DRWT 6.598 117.0 
DRWT’ 6.596 156.0 
Gnutella 5.176 5990.4 
RW 13.663 3607.2 
Neurogrid 13.506 150.4 

4   Conclusion 

This paper present a novel search algorithm called Dynamic Random Walk Team 
(DRWT). DRWT extends the concept of walker in traditional Random Walk to search 
team, which selects its search direction based on the resource location information 
represented by PDBF which is published and disseminated before the search process. 
Experimental results show that DRWT achieves a better tradeoff between perform-
ance and overhead than any of the previous proposals. 
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Abstract. We provide a survey of some of our recent results ([9], [13],
[4], [6], [7]) on the analytical performance modeling of IEEE 802.11
wireless local area networks (WLANs). We first present extensions of
the decoupling approach of Bianchi ([1]) to the saturation analysis of
IEEE 802.11e networks with multiple traffic classes. We have found that
even when analysing WLANs with unsaturated nodes the following state
dependent service model works well: when a certain set of nodes is
nonempty, their channel attempt behaviour is obtained from the cor-
responding fixed point analysis of the saturated system. We will present
our experiences in using this approximation to model multimedia traffic
over an IEEE 802.11e network using the enhanced DCF channel ac-
cess (EDCA) mechanism. We have found that we can model TCP con-
trolled file transfers, VoIP packet telephony, and streaming video in the
IEEE802.11e setting by this simple approximation.

Keywords: performance analysis of wireless LANs, QoS in WLANs,
multimedia traffic performance over WLANs.

1 Introduction

Mathematical modeling has always been essential for the analysis and design of
engineering systems. Particularly when dealing with systems involving a large
number of entities that interact in complex ways, the experimental method is
extremely limited. Good analytical models are necessary for sieving through the
many design alternatives, and for providing general insights into phenomena. Ad
hoc and mobile wireless networks present highly complex situations, as the de-
vices have random and time varying relationships, and their interactions depend
critically on the radio propagation environment and user behaviour. In this pa-
per we will survey our work on some recent advances in the stochastic modeling
of infrastructure wireless networks that adhere to the IEEE 802.11 standard.
The complexity we tackle is that of multimedia traffic (voice, TCP controlled
transfers, and streaming video) being carried on the service differentiation mech-
anisms of the IEEE 802.11e standard.
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PBX & GW
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Fig. 1. An infrastructure wireless LAN carrying voice, video and TCP transfers; GW
denotes a VoIP gateway

The original IEEE 802.11 medium access control (MAC) mechanism provided
no means for differentiating the channel access provided to the contending de-
vices. Such differentiation would be required in a situation such as that depicted
in Figure 1, where different traffic types are carried on the WLAN. A new
addition to the IEEE 802.11 suite of standards, IEEE 802.11e, now provides
several access differentiation mechanisms within the distributed coordination
function (DCF), a form of CSMA/CA. These mechanisms are collectively called
EDCF (enhanced DCF). Access is differentiated by permitting devices (more
precisely, queues within devices) to have different channel access parameters,
such as the initial back-off window, the back-off multiplier, and the maximum
back-off window. Another mechanism is that, after every channel activity, nodes
with a lower access priority wait for a little longer than other nodes before
reinitiating their back-off and attempt processes, thus giving the higher priority
class nodes a better chance to access the channel. The time for which traffic
classes wait after a channel activity is called an AIFS (arbitration interframe
space).

We will begin by presenting some results on the saturation throughput analy-
sis of single cell WLANs. By a single cell is meant that all nodes can decode each
others transmissions, and hence only one successful transmission can take place
at a time. Saturation throughput is the rate at which packets depart the nodes
when every node has an unlimited number of packets to send. The standard
technique for carrying out such saturation analysis is based on the seminal con-
tribution of G. Bianchi ([1]), which was recently extended by us ([9]) via a more
general fixed-point formulation. The fixed-point based saturation analysis has
now also been done for IEEE 802.11e networks, thus paving the way for analysis
of multimedia traffic in WLANs. In this paper we begin by surveying our work
on the generalisations of fixed-point based saturation analysis of IEEE 802.11e
networks ([13]).

Saturation throughput is an important measure, as in some situations the
arrival rate being less than saturation throughput has been found to be sufficient
for stability (see, for example, [10]). We have found that even when analysing
WLANs with unsaturated nodes the following approximation works very well:
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when a certain set of nodes is nonempty, their channel attempt behaviour is
obtained from the corresponding fixed point analysis of the saturated system. In
this paper, we survey our results on applying this approximation technique to
analyse the performance and capacity of a single cell WLAN carrying constant
bit rate VoIP telephone calls, TCP controlled file downloads, and streaming
video ([11], [4], [6], [5], [7]).

2 Saturation Throughput Analysis of EDCF

2.1 The Case Without AIFS

There are n nodes, indexed by i, 1 ≤ i ≤ n. We begin with considering the case
in which each node has one EDCA queue. We adopt the notation in [9], whose
authors consider a generalisation of the back-off behaviour of the nodes, and
define the following back-off parameters (for node i)

Ki := At the (Ki + 1)th attempt either the packet being attempted by node i
succeeds or is discarded

bi,k := The mean back-off (in slots) at the kth attempt for a packet by node i,
0 ≤ k ≤ Ki

It has been shown in [9] that under the decoupling assumption, introduced by
Bianchi in [1], the attempt probability of node i (in a back-off slot, and condi-
tioned on being in back-off) for given collision probability γi is given by,

Gi(γi) :=
1 + γi + · · ·+ γKi

i

bi,0 + γibi,1 + · · ·+ γKi

i bi,Ki

(1)

In the exponentially increasing back-off case, with multiplier p (e.g., p = 2) G(·)
becomes,

G(γ) =
1 + γ + γ2 + · · ·+ γK

b0(1 + pγ + p2γ2 + · · ·+ pKγK)
(2)

With the slotted model for the back-off process and the decoupling assump-
tion, the natural mapping of the attempt probabilities of other nodes to the
collision probability of a node is given by

γi = Γi(β1, β2, . . . , βn) = 1−
n∏

j=1,j �=i

(1− βj)

where βj = Gj(γj). We could now expect that the equilibrium behaviour of the
system will be characterised by the solutions of the following system of equations.
For 1 ≤ i ≤ n,

γi = Γi(G1(γ1), · · · , Gn(γn))
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We write these n equations compactly in the form of the following multidimen-
sional fixed point equation.

γ = Γ(G(γ)) (3)

Since Γ(G(γ)) is a composition of continuous functions it is continuous. We thus
have a continuous mapping from [0, 1]n to [0, 1]n. Hence by Brouwer’s fixed point
theorem there exists a fixed point in [0, 1]n for the equation γ = Γ(G(γ)).

Definition 1. We say that a fixed point γ (i.e., a solution of γ = Γ(G(γ))) is
balanced if γi = γj for all 1 ≤ i, j ≤ n; otherwise, γ is said to be an unbalanced
fixed point. �

It is clear that if there exists an unbalanced fixed point for a homogeneous
system (i.e., one for which all the nodes have the same back-off parameters),
then every permutation is also a fixed point and hence, in such cases, we do not
have a unique fixed point. In [13], it has been shown by simulation examples
that, in general, there can exist unbalanced fixed points in the homogeneous
case, and in such situations the balanced fixed point of the system does not
characterise the average performance, even if there exists only one balanced
fixed point. It is therefore of interest to determine conditions under which the
system of fixed point equations has a unique fixed point. The following is a
sufficient condition.

Theorem 1 (Ramaiyan et al. [13]). If Gi(γ) is a decreasing function of γ
for all i and (1 − γ)(1 − Gi(γ)) is a strictly monotone function on [0, 1], then
the system of equations βi = Gi(γi) and γi = Γi(β1, . . . , βi, . . . , βn), 1 ≤ i ≤ n,
has a unique fixed point. �

Where nodes use exponentially increasing back-off, as in the IEEE 802.11 stan-
dard, the next result then follows.

Theorem 2 (Ramaiyan et al. [13]). For a system of nodes 1 ≤ i ≤ n, with
Gi(·) as in (2), that satisfy Ki ≥ 1, pi ≥ 2 and b0i > 2pi + 1, there exists
a unique fixed point for the system of equations, γi = 1 − ∏j �=i(1 − Gj(γj)),
1 ≤ i ≤ n. �

Remark 1. While Theorem 2 only states a sufficient condition, it does point to
a caution in choosing the back-off parameters of the nodes. �

2.2 Analysis of the AIFS Mechanism

Our approach for obtaining the fixed point equations when the AIFS mechanism
is included is the same as the one developed in [15]. However, in [13] we develop
the analysis in the more general framework introduced in [9].

In legacy DCF, a node decrements its back-off counter and then attempts to
transmit only after it senses an idle medium for more than a DCF interframe
space (DIFS). However, in EDCA (Enhanced Distributed Channel Access; see
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[12]), based on the access category of a node (and its AIFS value), a node at-
tempts to transmit only after it senses the medium idle for more than its AIFS.
Higher priority nodes have smaller values of AIFS, and hence obtain a lower aver-
age collision probability, since these nodes can decrement their back-off counters,
and even transmit, in slots in which lower priority nodes (waiting to complete
their AIFSs) cannot. Thus, nodes of higher priority (lower AIFS) not only tend
to transmit more often but also have fewer collisions compared to nodes of lower
priority (larger AIFS). The model we use to analyze the AIFS mechanism is
quite general and accommodates the actual nuances of AIFS implementations
(see [2] for how AIFS and DIFS differs) when the AIFS parameter values and
the sampled back-off values are suitably adjusted.

2.3 One Traffic Class per Node

Let us consider two classes of nodes of two different priorities. The priority for
a class is supported by using AIFS as well as b0, p and K. All the nodes of a
particular priority have the same values for all these parameters. There are n(1)

nodes of Class 1 and n(0) nodes of Class 0. Class 1 corresponds to a higher
priority of service. The AIFS for Class 0 exceeds the AIFS of Class 1 by l slots.
For example, in the standard, the queues of Access Category 1 (AC 1) wait 1
extra slot beyond the queues of AC 3; i.e., l = 1 in this case. Thus, after every
transmission activity in the channel, while Class 0 nodes wait to complete their
AIFS, Class 1 nodes can attempt to transmit in those l slots. Also, if there is
any transmission activity (by Class 1 nodes) during those l slots, then again the
Class 0 nodes wait for another additional l slots compared to the Class 1 nodes,
and so on.

As in [1] and [9], we need to model only the evolution of the back-off process
of a node (i.e., the back-off slots after removing any channel activity such as
transmissions or collisions) to obtain the collision probabilities. For convenience,
let us call the slots in which only Class 1 nodes can attempt as excess AIFS
slots, which will correspond to EA in the notation. In the remaining slots (cor-
responding to R in the notation) nodes of either class can attempt. Let us view
such groups of slots, where different sets of nodes contend for the channel, as
different contention periods. Let us define

β
(1)
i := the attempt probability of a Class 1 node for all i, 1 ≤ i ≤ n(1), in the

slots in which a Class 1 node can attempt (i.e., all the slots)
β

(0)
i := the attempt probability of a Class 0 node for all i, 1 ≤ i ≤ n(0), in the

contention periods during which Class 0 nodes can attempt (i.e., slots that
are not Excess AIFS slots)

Note that in making these definitions we are modeling the attempt probabili-
ties for Class 1 as being constant over all slots, i.e., the Excess AIFS slots and
the remaining slots. This simplification is just an extension of the basic decou-
pling approximation, and has been shown to yield results that match well with
simulations (see [15]).
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Now the collision probabilities experienced by nodes will depend on the con-
tention period (excess AIFS or remaining slots) that the system is in. The
approach is to model the evolution over contention periods as a Markov Chain
over the states (0, 1, 2, · · · , l), where the state s, 0 ≤ s ≤ (l − 1), denotes that
an amount of time equal to s slots has elapsed since the end of the AIFS for
Class 1. These states correspond to the excess AIFS period in which only Class 1
nodes can attempt. In the remaining slots, when the state is s = l, all nodes can
attempt. Analysis of this Markov chain provides π(EA), the fraction of slots in
which only Class 1 can attempt, and π(R), the fraction of slots in which both
classes can attempt. The transition probabilities of this Markov chain are func-
tions of β

(1)
i , 1 ≤ i ≤ n(1), and β

(0)
i , 1 ≤ i ≤ n(0), defined above; see [13] for

these details.
The average collision probability of a node is then obtained by averaging

the collision probability experienced by a node over the different contention
periods. The average collision probability for Class 1 nodes is given by, for all i,
1 ≤ i ≤ n(1),

γ
(1)
i = π(EA) 1−

n(1)

j=1,j �=i

(1 − β
(1)
j ) +π(R) 1−

n(1)

j=1,j �=i

(1 − β
(1)
j )

n(0)

j=1

(1 − β
(0)
j )

(4)

Similarly, the average collision probability of a Class 0 node is given by, for all
i, 1 ≤ i ≤ n(0),

γ
(0)
i = 1−

⎛
⎝n(1)∏

j=1

(1− β
(1)
j )

n(0)∏
j=1,j �=i

(1 − β
(0)
j )

⎞
⎠ (5)

Define G(1)(·) and G(0)(·) as in (1) (except that the superscripts here de-
note the class dependent back-off parameters, with nodes within a class having
the same parameters). Then the average collision probability obtained from the
above equations can be used to obtain the attempt rates by using the relations

β
(1)
i = G(1)(γ(1)

i ), and β
(0)
j = G(0)(γ(0)

j ) (6)

for all 1 ≤ i ≤ n(1), 1 ≤ j ≤ n(0). We obtain fixed point equations for the collision
probabilities by substituting the attempt probabilities from (6) into (4) and
(5) (and also into the expressions for π(EA) and π(R)). We have a continuous
mapping from [0, 1]n

(1)+n(0)
to [0, 1]n

(1)+n(0)
. It follows from Brouwer’s fixed point

theorem that there exists a fixed point.
In the same manner as Theorem 2, the following result has been obtained in

[13].

Theorem 3. If G(0)(·) and G(1)(·) are of the form in (2), and if K(i)≥1, p(i)≥2,
and b

(i)
0 > 2p(i) + 1, for i = 0, 1, then the fixed point will be unique. �
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Fig. 2. Collision probability of high priority TC (HP) and low priority TC (LP) in
a system of nodes with two TCs (see the plots with “2TC” in their legend). Both
simulation (sim) and analysis (ana) are plotted. Also plotted is the collision probability
(from simulation) of two classes of nodes when the two TCs of a node are considered
as independent TCs in separate nodes (these are plots with “1TC” in their legend).

2.4 Multiple Traffic Classes per Node

The above fixed point analysis can be generalised to include the possibility of
multiple traffic classes (or queues) per node. We consider n nodes and ci traffic
classes (TCs) per node i; the TCs can be of either AIFS class (for simplicity, we
consider only two AIFS classes) and ci = c

(1)
i + c

(0)
i (the superscripts refering to

the AIFS classes as before). The TCs in a node need not have the same G(·).
Since there are multiple TCs per node, each with its own back-off process, it is
possible that two or more TCs in a node complete their back-offs at the same
slot. This is then called virtual collision, and is resolved in favour of the queue
with the highest collision priority in the node. Unlike the single traffic class per
node case where a collision is caused whenever any two nodes (equivalently, TCs)
attempt in a slot, here, a TC sees a collision in a slot only when a TC of some
other node or a higher priority TC of the same node attempts in that slot. A low
priority TC of a node cannot cause collision to a higher priority TC in the same
node. The details of the fixed point equations and their analysis are available
in [14].

Figure 2 plots performance results for the multiple TCs per node case. We
consider a set of nodes, each with two traffic classes. The higher priority TC has
b0 = 16 and AIFS = DIFS, while the low priority TC has b0 = 32 and AIFS
= DIFS + 1 slot; p = 2 and K = 7 for either case. Figure 2 plots the collision
probability of the high priority TC and the low priority TC from simulation as
well as the analysis. Also plotted is the collision probability for the two classes
of nodes (from simulation) obtained by modeling the two TCs in a node as inde-
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Fig. 3. An evolution of the channel activity with two ACs in 802.11e WLANs (From
[6] c© IEEE)

pendent TCs in separate nodes. Notice that except for small n, the performance
of the multiple queue per node case is close to the performance of the single
queue case. These observations from Figure 2 can be understood as follows. In
the fixed point equation for the high priority TC in any node, only one term
corresponding to the low priority TC of the same node is missing, in comparison
to the case in which all the TCs are in 2n separate nodes. Hence, as n increases,
the effect of this single TC in the same node diminishes, and the performance of
the multiple queue per node case coincides with the performance of the single
queue per node case each with one of the original TCs.

Remark 2. This observation is crucial for the analysis approach in Section 3,
as it permits us to only work with an aggregate state variable for all the voice
STAs and another aggregate variable for all the STAs that are downloading TCP
controlled file transfers. Without the above observation we would have had to
keep track of the state of individual queues in each node. �

3 CBR VoIP and TCP File Downloads over EDCF

We now provide a model that can predict the performance of a single cell infras-
tructure IEEE 802.11e WLAN, under a scenario where VoIP and TCP controlled
file download traffic are carried over EDCA, over AC 3 and AC 1, respectively.
Using the model, we find the maximum number of voice calls that can be carried
with and without file downloads and the aggregate file download throughput for
each number of admissible voice calls. We assume that there are no bit errors, and
packets in the channel are lost only due to collisions.

3.1 The Modeling Approach

We follow the modeling approach of Kuriakose [11] and Harsha et al. [4], where
only the IEEE 802.11 WLAN is analyzed for voice traffic and for TCP traffic
separately. The following is the outline of the approach:

1. Embed the number of active nodes at channel slot boundaries (see Figure 3).
Each channel slot begins with a system slot (20 μsec), during which nodes
(that are allowed to attempt) count down their back-off counters. If no node



Stochastic Models of IEEE 802.11e Wireless Networks 183

AC3

AC3
AC3

AC1 AC1

QAP QAP

AC1

......

QAP

v t

QSTA  1v vQSTA  Nv tQSTA  1t tQSTA  N

Fig. 4. An IEEE 802.11e WLAN model scenario where VoIP calls and TCP traffic are
serviced on EDCA (From [6] c© IEEE)

attempts at the end of the system slot, a new channel slot starts. If a node
attempts at the end of this slot, then there is either a collision or a success,
followed by a DIFS interval, at the end of which the next channel slot starts.
If there is an idle channel slot, then in the next channel slot it is possible
that a lower priority class may also be able to attempt (see Figure 3).

2. When a set of nodes are active (i.e., have nonempty queues) at a channel slot
boundary, then the attempt probabilities of the nodes in the set are taken
to be the same as if we had that set of saturated nodes. This saturation
attempt probability is obtained from the fixed point analysis described above
in Section 2.

3. Using these state dependent attempt probabilities we model the evolution
of the number of contending nodes at channel slot boundaries as a discrete
time Markov chain (DTMC). In conjunction with the random length channel
slots, we obtain a Markov renewal process.

4. The stationary probability vector π of this DTMC is obtained, and then a
Markov regenerative argument is used to obtain the performance measures.

Since VoIP traffic and TCP traffic could be handled at the same node we
have multiple queues per node. However, as discussed earlier, in Section 2.4, the
performance of the multiple queues per node case coincides with the performance
of the single queue per node case, each node with one queue of the original
system; basically the probability of virtual collision within a node is small. This
observation leads to substantial reduction in the complexity of our analysis. We
make use of this observation and consider the VoIP traffic and TCP traffic as
originating from different nodes. Thus, let Nv be the number of full duplex CBR
VoIP calls in the WLAN, involving Nv QoS enabled stations (QSTAs), each
carrying one VoIP call. Similarly, let Nt be the number of QSTAs downloading
TCP traffic in the WLAN, each having one session. The 802.11e AP (QAP) is
viewed as two nodes: QAPv having a queue for AC 3 VoIP traffic for all VoIP
calls, and the other, QAPt, having a queue for AC 1 TCP traffic to serve all
TCP downloads. This model is illustrated in Figure 4. Note that at any time
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the WLAN in Figure 4 can be seen to consist of Nv + Nt + 2 nodes. We call the
QSTAs with AC 3 as QSTAv and QSTAs with AC 1 as QSTAt.

Modeling VoIP Phone Calls: Each VoIP call results in two RTP/UDP streams,
one from a remote client to a wireless QSTA, and another in the reverse direction.
We assume that each call uses the ITU G711 codec. Packets are generated every
20 ms. Including the IP, UDP and RTP headers, the size of the packet emitted
in each call in each direction is 200 bytes every 20 ms. As a QoS requirement
we demand that the probability that a packet is transmitted successfully within
20 ms is close to 1. Thus, if the QoS target is met, whenever a new packet arrives
at a QSTAv, it will find the queue empty with a high probability. Hence, the
following three assumptions will be acceptable in the region where we want to
operate: (1) the buffer of every QSTAv has a queue length of at most one packet,
and (2) new packets arriving to the QSTAvs arrive only at empty queues. The
latter assumption implies that if there are k QSTAvs with voice packets then,
a new voice packet arrival comes to a (k + 1)th QSTAv. (3) Since the QAPv

handles packets from Nv streams, there can be up to Nv packets of different
calls in the QAPv. Thus we expect that QAPv is the bottleneck for voice traffic,
and we assume that it will contend at all times (at least when Nv is large). This
is a realistic assumption near system capacity.

As mentioned earlier, packets arrive every 20 ms in every stream. We use this
model in our simulations. However, since our analytical approach is via Markov
chains, we assume that the probability that a voice call generates a packet in
an interval of length l slots is pl = 1− (1 − λ)l, where λ is obtained as follows.
Each system slot in 802.11b is of 20μs duration (hereafter denoted as δ). Thus
in 1000 system slots there is one arrival. Therefore, for the 802.11b PHY we take
λ = 0.001. This simplification turns out to yield a good approximation.

Modeling TCP Controlled File Downloads: Each QSTAt has a single TCP con-
nection to download a large file from a local file server. Hence, the QAPt delivers
TCP data packets towards the QSTAts, while the QSTAts return TCP ACKs.
Here we assume that when a QSTAt receives data from the QAPt, it imme-
diately sends an ACK, i.e., we do not model delayed ACKs here, though the
delayed ACKs case can also be done (see [11]). We assume that QAPt and the
QSTAts have buffers large enough so that TCP data packets or ACKS are not
lost due to buffer overflows. Since, by assumption, there are no bit errors, pack-
ets in the channel are lost only due to collisions. Also, we assume that these
collisions are recovered by the MAC before TCP time-outs occur. As a result
of these assumptions, for large file transfers, the TCP window will grow to its
maximum value and stay there. As Nt is increased this assumption is close to
what happens in reality.

We then adopt an observation made by Bruno et al. [3]. Since all nodes with
AC 1 (including the QAPt) will contend for the channel and no preference is
given to the QAPt, most of the packets in the TCP window will get backlogged
at the QAPt. The QAPt’s buffer is served FIFO, and we can assume that the
probability that a packet transmitted by the QAPt to a particular QSTAt is 1

Nt
.
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Thus it is apparent that the larger the Nt, the lower is the probability that the
QAPt sends to the same QSTAt before receiving the ACK for the last packet
sent. Then it is assumed that the probability that any QSTAt has more than
one ACK is negligible. We can thus simply keep track of the number of QSTAt

with ACKs. If there are several QSTAts with ACKs then the chance that QAPt

succeeds in sending a packet is small. Thus the system has a tendency to keep
most of the packets in the QAPt with a few nonempty QSTAts, each having
ACKs to send back. This results in a closed system, wherein each time the
QAPt succeeds, it activates a QSTAt which then has an ACK packet, and each
time a QSTAt succeeds, the number of non-empty QSTAts reduces by one.

Thus for the QSTAts that are downloading files, our modeling assumptions
are: (1) a QSTAt has either 0 or 1 ACK packet waiting to be sent to the QAPt,
and (2) when the QAPt sends a data packet it is assumed to be destined to a
QSTAt that has no ACK queued.

3.2 The Analytical Model

We provide an outline of the mathematical model. The details are available
in [6]. The evolution of the channel activity in the network is as in Figure 3.
Uj , j ∈ 0, 1, 2, 3, . . . , are the successive channel slot boundaries. Thus the interval
[Uj−1, Uj) is the jth channel slot. Let the time length of the jth channel slot be
Lj (see Figure 3). Let Y

(v)
j be the number of non-empty QSTAvs, and Y

(t)
j be

the number of non-empty QSTAts at the instant Uj . Thus 0 ≤ Y
(v)
j ≤ Nv and

0 ≤ Y
(t)
j ≤ Nt. Figure 3 shows the evolution of the channel activity when AC 3

and AC 1 queues are active; here the value of l = 1, i.e., the AIFS for AC 1 is one
slot more than that of AC 3. Note that at the instants U4, U6, U7 and U10, only
AC 3 nodes can contend for the channel, whereas AC 1 nodes have still to wait
for one more system slot to be able to contend. At other instants, U5, U8, U11

and U13, nodes with AC 3 or AC 1 can attempt. The AC attempt probabilities
obtained from Section 2 above are conditioned on when an AC can attempt.
Thus, we use the variable Y

(s)
j to keep track of which ACs are permitted to

attempt in a channel slot. Let Y
(s)
j = 1 denote that the preceding channel slot

had an activity and so in the beginning of the jth channel slot, only nodes with
AC 3 can attempt. Let Y

(s)
j = 0 denote that the preceding channel slot remained

idle and hence, at the beginning of the jth channel slot any node can attempt.
Thus Y

(s)
j ∈ {0, 1}.

In order to assess the voice capacity, we take the queue QAPv to be saturated.
However, to obtain the TCP throughput with different number of voice calls, we
also need to model the number of voice packets in QAPv. For this we introduce
another variable, X

(v)
j , the number of voice packets in QAPv.

Thus, for determining the voice capacity we work with the process
{Y (v)

j , Y
(t)
j , Y

(s)
j ; j ≥ 0}, and for studying TCP throughputs, for different num-

ber of voice calls, we work with the process {Y (v)
j , Y

(t)
j , Y

(s)
j , X

(v)
j ; j ≥ 0}. In
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either case, in order to model the evolution of these processes we introduce the
following approximation. We use the attempt probabilities obtained above in
Section 2. Let β

(v)
nv ,nt be the attempt probability of a node with AC 3 and β

(t)
nv,nt

be the attempt probability of a node with AC 1, when there are nv nonempty
(and hence contending) VoIP nodes and nt nonempty TCP nodes in a channel
slot. These attempt probabilities are conditioned on the event that the corre-
sponding ACs can attempt (which information we have taken care to keep in
the state, via the variable Y

(s)
j )), and are obtained from saturation fixed point

analysis above in Section 2 for all combinations of nv, nt. Our approximation
is that the state dependent values of attempt probabilities from the saturated
nodes case can be used for a WLAN where the nodes are not saturated, by
keeping track of the number of nonempty nodes in the WLAN and taking the
state dependent attempt probabilities corresponding to this number of nonempty
nodes.

With the binomial distribution for voice packet arrivals assumed above,
and the state dependent probabilities of attempt, it is easily seen that
{Y (v)

j , Y
(t)
j , Y

(s)
j ; j ≥ 0} or {Y (v)

j , Y
(t)
j , Y

(s)
j , X

(v)
j ; j ≥ 0} form finite irreducible

discrete time Markov chains on the channel slot boundaries and hence are pos-
itive recurrent. The stationary probabilities of the Markov Chains can then be
numerically determined. Next the state dependent attempt probabilities are used
to obtain the distribution of the channel slot duration. On combining the chan-
nel slot length analysis with the Markov chains above, we finally conclude that
{(Y (v)

j , Y
(t)
j , Y

(s)
j ; Uj), j = 0, 1, 2, . . .}, or {(Y (v)

j , Y
(t)
j , Y

(s)
j , X

(vAP )
j ; Uj), j ≥ 0}

are Markov renewal processes. When analysing the voice capacity we let Aj de-
note the “reward” of value 1 in the process {(Y (v)

j , Y
(t)
j , Y

(s)
j ; Uj), j = 0, 1, 2, . . .}

when the QAPv wins the channel contention in jth channel slot. When analysing
the TCP throughput, we let Rj denote a reward of value 1 in the process
{(Y (v)

j , Y
(t)
j , Y

(s)
j , X

(vAP )
j ; Uj), j ≥ 0} when the QAPt wins the channel con-

tention in the jth channel slot. Writing A(t) an R(t) as the cumulative rewards
until time t, a standard Markov regenerative argument ([8]), in each case, yields
the reward rates ΘAP−V oIP (Nv, Nt) := limt→∞

A(t)
t , and ΘAP−data(Nv, Nt) :=

limt→∞
R(t)

t .
Since the rate at which a single call sends data to the QAPv is λ, and the

QAPv serves Nv such calls, the total arrival rate to the QAPv is Nvλ. This
rate should be less than ΘAP−V oIP (Nv, Nt) for stability. Thus, a permissible
combination of Nv VoIP calls and Nt TCP sessions, while meeting the delay
QoS of VoIP calls, must satisfy

ΘAP−V oIP (Nv, Nt) > Nvλ (7)

The above inequality defines the admission region for VoIP. Note that we are
asserting that the Nv that satisfies Inequality (7) also ensures the delay QoS.
This will be validated by simulation.

In our calculations we use the basic access mechanism for the TCP traffic.
This will facilitate the validation of our analytical results through ns-2 simu-
lations with the EDCA implementation of [16], which supports only the basic
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Table 1. Parameters used in analysis and simulation of the EDCA 802.11e WLAN

Parameter Symbol Value
PHY data rate Cd 11 Mbps
Basic (control) rate Cc 2 Mbps
G711 pkt size Lvoice 200 Bytes
Videostreaming pkt size Lvideo 1500 Bytes
Data pkt size LT CP data 1500 Bytes
PLCP preamble time TP 144μs
PHY Header time TP HY 48μs
MAC - layer ACK Pkt Size LACK 112 bits
MAC Header size LMAC 288 bits
Idle /system slot (802.11b) δ 20μs

Parameter Symbol Value
AIFS(3) Time TAIF S(3) 50μs

AIFS(2) Time TAIF S(2) 50μs

AIFS(1) Time TAIF S(1) 70μs

SIFS Time TSIF S 10μs
Min. CW for AC(3) CWmin(AC(3) 7
Max. CW for AC(3) CWmax(AC(3) 15
Min. CW for AC(2) CWmin(AC(2) 15
Max. CW for AC(2) CWmax(AC(2) 31
Min. CW for AC(1) CWmin(AC(1) 31
Max. CW for AC(1) CWmax(AC(1) 1023

access mechanism. However, our analysis can be worked out for the RTS/CTS
mechanism as well.

3.3 Numerical Results

In order to validate and show the accuracy of the model, we take two steps. Of
course, we check if the performance measures predicted by our analysis match
with those obtained from analysis. We also analytically obtain three auxiliary
measures (namely, the attempt rate of AC 3 nodes, the attempt rate of AC 1
nodes, and the total collision rate in the WLAN (see [6]), and compare the
analytical results for these with simulation. Here we only report the performance
measures for VoIP and TCP; the other validations can be found in [6].

The simulations were obtained using ns-2 with an EDCA implementation
[16]. The PHY parameters conform to the 802.11b standard. See Table 1 for the
values used in our simulation.

In Figure 5, we show the analytical plot of the service rate applied to QAPv

vs. the number of calls, Nv for three different values of Nt ∈ {0, 1, 10}. We note
that the QAPv service rate crosses the QAPv load rate after 12 calls for Nt = 0.
This suggests that a maximum of 12 calls can be carried while meeting the delay
QoS on an 802.11e WLAN when no TCP traffic is present on AC 1. When one
TCP session is added to the WLAN (i.e., Nt = 1), the QAPv service rate crosses
below the QAPv load rate after 10 calls. This implies that only 10 calls are
possible when any TCP session is added to the WLAN. The same is the case
even when 10 TCP sessions are added to the WLAN.

Remark 3. The analysis in Figure 5, assumes that the QAPv is saturated. It is
for this reason that the QAPv service rate exceeds the load arrival rate for small
Nv. The crossover point would however correctly model the value of Nv beyond
which voice QoS will be violated. �
From Figure 5, we observe that for each value Nv, with increase in the value
of Nt from zero to a non-zero value, the service rate available to the QAPv

decreases. This is, of course, because the QAP needs to service the TCP traffic
also. However, the curves of Nt = 1 and Nt = 10 are very close. The effect of one
TCP transfer is the same as that of 10 TCP transfers. The reason is that the
QAPt queue is already saturated with 1 TCP. By adding more TCP transfers a
few more QSTAs begin to contend, but this number does not change much with
increasing Nt (see also Kuriakose [11]).
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Simulation results for the QoS objective of Prob(voice packet delay >
20ms) for the QAPv and the QSTAvs are shown in Figure 6. Note that the
Prob(voice packet delay :QAPv >20ms) is greater than Prob(voice packet delay :
QSTAv > 20ms) for each given Nv, and that the QAPv delay shoots up before
the QSTAv delay, confirming that the QAPv is the bottleneck, as per our as-
sumptions. It can be seen that with and without TCP traffic, there is a value
of Nv at which the Prob(voice packet delay > 20ms) sharply increases from a
value below 0.01. This can be taken to be the voice capacity. In the case of no
data traffic, we obtain 12 calls, matching the analysis result and when there is
data traffic, we get 9 calls, one less than the analysis result.

For a data packet length of 1500 bytes, using IEEE 802.11b PHY parameters,
with PHY data rate of 11Mbps, we numerically calculate the total download
throughput for TCP traffic, i.e., ΘAP−data(Nv, Nt) (with Nt = 10) from our
analytical model, for varying number of voice calls Nv. The analytical plot has
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been given in Figure 7 and the figure also shows the simulated TCP download
throughput with 95% confidence intervals. Figure 7 shows that the reduction of
TCP throughput with increasing Nv is almost linear at the rate of 1

3 Mbps per
VoIP call.

Remark 4. Figure 7 can be used for admission control of VoIP calls in order to
guarantee a net minimal throughput to the data traffic. For instance if at least 2
Mbps of aggregate TCP throughput is to be allotted to data traffic then Figure 7
says that only 7 VoIP calls should be admitted. �

4 CBR VoIP, Streaming Video and TCP File Downloads
over EDCF

Finally, we briefly report on our results on modeling the complete situation
depicted in Figure 1. To achieve this we need to add streaming video from the
wired network into the QSTAs, via the QAP. The streaming video is handled in
AC 2 in the QAP. We do not model any feedback traffic (e.g., RTCP packets)
from the receiving QSTAs. Hence, the problem reduces to modeling one AC 2
queue in the QAP handling a video packet stream from the video server, thus
yielding a model in which an AC 2 queue for video is added at the QAP in
Figure 4. We follow an approach identical to that described in Section 3. The
details of the analysis are provide in [7]. We present the results obtained from the
analysis and simulation. The simulations were obtained using ns-2 with EDCA
implementation [16]. See Table 1 for the values used in the simulation.

In Figure 8, we show the analytical plot of QAPv service rate vs. the number
of calls, Nv for cases when only VoIP calls are present and when VoIP calls are
present along with streaming video and TCP download sessions. From Figure 8,
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as before (see Figure 5), we note that the QAPv service rate crosses the QAPv

load rate, after 12 calls for Nt = 0 and no video sessions. When video streaming
sessions and TCP download sessions are also present in the WLAN, the QAPv

service rate crosses below the QAPv load rate after 7 calls. This implies that
only 7 calls are possible when video and TCP download traffic are present.

Simulation results for the QoS objective of Prob(voice packet delay > 20ms)
for the QAPv and the QSTAvs are shown in Figure 9. Note that the
Prob(voice packet delay : QAPv >20ms) is greater thanProb(voice packet delay :
QSTAv > 20ms) for given Nv and that the QAPv delay shoots up before the
QSTAv delay, confirming that the QAPv is the bottleneck, as per our assumptions.
It can be seen that with and without TCP traffic and video streaming traffic, there
is a value of Nv at which the Prob(voice packet delay > 20ms) sharply increases
from a value below 0.01. This can be taken to be the voice capacity. When TCP
and video traffic is present, we get a maximum of 6 calls, one less than the anal-
ysis result. When Nt = 0 and only VoIP and video traffic is present, we obtain a
maximum of 8 VoIP calls.

We plot the analytical and simulation saturation throughput of video sessions
vs. the number of VoIP calls in Figure 10. The number of TCP sessions, Nt,
is 5. The video sessions are assumed to be using 1500 byte packets. The video
queue of QAP in the simulation is saturated by sending a high input CBR traffic
(more than 5Mbps). We observe that the analytical results match very closely
with the simulation results for different number of VoIP calls. For instance,
for Nv = 4, the analysis yields a video throughput of 3.25 Mbps while the
simulation value is 3.26 Mbps. Note that the plot after Nv = 6 calls is not of
any use because, from Figure 9 we already saw that the VoIP delay QoS breaks
down after Nv = 6 calls. The error between the analysis and simulation then, is
less than 5%, in the admissible region of VoIP calls. Suppose we consider actual
SD-TV video streaming sessions with a rate of 1.5 Mbps between the server on
the local network and the QSTAvds, then the results in Figure 10 imply that,
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with 4 VoIP calls and TCP download traffic, we can handle 2 video streaming
sessions. How close we can go to the saturation throughput is answered by the
QoS constraint of loss probability, which we have also analysed (see [5]).

The analytical and simulation results for aggregate TCP download through-
put obtained by TCP sessions vs. the number of VoIP calls is shown in Figure 11.
The number of TCP sessions, Nt = 5. The video sessions are assumed to be using
1500 bytes, with QAPvd being saturated. For instance, for Nv = 3, the aggre-
gate throughput obtained from analysis is 1.01 Mbps and that obtained from
simulations is 1.10 Mbps. We note that though the analytical curve follows the
shape of the simulation curve, it underestimates the aggregate TCP throughput
by at most 100 Kbps when compared with the simulations.

5 Conclusion

In this paper we have surveyed some of our contributions to the modeling and
performance analysis of IEEE 802.11 and 802.11e WLANs. We reviewed our
extensions to the fixed-point based saturation analysis. Then we provided an
analytical approach for obtaining the capacity of VoIP calls, streaming video and
TCP controlled download throughput in EDCA 802.11e WLAN. The analysis
proceeded by modeling the evolution of the number of contending QSTAs at
channel slot boundaries. This yielded a Markov renewal process. A regenerative
analysis then yielded the required performance measures. Our work provides the
following modeling insights:

– Using saturation attempt probabilities as state dependent attempt rates
yields a good approximation in the unsaturated case.

– Using this approximation, an IEEE 802.11e infrastructure WLAN can be
well modeled by a multidimensional Markov renewal process embedded at
channel slot boundaries.

We also obtain the following performance insights:

– Unlike the original DCF, the EDCA mechanism supports the coexistence of
VoIP connections and TCP file transfers; but even 1 TCP transfer reduces
the VoIP capacity from 12 calls to 9 calls. Subsequently the VoIP capacity is
independent of the number of TCP transfers (see Figure 6). With a saturated
video queue (handled as AC 2) the VoIP capacity drops to 6 calls.

– The AP is indeed the performance bottleneck in the case of packet voice
traffic.

– For an 11 Mbps PHY, without video, the file download throughput reduces
linearly with the number of voice calls at the rate of 1

3 Mbps per additional
voice call from 0 to 9 calls.

While a considerable amount of analytical modeling has been performed for
small IEEE 802.11 networks, good models for larger networks, that capture
spatial reuse and hidden nodes still remain elusive. This is an important area of
ongoing work.
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Maintaining Information About Nearby

Processors in a Mobile Environment

Faith Ellen�, Sivaramakrishnan Subramanian��, and Jennifer Welch��

Abstract. The problem of maintaining information about the location
of nearby processors in a mobile adhoc network is considered. A new
scalable, deterministic algorithm is presented, provided processors can
only move along a line. Many open questions and directions for future
work are discussed.

1 Introduction

In many algorithms designed for mobile adhoc networks, processors are assumed
to know information (such as location) about the other processors that are
located nearby [1,3,4,7,9]. However, as processors move, the information may
change and the set of processors each particular processor needs to know about
may change.

Updating information is not simply a matter of each processor broadcasting
changes to its information when they occur. One problem is that nearby proces-
sors may not necessarily be within transmission range of one another. To handle
this, processors have to relay some of the information they receive from their
neighbours. For example, Calinescu [5] shows how processors can maintain in-
formation about the processors that are at most two hops away, assuming that
broadcasts never interfere with one another.

A more significant problem is that there is interference when different proces-
sors perform concurrent broadcasts. In this case, the information contained in
the messages will not be received by these processors. Furthermore, a processor
that is in transmission range of two or more of these processors will also not re-
ceive any messages, even if it doesn’t broadcast and the broadcasting processors
are not within transmission range of one another.

One way to avoid interference is to employ time slicing. Each processor pe-
riodically gets allocated a time slot in which it can broadcast updates to its
information. Unfortunately, the time between a processor’s broadcasts depends
on the total number of processors in the system and, hence, this solution is
not scalable. In particular, if the number of processors is large, the information
known about a specific processor will be out of date most of the time.
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Another approach to gathering and maintaining information about nearby
processors and for communicating with them, popular in practice, is to settle for
probabilistic guarantees on performance, by relying on random behavior of the
processors. For instance, in the hello protocol [3], used to discover and maintain
neighbor relationships in mobile adhoc networks, each processor periodically
broadcasts a hello packet. When another processor receives such a message, it
knows that the sender is currently its neighbor. It is assumed that the likelihood
of missing more than a fixed number of such hello packets from a neighbor, due
to collisions, is negligible. This likelihood can be reduced even further by adding
some random jitter to the time when hello packets are sent.

In the IEEE 802.11 standard, the medium access control protocol resolves
channel contention using randomization: a processor chooses a random “back-
off interval” in some range, and waits this amount of time before performing
the RTS/CTS protocol [2]. In this protocol, a few short control packets are ex-
changed, in which the processor requests to send (RTS). Once it has been cleared
to send (CTS), the processor broadcasts the data. Since the control packets are
short, the probability of collisions is assumed to be small. The use of a random
backoff interval makes this probability even smaller.

The ability of processors to discover their neighbors and to communicate with
them using these protocols is probabilistic. There always exists a (small) proba-
bility that a processor has incorrect information about its neighbors and that it
is unable to transmit information to its neighbors. For some applications, such
as real-time applications, which require stringent guarantees on system behav-
ior, typically deterministic upper bounds on message delays, such probabilistic
behavior is not acceptable.

In this paper, we consider how information about nearby processors can be
maintained deterministically by processors as they move. Section 2 presents a
model in which to study this problem. In Section 3, we give an algorithm for
a restricted case in which processors move along a line. This case is a good
model for one-dimensional environments such as highways and railroads. More
importantly, the work in this section provides a good foundation for addressing
various issues that arise in more general versions of the problem, discussed in
Section 4. We also hope that the algorithm for the restricted case will provide
insight to solutions for other versions.

2 Model

We consider a set of n processors moving in a Euclidean space, for example, on
the plane or along a line. The motion of a processor can be described by its
trajectory, a function that specifies the location of the processor as a function of
time. There is an upper bound σ on maximum speed of a processor.

Because processors occupy space, there is also an upper bound on the density
of processors. However, trajectory functions may be allowed to intersect. For
example, a four lane highway can be modelled as a line on which at most four
processors can occupy the same location at the same time.
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Each processor is assumed to know its current location, for example, via GPS,
and its future trajectory, for some period of time. We also assume the existence
of a global clock, which can be read by all processors.

Processors communicate by wireless broadcast [10,8]. There are two important
parameters related to the reception of broadcast messages, the broadcast radius,
R, and the interference radius, R′ ≥ R. If a processor p is within distance R of
another processor q during the time that q is broadcasting a message, then the
message arrives at p. If, in addition, no other processor within distance R′ of p
transmits at any point during this period of time, then p receives the message
broadcast by q. Collisions occur when a message arrives at a processor, but is
not received. A processor broadcasting a message may or may not be aware of
collisions that occur at processors within its broadcast radius.

Broadcasts occur during broadcast slots, which are disjoint unit intervals of
time. They are sufficiently long so that a message which starts being broadcast
at the beginning of a broadcast slot arrives at all processors within the broadcast
radius of the sender by the end of the broadcast slot. Broadcast slots start every
u units of time and each is followed by an interval of u− 1 time units that can
be used by other algorithms. We assume that broadcast slot 0 starts at time 0.
Then broadcast slot j starts at time ju.

3 An Algorithm for Maintaining Information on a Line

In this section, we present a scalable, deterministic algorithm for processors to
maintain trajectory information about all nearby processors, provided proces-
sors can only move along a line. We make two simplifying assumptions. The first
assumption is that each processor knows its entire trajectory function and can
easily share this information with other processors. This means that trajectory
functions must be representable in a relatively succinct way. The second assump-
tion is that, at the beginning of the algorithm, each processor knows the entire
trajectory of every nearby processor. This can be achieved by simply assuming
that processors are initially sufficiently far apart from one another, so that no
processors has any other processor nearby.

Our approach is to partition the line into segments of length G, starting at
each multiple of G. The segments are coloured with the m colours 0, 1, . . . , m−1.
Segment i is the half open interval [iG, (i + 1)G) and has colour i mod m. Seg-
ments with the same colour are assigned to the same broadcast slots and seg-
ments with different colours are assigned to different broadcasts slots.

Our algorithm proceeds in phases, consisting of m − 1 broadcast slots. The
segments that are not assigned to any broadcast slot in a particular phase are
assigned to the first broadcast slot in the next phase. During each broadcast
slot, the only processors allowed to broadcast are those that were in a segment
assigned to this broadcast slot at the beginning of the phase.

To avoid collisions between broadcasts performed by processors in the same
segment, the processors in each segment at the beginning of a phase choose a
leader. During each broadcast slot in that phase, only the leaders of segments
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assigned to the broadcast slot can perform broadcasts. Provided that all proces-
sors in the same segment know the locations of the processors that are currently
in the segment, they can agree on the same leader, in some predetermined way,
using only local computation. (Another possibility is to choose a leader of a seg-
ment immediately before a broadcast slot to which it is assigned. The problem
with this approach is that a processor moving from one segment to another seg-
ment during a phase might entirely miss its opportunity to broadcast during a
phase, even if both segments are scheduled.)

If segments of successively increasing colour are assigned to successive broad-
cast slots, then information propagates rightwards quickly, but may be slow to
propagate leftwards. Similarly, if segments of successively decreasing colour are
assigned to successive broadcast slots, then information propagates leftwards
quickly, but may be slow to propagate rightwards. Instead, our assignment of
segments to broadcast slots interleaves sequences of segments of successively
increasing and successively decreasing colours.

Segments

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 <> <> <>
1 < < <
2 > > >
3 < < <
4 > > >
5 <> <> <>
6 < < <
7 > > >
8 < < <
9 > > >

B
ro

a
d
ca

st
S
lo

ts

10 <> <> <>
11 < < <
12 > > >
13 < < <
14 > > >
15 <> <> <>

Fig. 1. The Broadcast Schedule for m = 6

The broadcast schedule for m = 6 is illustrated in Figure 1. A “>” indi-
cates a segment that arises from the successively increasing sequence of segment
colours, a “<” indicates a segment that arises from the successively decreasing
sequence of segment colours, and a “<>” indicates a segment that arises from
the intersection of both.

When m is odd, the broadcast schedule is slightly different. Specifically, in the
second broadcast slot of an odd phase, the assigned segments are chosen accord-
ing to the increasing sequence of segment colours, rather than the decreasing
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Segments

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0 <> <> <>
1 < < <
2 > > >
3 < < <
4 <> <> <>
5 > > >
6 < < <
7 > > >
8 <> <> <>
9 < < <

10 > > >
11 < < <

B
ro

a
d
ca

st
S
lo

ts

12 <> <> <>
13 > > >
14 < < <
15 > > >
16 <> <> <>

Fig. 2. The Broadcast Schedule for m = 5

sequence. For example, see the broadcast schedule for m = 5 that appears in
Figure 2.

The complete algorithm is presented in Figure 3. The function location()
returns the current location of the processor that called it.

There are two constraints we will impose on the parameters G and m. The
first constraint,

(m− 1)uσ < G, (1)

says that a processor cannot cross more than one segment boundary during a
phase. The second constraint,

(m− 1)G− 2[(m− 2)u + 1]σ ≥ R + R′, (2)

implies that every broadcast that arrives at a process is received. This follows
from the facts that the distance between the end of a segment and the beginning
of the next segment of the same colour is (m − 1)G, the time between the
beginning of a phase and the end of its last broadcast slot is (m− 2)u + 1, and
a processor can move at most distance [(m− 2)u + 1]σ during this time.

If, in addition, there is a lower bound on the density of processors, then there
is an upper bound on the time it takes for information to be propagated.

Lemma 1. If there is never an interval of length [R − 3(m − 1)uσ − 3G]/2
that contains no processors, then the speed of information propagation is at least
G/2u, (i.e. information travels at least one segment for every two broadcast
slots), in the worst case.
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at time π(m − 1)u, for any non-negative integer π,
%this is the beginning of phase π
%determine the segment, i, in which processor p is located
i ← 
location()/G�
if p is the leader of segment i then

%determine the colour, f , of the segments which are
%assigned to the first broadcast slot in phase π
f ← (π mod 2)
m/2�
%determine to which broadcast slot, if any,
%segment i is assigned in phase π
j ← (i − f) mod m
offset ← (π mod 2) AND (m mod 2)
if j = 0 then slot ← 0
else if j ≤ 
m/2� − 1 then slot ← 2j− offset
else if j > 
m/2� then slot ← 2(m − j) − 1+ offset
%broadcast in the assigned broadcast slot
if j �= 
m/2� then

at time π(m − 1)u + slot, broadcast trajectory information

Fig. 3. The Information Maintenance Algorithm for Processor p

Using this result, it is possible to prove that the algorithm enables processors to
maintain trajectory information about nearby processors.

Lemma 2. Suppose there is never an interval of length [R−3(m−1)uσ−3G]/2
that contains no processors, and all processors know the trajectory functions of
the processors within distance R + 2(m − 1)uσ of themselves at the beginning
of phase 0. Then all processors know the trajectory functions of the processors
within distance R + 2(m− 1)uσ of themselves at the beginning of every phase.

Theorem 1. Suppose there is never an interval of length [R−3(m−1)uσ−3G]/2
that contains no processors, and all processors know the trajectory functions of
the processors within distance R + 2(m− 1)uσ of themselves at the beginning of
phase 0. Then all processors always know the trajectory functions of the proces-
sors within distance R of themselves.

For these results, it is not necessary that each processor repeatedly broadcast all
the trajectory functions it knows about. It suffices that processor p broadcasts
the trajectory function of processor q only if, at the beginning of the phase, there
is another processor q′ that p knows about, but may not know about q (because
q′ is more than distance R + 2(m − 1)uσ away from q) and will come within
distance R + 2(m− 1)uσ of q by the end of the phase.

Without the lower bound on the density of processors, but with a somewhat
more stringent constraint between G and m, there is a similar result, but with
the definition of nearby being closer.

Lemma 3. Suppose that R ≥ 4(m − 1)uσ + 4G and all processors know the
trajectory functions of the processors within distance R − G − 5(m − 1)uσ of
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themselves at the beginning of phase 0. Then all processors know the trajectory
functions of the processors within distance R−G− 5(m− 1)uσ of themselves at
the beginning of every phase.

The proofs of these results, including details about what information to include
in broadcasts, appear in [11] and will appear in the full version of the paper.

The constraints on the relative values of the parameters are easy to satisfy. For
example, suppose the broadcast radius, R, and the interference radius, R′, are
250 meters and 550 meters, respectively, (which are their default values in the
IEEE 802.11 standard), the length of a broadcast slot is 1 microsecond, and the
time, u, between the beginning of successive broadcast slots is 100 microseconds.
If G = 30 meters, m = 31 and σ < 36, 000 km/hr, or if G = 60 meters, m = 21
and σ < 4500 km/hr, then all of the constraints are satisfied.

4 Directions for Further Work

There are many open questions that remain. Some of these address possible
optimizations to the broadcast algorithm or the relaxation of various assump-
tions. Other questions are concerned with the model and various aspects of the
problem.

In the previous section, a broadcast schedule was presented that avoids col-
lisions and enables processors to quickly propagate information to other pro-
cessors, provided the density of the processors never gets too small. Are there
broadcast schedules that can propagate information faster? Are there broadcast
schedules that can propagate information efficiently when processors can be fur-
ther apart from one another? Perhaps an entirely different approach would be
better. For example, allowing a small number of collisions might enable a more
efficient algorithm to be obtained.

The density assumption ensures that processors moving towards one another
will learn about each other’s trajectory function before they are able to com-
municate directly, from processors located between them. However, if there is
a large region containing no processors and the processors on the boundary of
that region start moving towards one another, they cannot possibly get this
information until the distance between them is less than the broadcast radius.
Maybe the requirements for this situation should be relaxed so that processors
only have to know about one another’s trajectory functions until they have been
close to one another for a sufficiently long period of time. However, this may
have implications for the other parts of the algorithm and for applications that
rely on knowledge of the locations of all nearby processors.

Perhaps processors on a boundary should broadcast more frequently so that
they can be guaranteed to have exchanged information by the time they are
close together. Because processors can move at different speeds, processors can
overtake one another and, consequently, which processor is on the boundary can
change. In fact, if there are other processors close to the boundary, for example
in the same segment as a processor on the boundary, it may not be best to have
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the actual processor that is on the boundary be responsible for performing these
broadcasts, but instead have the leader of the segment perform them.

The assumption that each processor knows its entire future trajectory is prob-
ably the most unrealistic simplifying assumption we have made. It is more likely
that a processor only knows its trajectory for some short period of time in the
future, or that its trajectory function might change in response to events. Then
processors would need to announce information about their trajectories either
periodically or when they change.

It is also possible that a processor only has approximate information about its
location. For example, a processor might not know its exact location, but only
know the segment in which it is located at the beginning of the current phase,
perhaps with some error in either direction.

How should processors announce movement between segments, updates to
their trajectories, or other information (unrelated to their trajectories) that
needs to be maintained, but can change at arbitrary times? One approach is
to have the processors in a segment take turns being leader. Then they could
announce any changes during their allocated broadcast slots. This could work
well, provided the number of processors per segment is relatively small and care
is taken to schedule processors when they change segments, so that they don’t
lose their opportunity to broadcast. If there are many processors in a segment,
it might be better for the processors that have changes to announce to use a
separate algorithm for transmitting this information to the leader of their seg-
ment, using an algorithm that adapts to the number of participating processors.
For one segment, this problem is equivalent to broadcasting on a multiple access
channel [6]. However, it is also necessary to avoid collisions with processors in
nearby segments trying to do the same thing.

Our other simplifying assumption is that processors initially know the trajec-
tories of all nearby processors. How can this be achieved, if processors are not
initially far apart from one another? If processors have distinct identifiers in the
range {1, . . . , n} and all processors begin at time 0, then it suffices for processor
i to broadcast its trajectory information in broadcast slot i, for i = 1, . . . , n.
Then the broadcast schedule can begin with broadcast slot n + 1. Is it possible
to perform the initialization more efficiently? For example, could it help to have
the time at which processors broadcast be a function of both their identifiers
and location? When processors can begin at arbitrary times, the problem may
be more difficult.

The broadcast schedule relies on the existence of a global clock. Common
knowledge of time enables processors to determine the current locations of other
locations from their trajectory functions. A global clock also allows processors
to agree on the beginning of broadcast slots and the beginning of phases. A
weaker assumption is the existence of a heartbeat, a beacon that transmits ticks
at regular intervals, but does not provide the time. In particular, this enables
processors to construct local clocks that run at the same rate. If the ticks are
sufficiently far apart, then our broadcast schedule still works. For example, when
m is even, all even phases are the same and all odd phases are the same. If a tick
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occurs once every two phases, then processors can agree, for example, to start
odd phases immediately after ticks. However, if ticks occur more frequently, then
processors may need to rely on a clock synchronization protocol to agree on the
number of each phase, when phases begin, or when broadcast slots begin. For
processors on boundaries or during initialization, ticks that occur too frequently
can be especially problematic, because there has been no communication and,
hence, no synchronization. In these cases, one idea is for a processor to choose
the length of time between successive broadcasts as a function of its location.

Most mobile ad hoc networks consist of processors moving on a plane or in
space. Can the same approach that was used, in Section 3, to maintain trajectory
information be extended from one dimension to two dimensions by appropriately
colouring a tiling of the plane with squares or hexagons? What about in three
dimensions?

Our model assumes omnidirectional antennas, which broadcast messages both
to the left and right simultaneously. With directional antennas, the problem
changes significantly. It is possible to avoid some interference, for example two
nearby processors that want to broadcast away from one another. It also may be
more energy efficient to use a directional broadcast if a message only has to be
sent in one direction. However, if a processor wants to send the same information
in both directions, it will need to perform two broadcasts instead of one. In two
and three dimensional environments, this issue is even more complex, because
one has to consider the conical broadcast regions where messages will arrive at
other processors and the larger regions surrounding them where messages may
cause interference.

Finally, it would be useful to implement our algorithm for maintaining trajec-
tory information about nearby processors, to see how it performs experimentally
and to find good choices for the parameters G and m. More generally, an ex-
perimental comparison of this algorithm with simpler approaches that rely on
randomization would be interesting.
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Abstract. Topology control for ad hoc networks is needed to conserve
energy and increase the network life time. In this paper we propose a
Residual Energy Adaptive Re-Routing(REAR) scheme in conjunction
with a Mixed Integer Linear Programming (MILP) model for prolong-
ing the lifetime of the network. The approach is based on the multi-
commodity flow which involves routing several requests from the sources
to the sinks in a given network by splitting and re-routing the non-
optimal flows over multiple paths. The REAR algorithm ensures uniform
consumption of energy across all the nodes in the network thereby in-
creasing the lifetime of the network. This algorithm is compared with
earlier works and results observed show that the MILP algorithm in
conjunction with the REAR algorithm perform better than the existing
algorithms.

1 Introduction

Mobile ad hoc networks are multi-hop, wireless, infrastructure less collection of
self organizing mobile hosts that form a temporary cooperative network without
the aid of any base station. These networks can be created and used anywhere
and anytime and are intrinsically fault-resilient as they do not operate under a
fixed topology.

In ad hoc networks, nodes have limited battery power and these nodes have
the capacity to modify the area of coverage with their transmitting power and
thereby reduce energy consumption and increase the lifetime of the network.
However, reducing the transmitting power leads to loss of connectivity. Hence,
there is a need to maintain the connectivity of the network apart from reducing
the redundant exchange of messages and extending the life time of the network.
Since considerable amount of expensive energy is utilized to transmit packets
over long distances, short multi-hops are preferred to reduce the average energy
requirements, resulting in large delay in delivery of packets. Moreover inadequate
security and poor quality of service add to the problems of ad hoc networks.
Motivation: The routing protocols in wireless ad hoc networks play a significant
role in energy management and prolonging the lifetime of the network. If there
is a large transmitting power at each node, then network connectivity is very
high and delay is low, on account of smaller number of relay nodes between the
source and destination. The number of nodes in the transmitting range being
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high deteriorates the network capacity resulting in poor transmission quality as
the nodes interfere with each other. Therefore, it is essential for the nodes to
have an optimal transmitting power in the network.

Contribution: We have proposed a Multi Commodity Flow Model for maxi-
mizing the life time of the ad hoc wireless network by partitioning the load
over multiple paths between a source destination pair using the Residual Energy
Adaptive Re-routing Algorithm. This technique enhances the lifetime of the net-
work. The rest of the paper is as follows: Section 2 presents related work and
different power control schemes. Sections 3 and 4 presents the ILP and the MILP
formulations and the REAR algorithm. Performance analysis and conclusions
are presented in Sections 5 and 6 respectively.

2 Literature Survey

Bambos [1] has reviewed the developments in power control in wireless networks
and identified the need for minimum power routing protocols. In [2], the authors
suggest topology control of a multi-hop wireless network to minimize power
consumption. Chang et al. [3] have proposed multi-commodity flow algorithms
to select routes and corresponding power levels in a static wireless ad hoc network
to maximize the life of the battery. Wieselthier et al. [4],[5],[6] have developed
energy-efficient broadcast and multi-cast algorithms for wireless ad hoc networks.

Melodea et al. [7] have proposed a distributed topology control and geo-
graphical routing in ad hoc and sensor networks to improve energy efficiency.
Li et al. [8] have analyzed localized topology control for heterogeneous networks
with different power levels. Abhas et al. [9] have proposed a leader election and
density based clustering algorithm for enhanced connectivity and maximizing
life time. Shiva Prakash et al. [10], [11] have proposed an intelligent gateway se-
lection heuristic which eliminates redundant gateways during passive clustering
and reduce the number of rebroadcasts and have studied a number of peculiar
cases of network topology, which are frequent in a mobile environment.

3 Problem Definition

Given an ad hoc wireless network Gw(N, L) of a finite set of nodes, N = { 1, 2,
..., n } and a finite set of links L = { ( x, y ) | x, y ∈ N∧ x �= y }; a link is said
to exist between two nodes x and y if they are within the transmission range of
each other. A node can either be a transmitter or a receiver or a relay node or
all of the above. Consider the above defined graph Gw(N, L), with N nodes and
L links. The objectives are to,

– utilize the energy uniformly across all the nodes of the network.
– maximize the lifetime of the network by re-routing the flows optimally.
– reduce the load on the nodes of the network.
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3.1 Assumptions

– The nodes are distributed uniformly in a two-dimensional area. The source
and destination pairs are chosen randomly and multiple paths exists between
the source and destination (sd pair).

– All the nodes are unaware of the topology. The network is not reconfigured
during the computation.

– Each node is battery operated and has variable transmitting power and the
battery is not recharged. The links between the nodes are bi-directional, that
is two nodes can communicate using the same transmitting power.

4 ILP and MILP Models for Maximizing the Lifetime of
the Ad Hoc Wireless Network

The objective is to formulate an Integer Linear Programming Model (ILP) to
minimize the power consumption and maximize the lifetime of the network on a
single fixed routing between a source destination pair. The following notations
are used in the ILP formulation.

– lxy, is the link between node x and node y.
– λsd, is the load between each (sd) node pair on a single path route.
– Λsd

xy, is the load between each (sd) node pair on a multiple path route.
– r, is the route between a (sd) pair.
– r ∈ R, is the set of all routes between any (sd) pair.
– hsd, is the maximum number of hops allowed for any (sd) node pair.
– B, be the bandwidth of the node.
– Bx

max, be the maximum bandwidth at node x.
– Tnl, be the life time of the ad hoc wireless network.
– Px, is the set of all nodes that are within the transmitting range of node x.
– Epmax, is the maximum transmitting power of a node.
– Ex

emax, is the maximum energy at the node x.
– Ex

t , is the transmitting power of the node x.
– dxy, is the distance between the nodes x and y.
– exy, is the energy required for the node x to transmit an information unit

to its neighbor y.
– α, is the path loss factor.

The binary constraints defined below ensure that a link exists between the
s−d pair and a link exists between the two nodes x and y. Equation 1 describes
that each edge corresponds to two directed links. Transmissions by a node can
be received by all nodes within its transmission range; that is, if there is a link
between the nodes x and y, and if dxy > dxk, then there is a link between x and
k as in eqn. 2. This shows that the nodes have broadcast capability.

(i) Binary constraints:

lxy =

⎧⎨
⎩

1 if a link exists between a node x and node y
of the network

0 otherwise
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lsd
xy =

⎧⎨
⎩

1 if a link xy exists on
a sd pair path

0 otherwise
(1)

(ii) Topology constraints:
lxy = lyx ∀xy ∈ N (2)

lxk =
{

1 if dxy > dxk

0 otherwise (3)

The power model for adhoc networks states that if exy is the energy needed
for a node x to reach node y, and dxy is the distance between nodes x and y, then
exy = dα

xy, were α takes a value ranging from 2 to 4. The nodes can adjust their
transmitting power as shown in eqn. 4, where Epmax is the maximum energy a
node can expend for any transmission.

(iii) Transmission range constraints:

Epmax ≥ Ex
t ≥ dα

xylxy xy ∈ N (4)

2 ≤ α ≤ 4

Each node has a maximum bandwidth B and a maximum transmitting power
Epmax. B of a node is the sum total of all the transmitted and received loads,
i.e., their sum should not exceed the bandwidth capacity of the node as shown
in the inequality 5. The first summation term represents all the outgoing packets
at node x, and the second summation term represents all the incoming packets.

(iv) Bandwidth constraints:∑
s,d

∑
y

lsd
xyλ

sd +
∑
s,d

∑
y

lsd
yxλsd ≤ B ∀x ∈ N (5)

The flow constraints shown in eqn. 6 highlight the ILP problem where the
flow over the s− d pair is not splittable, lsd

xy represents the entire flow between
s− d pair going through link x− y. The ILP problem is found to be NP-hard.

(v) Flow constraints:

∑
y

lsd
xy −

∑
y

lsd
yx =

⎧⎨
⎩

lsd if s = x
−lsd if d = x
0 otherwise

∀x ∈ N (6)

lsd
xy ≤ lxy ∀xy ∈ L (7)

The constraint eqn. 8 ensures that the hop count for each node pair does not
exceed the maximum count for any s− d pair. An increased hop count will lead
to a greater delay between the s− d pair.

(vi) Hop constraints: ∑
xy∈r

lsd
xy ≤ hsd ∀sd ∈ L (8)
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(vii) Network Lifetime: The lifetime of a node x is given by:

T x
max =

Ex
emax∑

y∈Px

exy

∑
sd

λsdlsd
xy

x ∈ N (9)

The lifetime of the ad hoc wireless network Tnl, is defined as the active period
of the network during which nodes are able to process and transmit data until a
node fails due to exhaustion of its battery, resulting in the partitioning of the net-
work. Therefore, the network lifetime Tnl under flow λ is the time when the first
node in N dies out and the network is partitioned. Therefore, by minimizing the
denominator in eqn. 9 the life time of the network can be augmented. We have,

Tnl = min
x∈N

T x
max (10)

So,

Tnl = min
x∈N

Ex
emax∑

y∈Px

exy

∑
sd

∑
sd

λsdlsd
xy

(11)

It is important to note that by routing the flow on to many shorter edges
than few longer edges will invariably increase the energy consumed along that
path. For a given request, the goal is to find a route that minimizes the max-
imum energy consumption. The modified MILP aims at finding this route and
maximizing the life time of the network.

The Mixed Integer Linear Programming Model (MILP) is used for multiple
path routing between a source destination pair. The notations used in MILP
formulation are same as the ILP model except for the Bandwidth and Route
Constraints which split the flow as shown in equations 12 and 13.

(i) Bandwidth constraints:∑
s,d

∑
y

Λsd
xy +

∑
s,d

∑
y

Λsd
yx ≤ Bw ∀x ∈ N (12)

(ii) Flow constraints:∑
y

Λsd
xy −

∑
y

Λsd
yx =

⎧⎨
⎩

Λsd if s = x
−Λsd if d = x
0 otherwise

∀x ∈ N (13)

The problem is to find a route within the hop-count hsd, which minimizes the
maximum transmitting power Ex

t for all nodes on the path, thus maximizing
the network lifetime Tnl. We assume that each node can transmit signals to its
neighbor in an error free way and the MAC layer protocols do not have signal
interference in transmissions. Initially requests are routed on short edge paths
(high energy consumption paths) in view of reducing transmitting power and
later re-routed using REAR algorithm to reduce energy consumption. In the
RBAR algorithm initially requests are routed on low energy consumption paths
and later re-routed to reduce the total load flowing on a node. Both REAR and
RBAR algorithms are compared in this paper.
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4.1 Algorithm: Residual Energy Adaptive Routing(REAR)

The following notations are used in this algorithm.

– Q = (s, d, Λsd) is the set of requests.
– k = |Q|, is the total number of requests.
– Wx, is the weight of a node x ∈ N .
– fi(x), is the flow of request i(1 to k) on node x.
– f∗

i , is the minimal flow for request i.
– Ci, is the cost of flow for request i.
– C∗

i , is the minimum cost of flow for request i.
– γ(x), is the energy utilization at node x.
– γ∗, is the optimal value of γ(minimum possible maximum energy utilization).
– γ0 is the energy utilization of the system at the start.
– ε, an error parameter greater that zero.
– η, is parameter in the exponent of the value Wx.
– σ, is the fraction of flow to reroute.

The aim is to find a scheme to route each request so that the maximum energy
utilization is minimized. γ∗ is the minimum possible maximum energy utilization.
The flow is optimal if its utilization γ is atmost a factor (1 + ε) more than the
minimum possible value γ∗, γ ≤ (1 + ε)γ∗. It is either infeasible or feasible
to give a flow for the problem, in which the utilization of each node is increased
by a factor (1 + ε) where ε > 0 be an error parameter. The input to a MILP
may have some measurement error, by making ε small enough. A procedure for
determining feasibility up to the precision of the input data can be obtained. ε
is at most 1 and for ε > 1 its value can be taken as 1.

Let Wx be a non-negative weight on node x. Then, the cost of the current
flow for request i, using Ci as the cost function is shown in eqn. 14.

Ci =
∑

xy∈L

Wxfi(x) ∀i ∈ Q (14)

For request i, C∗
i is the minimum cost function. Then the flow of the request

is optimal if.

Ci − C∗
i = εCi + ε

γ

k

∑
x

WxEx
emax (15)

else the flow is not optimal.
The algorithm REAR takes a non-optimal input flow that has utilization γ0

and error ε and returns a flow which is optimal or has an utilization at most
γ0/2. The procedure re-routes a fraction σ of the flow, of a non-optimal node
onto a minimal flow of the request in order to reduce the energy utilization. [12]

A weight function Wx = eηγ(x)

Ex
emax

has the property that the weight of a node x

is a function of the energy utilization. It is a fraction of the energy of the node
that is being used. By using the weight function, we penalize nodes with higher
weights as nodes having higher energy utilization.
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Table 1. Residual Energy Adaptive Re-Routing(REAR)

REAR()
begin

γ = γ0, η = 2(1+ε)

γ0ε
ln(L

ε
)

While (γ ≥ γ0 / 2) and (γ ≤ (1 + 9ε)γ∗)
do

begin
σ = ε

8ηγ

For each node x, Wx = eηγ(x)

Ex
emax

Find max
i∈Q

(Ci) for rerouting

if Ci − C∗
i = εCi + ε γ

k x WxEx
emax then

begin
Find f∗(x) a minimal flow for request i.
fi(x) = (1 - σ)fi(x) + σf∗

i (x)
end

end
end

The REAR procedure keeps finding flow requests with max(Ci) and repeat-
edly re-routes the flow so as to decrease the maximum flow on each node by
setting fi(x) = (1 - σ)fi(x) + σf∗

i (x) and re-computes the weight function re-
peatedly producing an improved flow. Then the minimum energy utilization at
the node x is as follows:

γ(x) =

∑
y∈Px

exy

∑
sd

λsd
xy

Ex
emax

(16)

γ(x) = γ0 = max
x∈N

(γ(x)) =
1

Tnl
(17)

This results in maximizing the network life time Tnl, the REAR algorithm is
shown in Table.I.

The REAR algorithm can be modified from energy utilization to bandwidth
constraint. The values corresponding to γ(x), γ0, γ∗, Ex

emax can be changed to
β(x) bandwidth utilization at node x, β0 is the bandwidth utilization of the
system at the start, β∗ is the optimal value of β(minimum possible maximum
bandwidth utilization) and Bx

max (maximum bandwidth at node x) resulting in
the expressions:

β(x) =

∑
s,d

∑
y

Λsd
xy +

∑
s,d

∑
y

Λsd
yx

Bx
max

(18)
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β(x) = β0 = max
x∈N

(β(x)) (19)

And, the algorithm is called Residual Bandwidth Adaptive Rerouting
(RBAR). We observe that REAR performs better than RBAR. In REAR the
fraction of the flow that is re-routed is proportional to the energy that is avail-
able at the node resulting in shorter edges allocated uniformly through out the
network that leads to lower consumption of energy. In RBAR, the re-routing of
flow is proportional to the bandwidth, and in cases of large bandwidth and low
energy available at the node, hence longer edges are chosen independent of the
energy available at the nodes thereby draining the nodes early. The earlier works
have emphasized on bandwidth constraint solutions while we have used energy
constraint solutions resulting in enhanced lifetime of the network.

In summary, the flow is routed on short edges, thus increasing the energy
utilized at the end nodes of the short edges resulting in the depletion of battery
and reduction in the life time of the nodes, which may result in the partitioning
of the network. To increase the life time, we re-route the flow on the nodes
which have low energy utilization. Nodes are penalized by assigning higher cost
based on the energy utilization and we compute the cost of all the flows. The
minimum cost route is computed for the maximum cost flow and the fraction(σ)
of the same flow is re-routed on the minimum cost route. Cost of the nodes is
recomputed and the above procedure is repeated until the flow is optimized.

5 Performance Evaluations

The performance of the proposed REAR algorithm and the RBAR algorithm
are evaluated. The simulations are obtained using matlog a toolbox for MATLAB
6.5. In the simulation setup, the nodes are placed in a 30x30 two-dimensional
region and are randomly and uniformly distributed within the workspace. All
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nodes have the same maximum energy E = 20,000 units. The distance between
two nodes is computed by Euclidean distance. The number of requests origi-
nating at a node is obtained using random Poisson function with mean value
of μ = 1.5 to generate a request of k. As mentioned earlier, the destination for
these k requests are chosen randomly. The traffic between a sd pair is obtained
by a random function of a normal distribution with variance of 0.75μm where
μm is the mean value of the normal distribution function. The maximum band-
width is 500 units. The graphs are plotted for 5 to 80 units. The analysis of the
results reveals that there is a reduction in energy utilization of the nodes using
the REAR algorithm when compared with the RBAR algorithm.

The flow on shorter edges before and after rerouting for the REAR and the
RBAR algorithms is shown in Fig. 1. There is a substantial increase of flow
along the shorter edges before and after re-routing in the REAR algorithm.
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Redirecting the traffic on the shorter edges will invariably normalize the power
consumption across the nodes of the network resulting in increased life time
of the network. Using REAR, fraction of the flow retained along short edges is
more than the fraction of the flow re-routed along to shorter edges using RBAR.

The flow along longer edges before and after rerouting for the REAR and the
RBAR algorithms is shown in Fig. 2. There is a substantial decrease of flow along
the longer edges before and after re-routing using our algorithm, avoiding traffic
on the longer edges invariably helps in increasing the life time of the network,
since longer paths necessitate the nodes to consume more energy. Even if the flow
increases along the longer edges, the bulk of the flow continues to flow on the
shorter edge paths, since this is the basic principle governing energy utilization
for increasing lifetime. Using REAR, a fraction of flow re-routed along longer
edges is less than the fraction of flow retained along longer edges using RBAR.
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The energy consumed by the nodes for the minimum, average and maximum
for the REAR algorithm before and after re-routing is shown in Fig. 3. There
is a drop in the energy consumed after re-routing and larger at higher loads,
especially when the network load is high.

Fig. 4 highlights the most important graph, it compares the energy consumed
for the minimum, average and maximum cases after re-routing between the
REAR and RBAR implementations. It can be clearly seen that REAR algo-
rithm gives better performance in all the three cases and is significantly larger
at higher loads. In Fig. 5 the average energy consumed at nodes after re-routing
between the REAR and the RBAR algorithms is shown. The average energy
difference is exponential with increase in the network load and is clearly evident.

6 Conclusions

In this paper we have proposed a topology control energy management to in-
crease the lifetime of the network. In our approach, the flow requests are initially
routed along short edges even though short edges utilize slightly higher energy.
In addition, the REAR algorithm has been used to re-route a fraction of the
flow along longer edges to normalize the average consumption of energy across
all nodes of the network. The MILP algorithm in conjunction with the REAR
algorithm ensures uniform energy utilization among the nodes of the network
resulting in increased life span of the network. We have compared the MILP-
REAR with the MILP-RBAR algorithms and it is observed that the average
energy consumption in the MILP-REAR algorithm is closer to the minimum en-
ergy utilization at all the nodes and is much lower than that of the MILP-RBAR
model. The energy utilization is significantly lower at high loads. The connec-
tivity of the network and QOS utilization of shorter edges have contributed to
increased life span of the network.
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Abstract. Absence of line power supplies imposes severe constraints on nodes
in wireless ad hoc and sensor networks. In this paper, we concentrate on finding
a broadcast tree that maximizes the network’s lifetime. Previous studies showed
that this problem is polynomially solvable when assuming receivers consume
no energy or only designated receivers consume energy for receiving packets.
Due to the broadcast nature of the wireless medium, however, unintended active
nodes in the receiving range of a transmitting node may overhear the message and
hence contribute to energy wastage. Under the overhearing cost (OC) model, the
problem becomes NP-hard and the approximation ratio of the existing solutions,
which are optimal under the non-overhearing cost (NOC) model, can be as bad as
Ω(n). We investigate the problem by developing heuristic solutions. Simulation
results show that our algorithms outperform the existing ones by up to 100%.

1 Introduction

Broadcast is an essential networking primitive in Wireless Ad hoc NETworks (WANETs)
with a wide range of applications such as software updating, teleconferencing and on-line
gaming. In particular, it is widely applied to command and query distribution in Wireless
Sensor Networks (WSNs). However, the limited energy battery-powered wireless nodes
impose severe energy constraints. This mandates efficient usage of energy resources for
all the computation and communication tasks including a network-wide broadcast, as fast
energy drain-out may lead to network partition and short network lifetime. Maximizing
the lifetime of a broadcast operation is, therefore, imperative for improved availability
of broadcast services.

One of the efficient and most widely used broadcast structure in WANETs is the tree-
based structure. We adopt the definition of network lifetime of broadcast as the duration
in which the source node is capable of transmitting broadcast packets to each node in
the network. Approaches to maximizing tree based broadcast network lifetime fall into
two categories: static [1] [2] [3] [4] [5] and dynamic [6] [7]. In a static approach, a
single broadcast tree is used throughout the broadcast session, i.e. a broadcast tree is
fixed once formed. In a dynamic approach, a series of broadcast trees is employed one
after another, i.e. broadcast trees are updated during the broadcast session. Essentially,
the latter may improve the fairness of battery utilization in each node and hence prolong
the network lifetime. However, control overhead for frequent information exchange and
network wide synchronization may impact the potential lifetime increment.

S. Chaudhuri et al. (Eds.): ICDCN 2006, LNCS 4308, pp. 215–226, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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We concentrate on the static approach to the problem of maximizing network life-
time of broadcast, or equivalently Maximizing Broadcast Tree Lifetime (MaxBTL). The
problem was addressed before by omitting receiving cost. In reality, however, a re-
ceiver’s power consumption is not negligible [8] [9] [10] [11]. It was further studied in
a model, which assumed that only designated receivers consume energy for receiving
packets. In reality, however, this model relies on the synchronization among neighbor-
ing nodes, i.e. at any time only the transmitter and its designated receivers are active,
but all other nearby nodes are switched off to avoid overhearing. We refer to the above
model, under which receivers consume no energy or only designated receivers consume
energy for receiving packets, as the Non-Overhearing Cost (NOC) model.

In this paper, we study the MaxBTL problem under a power consumption model in
which a node consumes a certain amount of energy for receiving a packet either as a des-
ignated or non-designated receiver. This model is referred to as the Overhearing Cost
(OC) model. While it is polynomially solvable under the NOC model, the MaxBTL
problem becomes NP-hard due to the consideration of overhearing cost. We show that
the two solutions, which are optimal under the NOC model, can perform Ω(n) times
worse than the optimal solution under the OC model. We then propose two heuristic
solutions, which take into account the overhearing cost when generating a broadcast
tree. Simulation results show that they outperform the existing solutions. In particular,
the performance of PRP is better than that of TPO and DRP by up to 100%.

The rest of the paper is organized as follows. Section 2 briefly summarizes related
work. Section 3 introduces the network model and formulates the optimization problem.
Section 4 investigates heuristic solutions to the MaxBTL problem under the OC model.
Section 5 reports simulation results. Finally, Section 6 concludes the paper.

2 Related Work

Camerini proved that a Minimum-weight Spanning Tree (MST) minimizes the maxi-
mum link weight among all the spanning trees in an undirected graph [12]. Its appli-
cation to a WANET, which is modeled as an undirected graph, includes that a MST
minimizes the maximum transmission power among all the broadcast trees. In a special
case, where homogenous nodes carry identical batteries, the lifetime of a node is in-
versely proportional to its transmission power and hence a MST is a maximum lifetime
broadcast tree [3]. Das et al. extended the result to a network composed of nodes with
various battery capacities and proposed a minimum decremental lifetime (MDLT) al-
gorithm [4]. Lloyd et al. and Floréen et al. sought a subnetwork of maximum lifetime in
which the source node is connected to all the broadcast group members [1] [2]. It is easy
to see that any broadcast tree contained in such a subnetwork has the maximum life-
time. All the above solutions assume that the receiver consumes no energy for receiving
packets. In [5], we proposed a polynomial optimal solution to the problem of MaxBTL
under the assumption that only the designated receivers consume receiving power. In
this paper, we take into account the receiving cost of non-designated receivers as well.

Recently, some topology control methods have been developed with the goal of min-
imizing interference [13] [14]. The interference of a link is evaluated in terms of the
number of nodes that are affected by the bidirectional transmission between the two
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incident nodes in the resulting subnetwork; the interference of a node is defined as the
maximum link interference of all the links incident to it. Interference-aware topology
control techniques intend to minimizing the maximum or average interference of all
links or nodes in the resulting subnetwork. In this paper, however, we are interested
in minimizing the number of nodes than can be overheard along with the transmission
cost. The two problems are different because a large amount of interference does not
necessarily mean high overhearing cost and vice versa. For example, a subnetwork has
a high level of interference if there is a link that covers all the nodes in the network. But
if the covering-all link is incident to the source node, it involves no overhearing cost for
broadcast, in which the source node directly transmits packets to all the nodes.

3 Preliminaries

3.1 Network Model

In WANETs, a node may act as a transmitter, a receiver or both. The power consump-
tion in milliWatts (mW) of the transceiver of a node u, denoted by pu, is the sum of
transmission power (due to the amplifier in the transceiver), energy expenditure in the
transmitter circuit electronics (e.g. multiplexing), and receiving power, denoted by ptr

u ,
pce

u and prc
u , respectively, i.e. pu = ptr

u + pce
u + prc

u . In particular, prc
u = 0 if u does not

receive any packet from other nodes; ptr
u = pce = 0 if u does not forward any packet to

other nodes, e.g. a leaf node in a multicast tree.
A signal can be successfully detected if the signal strength at the receiver is above a

certain level after traversing the fading channel. For any pair of nodes u and v, we define
p(u, v) as the transmission power threshold (TPT) of u being successfully received by
v. In other words, the transmission from u to v necessitates ptr

u ≥ p(u, v). Notice that
we do not require that p(u, v) = p(v, u). In the wireless medium, a single transmission
can be received by multiple receivers. This effect that assists in conserving energy is
referred to as Wireless Multicast Advantage [15]. To reach a set C of neighbors, ptr

u of
node u, which uses an antenna of appropriate directionality, is set to the maximum TPT
to any node in C, i.e. ptr

u = maxv∈C p(u, v).
Motivated by [10], we present the OC model as follows. A node consumes a fixed

amount of energy for receiving a packet from any other node. Hence, for each broad-
cast packet, the receiving cost of a node v is determined by the number of copies that
v receives from its parent node as well as other neighboring nodes. Alternatively, we
consider the receiving power prc

v of node v is proportional to the number of receivable
neighbors around v, i.e. prc

v = p̂rc
v

∑
u∈N X(u, v), where p̂rc

v is a node-dependent con-
stant power cost for receiving packets by node v, N is the set of nodes in the network
and X(u, v) = 1 if v receives packets from u, i.e. ptr

u ≥ p(u, v), otherwise X(u, v) = 0.
For example, Fig. 1 depicts a broadcast tree rooted at the source node s in a WANET
with symmetric TPT, i.e. the TPT of both directions is same between each pair of nodes.
Under the OC model, node s can overhear the transmission by node a to b and c. Hence,
ps = p(s, a) + pce

s + p̂rc
s ; while under the NOC model, ps = p(s, a) + pce

s .
We model a WANET as a directed and link-weighted graph G = (V, A, p) called a

Transmission Power Graph (TPG), where V is a set of nodes, A is a set of links and
p : A → R+ is a weight function. For each pair of nodes u, v ∈ V , there is a link in
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Fig. 1. A broadcast tree rooted at node s. An arrow that starts from a transmitter and ends in a
receiver is associated with the transmission power threshold in milliWatts.

A joining u and v, denoted by (u, v), if Ptr
u ≥ p(u, v), where Ptr

u is a node-dependent
constraint called the maximum transmission power. The weight of a link (u, v) assigned
by the function p is the TPT from u to v, i.e. p(u, v). A node u is capable of adjusting
its transmission power up to Ptr

u . While “broadcast tree” is a term used in networks,
“spanning tree” is the counterpart in graph theory.

3.2 Battery Life

We denote the battery capacity in Watt-Hour (WH) of a node u by Eu, which may
vary from node to node. A battery is treated as a linear storage of current and remains
functional until the rated capacity of energy has been dissipated [8]. For example, the
lifetime in hours (H) of a node u, denoted by �u, is the ratio between Eu and its power

consumption pu, i.e. �u =
Eu

pu
, since the transceiver is the dominant power consumer

during the system operation in a wireless node [16]. We note that the lifetime computed
under the linear model does not necessarily reflect the actual period of time in which
the battery is functional [17]. However, the essence of maximizing network lifetime of
broadcast is to balance the energy consumption at each node. In this sense, the linear
model allows us to concentrate on how to improve the fairness. We put into our future
consideration the effects of non-linear factors on the battery lifetime [18,19]. In the rest
of the paper, we assume that a node is reliable in the sense that it dies only in the case
of depletion of the battery energy.

3.3 Problem Statement

The lifetime of a broadcast tree T , denoted by L(T ), is the period of time until the first
node in T fails, i.e. L(T ) = minu∈Tn �u, where T n is the set of nodes in T [3,4,1,2]. In
this paper, given a WANET W , which consists of stationary battery-powered nodes, and
a source node s, we investigate the problem of MaxBTL, which is to seek a broadcast
tree T ∗ such that L(T ∗) = maxT∈T L(T ), where T is the set of broadcast trees rooted
at s in W . Notice that the network lifetime of simultaneous multi-session broadcast is
more complicated and beyond the discussion in this paper.

Overhearing cost makes the problem difficult because considering transmission
power level exclusively does not suffice. In some cases, a node which is not transmitting
but only receiving packets from nearby nodes dies earlier than nodes that transmit pack-
ets. Actually, the MaxBTL problem under the OC model is NP-hard because a special
case of the problem is equivalent to the minimum set cover problem, which is known to
be NP-hard [20]. We omit the proof due to limited space.
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It is easy to see that if each node has an identical level of battery energy, the MaxBTL
problem is equivalent to finding a tree that minimizes the maximum nodal power con-
sumption among all the broadcast trees. In this paper, we assume identical battery ca-
pacity for presentation simplicity. However, with minor modifications, e.g. replacing
nodal power consumption by node lifetime as metric, the solutions presented in the rest
of the paper are applicable to the non-identical battery cases.

4 Heuristic Solutions

In this section, we first summarize the two optimal algorithms, namely Transmission
Power Only (TPO) and Designated Receiver Power (DRP), to the MaxBTL problem
under the NOC model. Then, we propose two greedy heuristic solutions, Cumulative
Designated Receiver Power (CDRP) and Proximity Receiver Power (PRP). Each of
the algorithms iteratively grows a spanning that is rooted at the given source node. In
each iteration, a link, which has the minimum “weight” all the links that join an on-tree
node and a non-on-tree node, is included in the tree. All the four algorithms are greedy,
but different definitions of the link weight contribute different performances.

4.1 TPO and DRP Algorithms

In TPO, the weight of a link (u, v), denoted by w(u, v), only considers the power con-
sumed for transmitting packets, i.e.

w(u, v) = p(u, v) + pce
u . (1)

We present TPO in Algorithm 1. Tree T is initialized to the source node s. In each
iteration of the while loop in Lines 2 through 8, a link is included into T until T spans
every node in the network. The for loop in Lines 4 through 6 is used to choose a link
(x, y), which joins an on-tree node and a non-on-tree node, that has the lowest weight.
In a TPG consisting of n vertices and m links, the while loop and the for loop run O(n)
and O(m) times, respectively. Therefore, the time complexity of TPO is O(mn).

In contrast to TPO, which omits receiving cost, DRP takes into account the effects of
receiving cost on the designated receivers. Specifically, the transmitting node consumes
energy for receiving packets from its parent node in addition to the transmission power
unless it is the source node; the designated receiver receives the packet by consuming
some power. Hence, the weight of a link (u, v) is defined as the maximum of the power
consumption between the transmitting node u and receiving node v, i.e.

w(u, v) =
{

max {p(u, v) + pce
u , p̂rc

u }, if u is the source node,
max {p(u, v) + pce

u + p̂rc
u , p̂rc

u }, otherwise.
(2)

The time complexity of DRP is O(mn) where n and m are the number of nodes
and links respectively in a TPG. TPO and DRP are optimal solutions to the MaxBTL
problem under the assumption of no receiver cost and designated receiver cost, respec-
tively [12] [3] [5]. However, we show that they can perform as bad as Ω(n) times of the
optimal value under the OC model in Theorem 1, where n is the network size.
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Algorithm 1. Transmission Power Only (TPO) & Designated Receiver Power (DRP)
Input: A TPG G = (V, A, p) and a node s ∈ V
Output: A spanning tree T = (V ′, A′)
1: V ′ ← {s}; A′ ← φ
2: while |V ′| < |V | do
3: w(x, y) ← ∞ {(x, y) is the link to be included in T}
4: for all u ∈ V ′ and v ∈ V \V ′ and (u, v) ∈ A and w(x, y) > w(u, v) do
5: x ← u; y ← v
6: end for
7: V ′ ← V ′ ∪ {y}; A′ ← A′ ∪ {(x, y)}
8: end while
9: return T

Theorem 1. Under the OC model, TPO and DRP have an approximation ratio that can
be as bad as Ω(n), where n is the network size.

Proof. Consider a TPG G = (V, A, p) depicted in Fig. 2(a), where s is the source node
and the rest are destinations. Each link is associated with its TPT. Let p̂rc

u = t and
pce

u = 0 for each node u ∈ V . Let ε be a sufficiently small positive real number. We first
examine the result of TPO. Initially, s is the only node in T ; then links (s, a) and (s, f)
are picked because they both have the lowest TPT, i.e. t− ε; in the third iteration, links
that join an on-tree node and a non-on-tree node include (a, b), (f, b), (f, c), (f, d) and
(f, e). Among them, (a, b) has the lowest weight t compared to the weight of all other
links, which is t + ε, and hence is included in T . Similarly, links (b, c), (c, d) and (d, e)
are included in that order. In the resulting tree shown in Fig. 2(b), each node on the
border, except for node e, is a transmitting node and is overheard by node f located in
the center. Therefore, the maximum power consumption is 5t by node f in the resulting
tree. Fig. 2(c) shows an optimal solution for the given TPG, in which the node in the
center acts a transmitting node and forwards packets to all the nodes on the border.
The maximum power consumption in the optimal solution is t + t = 2t irrespective
of the size of the network. In a generic network, we can enlarge the network depicted
in Fig. 2(a) by allocating more nodes on the border. If n is the network size, then the
maximum power consumption of a spanning tree constructed by using TPO is (n− 2)t.
So, the approximation ratio of TPO is at least (n − 2)/2, i.e. Ω(n). A similar analysis
will show that DRP has an approximation ratio of Ω(n) under the OC model.

4.2 CDRP Algorithm

A common problem of the above algorithms is that the effects of receiving power be-
cause of overhearing is neglected. We present CDRP, an extension to DRP, that takes
into account the receiving power, possibly contributed by overhearing, of the transmit-
ting node of a link. Apparently, a node that excessively overhears nearby traffic is not
the transmitting node of an ideal candidate link. Therefore, the weight of a link (u, v)
is defined as:

w(u, v) = max {p(u, v) + pce
u + prc

u , p̂rc
v } . (3)
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Fig. 2. Theorem 1. A solid line represents two directional link toward opposite directions. A
dotted arc represents an overhearing transmission. In (a), each link is associated with its TPT.

We present CDRP in Algorithm 2. For each node u, prc
u and ptr

u are initialized to be
0. Adding a link (x, y) increases the transmission power the selected transmitter x (see
Line 14). On the other hand, it may cause overhearing by the nearby nodes. Specifically,
a node k will have the additional cost p̂rc

k for overhearing packets transmitted by u if
k can hear u after (x, y) is included while it cannot before that (see Lines 11 through
13). This condition can avoid overcounting k’s receiving power. In a TPG consisting of
n nodes and m links, the while loop runs n times and each for loop runs O(m) times.
Therefore, similar to TPO and DRP, CDRP has the time complexity of O(mn).

Algorithm 2. Cumulative Designated Receiver Power (CDRP)
Input: A TPG G = (V, A, p) and a node s ∈ V
Output: A spanning tree T = (V ′, A′)
1: V ′ ← {s}; A′ ← φ
2: for all u ∈ V do
3: prc

u ← 0, ptr
u ← 0

4: end for
5: while |V ′| < |V | do
6: w(x, y) ← ∞ {(x, y) is the link to be included in T}
7: for all u ∈ V ′ and v ∈ V \V ′ and (u, v) ∈ A and w(x, y) > w(u, v) do
8: x ← u; y ← v
9: end for

10: V ′ ← V ′ ∪ {y}; A′ ← A′ ∪ {(x, y)}
11: for all z ∈ V and (x, z) ∈ A and p(x, z) ≤ p(x, y) and p(x, z) > ptr

x do
12: prc

z ← prc
z + p̂rc

z {update receiving power if z was not reached by x before}
13: end for
14: ptr

x ← p(x, y)
15: end while
16: return T

4.3 PRP Algorithm

In CDRP, the consideration of the overhearing cost is limited to the transmitting node
of a link. We propose PRP that evaluates a link as the maximum power consumption in
the subnetwork within its receiving range. So, the weight of a link (u, v) is defined as
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w(u, v) = max {p(u, v) + pce
u + prc

u , ptr
x + pce

x + prc
x + p̂rc

x , ptr
y + pce

y + prc
y }, (4)

where k is any node to be covered by u, i.e. p(u, x) > ptr
u and p(u, x) ≤ p(u, v),

and y is any already covered node by u, i.e. p(u, y) ≤ ptr
u . The nodes in the for-

mer category involve an additional overhearing cost as opposed to the latter. Specif-
ically, v is one of the to-be-covered nodes and ptr

v = pce
v = prc

v = 0 because v is not
in the receiving range of any other node. We present PRP and the computation of the
link weight, the WEIGHT function, in Algorithms 3 and 4, respectively. In Lines 11
through 13 in Algorithm 3, the receiving cost is updated for all recently covered nodes.
In Line 14, the sender’s transmitting power is calculated. In a TPG consisting of n
nodes and m links, the while loop, the for loop in PRP, and the for loop in WEIGHT
run n, O(m) and O(n) times, respectively. Therefore, the time complexity of PRP lis
O(mn2).

Algorithm 3. Proximity Receiver Power (PRP)
Input: A TPG G = (V, A, p) and a node s ∈ V
Output: A spanning tree T = (V ′, A′)
1: V ′ ← {s}; A′ ← φ
2: for all u ∈ V do
3: prc

u ← 0, ptr
u ← 0

4: end for
5: while |V ′| < |V | do
6: w(x, y) ← ∞ {(x, y) is the link to be included in T}
7: for all u ∈ V ′ and v ∈ V \V ′ and (u, v) ∈ A and w(x, y) > WEIGHT (u, v) do
8: x ← u, y ← v, w(x, y) ← WEIGHT (u, v)
9: end for

10: V ′ ← V ′ ∪ {y}; A′ ← A′ ∪ {(x, y)}
11: for all k ∈ V and (x, k) ∈ A and p(x, k) ≤ p(x, y) and p(x, k) > ptr

x do
12: prc

k ← prc
k + p̂rc

k {update receiving power if z was not reached by x before}
13: end for
14: ptr

x ← p(x, y)
15: end while
16: return T

Algorithm 4. Function: WEIGHT (u, v)
1: weight ← p(u, v) + pce

u + prc
u

2: for all k ∈ V and p(u, k) ≤ p(u, v) do
3: if weight < ptr

k + pce
k + prc

k + p̂rc
k and p(u, k) > ptr

u then
4: weight ← ptr

k + pce
k + prc

k + p̂rc
k

5: else if weight < ptr
k + pce

k + prc
k and p(u, k) ≤ ptr

u then
6: weight ← ptr

k + pce
k + prc

k

7: end if
8: end for
9: return weight
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It is worth noting that all the four algorithms have the same performance under the
assumption of no receiving cost. This is because p̂rc

u = 0 and hence prc
u = 0 for each

node u in the network and the link weight defined in (2), (3) and (4) is reduced to (1).
Furthermore, when assuming designated receiver cost only, i.e. p̂rc

v = 0 for any node
v as a non-designated receiver, we can easily verify that the link weight defined by (3)
and (4) is same as (2) and hence CDRP and PRP are equivalent to DRP.

5 Simulation Results

In this section, we report the results of simulating the algorithms of TPO, DRP, CDRP
and PRP under various scenarios. We conducted the simulations in networks consisting
of 20 to 100 nodes, randomly deployed in a 100× 100 m2 field. The power consump-
tion model and the battery model described in Section 3 were adopted. The TPT p(u, v)
between any pair of nodes u and v was set to Kdα mW, where K is a node-dependent
constant, d (in meters) is the Euclidean distance between u and v, and α is a parame-
ter that typically takes on a value between 2 and 4, depending on the characteristics of
the communication medium [15]. We chose α = 2. For each node u, we set pce

u = 0
for simplicity. The maximum transmission power was set to 1000 mW for all the nodes.
Setting an identical level of battery energy for each node, we evaluated the performance
of the algorithms by measuring the maximum nodal power consumption in the result-
ing broadcast tree, which is inversely proportional to the tree lifetime according to the
discussion in Section 3.3. We considered symmetric or asymmetric transmission power
thresholds for the two links connecting a pair of nodes in opposite directions. In the
symmetric setting, for any pair of nodes u and v, we assigned K = 0.5 equally, i.e.
p(u, v) = p(v, u) = 0.5 × d2; in the asymmetric setting, K=1 or 0.5, i.e. we ran-
domly selected either p(u, v) = d2 or p(u, v) = 0.5 × d2 independent of p(v, u). We
conducted simulations using various scenarios with three different receiver coss: con-
stant non-zero receiver cost and node-dependent constant receiver cost. In the figures
which record the maximum power consumption, each data point averages the results in
100 random deployments and is depicted with 95% confidence interval. The lower the
maximum power consumption means the higher broadcast tree lifetime and vice versa.

5.1 Zero Receiving Power

Fig. 3 plots the simulation results for zero receiving cost. The four curves perfectly
overlap because they become same algorithm under the assumption as discussed. In
fact, they are all optimal in this case. The maximum power consumption reduced as the
network size increased. This was because the average transmission power decreased in
a denser network. With the same network size, each data point for asymmetric trans-
mission power has a somewhat bigger value than the one for symmetric transmission
power. This is because, on average, the transmission power threshold in the symmetric
setting is smaller than that in the asymmetric setting.

5.2 Non-zero Constant Receiving Power

Fig. 4 shows the results when the receiving power was set to half of the maximum
transmission power, i.e. 500 mW, equally for each node in the network. PRP dramati-
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Fig. 3. Simulation results under the assumption of zero receiving power

cally outperformed TPO, DRP and CDRP. While the other 3 curves increased linearly
as the network became denser, the one due to PRP was almost constant. The reason
is that in general the overhearing cost of nodes in the broadcast trees generated by
using TPO, DRP and CDRP is higher in a denser network. The cost was reduced by
PRP which takes into account the effects of overhearing specifically. We also saw that
CDRP outperformed TPO and DRP, although the difference was not as pronounced.
The difference between the symmetric and asymmetric settings was not evident be-
cause the average transmission power was not as dominant as it was in the zero re-
ceiving power scenario. Furthermore, simulations with different receiving power values
were conducted and the results showed the similar trends.

 12

 14

 16

 18

 20

 22

 24

 26

 28

 20  30  40  50  60  70  80  90  100

M
ax

i P
ow

er
 C

on
su

m
pt

io
n 

(x
10

0m
W

)

Network Size

Maximum Power Consumption vs. Network Size

TPO
DRP

CDRP
PRP

(a) Symmetric TPT

 12

 14

 16

 18

 20

 22

 24

 26

 28

 20  30  40  50  60  70  80  90  100

M
ax

i P
ow

er
 C

on
su

m
pt

io
n 

(x
10

0m
W

)

Network Size

Maximum Power Consumption vs. Network Size

TPO
DRP

CDRP
PRP

(b) Asymmetric TPT

Fig. 4. Simulation results under the assumption of constant non-zero receiving power

5.3 Node-Dependent Constant Receiving Power

Fig. 5 depicts the results for node-dependent receiving power. For each node, the re-
ceiving power was randomly selected from 1

3 , 1
4 and 1

5 of the maximum transmission
power, i.e. 1000 mW. We noticed the similar results to those in the constant receiving
power experiments plotted in Fig. 4, except for smaller maximum power consumption
values thanks to the reduced receiving power. No significant differences from Fig. 5
were observed in the additional experiments with different receiving power settings.
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Fig. 5. Simulation results under the assumption of node-dependent constant receiving power

6 Conclusions

In this paper, we investigated the problem of MaxBTL under the OC model that takes
into account the overhearing cost. While it is polynomially solvable under the NOC
model, MaxBTL becomes NP-hard under the OC model. We showed that the two solu-
tions, TPO and DRP, which are optimal under the NOC model, can have an approxima-
tion ratio as bad as Ω(n) under the OC model. We proposed two new greedy heuristics,
CDRP and PRP, by considering the effects of the overhearing cost when generating a
broadcast tree. Simulation results showed that our solutions outperformed the existing
solutions. In particular, PRP performed better than TPO and DRP by up to 100%.

This paper concentrated on the network lifetime maximization of a broadcast, which
is a special case of the multicast problem. The latter is clearly a NP-hard problem, to
which a possible heuristic solution is to prune the broadcast tree generated by CDRP or
PRP such that only the necessary nodes for the multicast session are included. Perfor-
mance evaluation of this prune-based approach is left for future work.
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Abstract. We consider the problem of residual energy maximization of
actors by optimal assignment of mobile actors in Wireless Sensor and
Actor Networks (WSANs) to the event spots in real-time. Finding the
optimal tour of multiple actors towards the reported events can be shown
to be NP-Complete. We formulate the optimization problem as Mixed
Integer Non Linear Programming and propose heuristics that find near
optimal schedule of actors in a large scale WSAN. Maximizing the resid-
ual energy of actors leads to increased service time. We also study the
impact of optimal positioning of actors at the end of their tour so as
to cover up new events that might occur with stringent deadline con-
straints. From the simulations, we observed that the inter-zone deadline
based scheduling performs fairly better than others by minimizing the
overall movement required by the actors and reducing the deadline miss
ratio. It is also observed from the simulations that proactive positioning
of actors at the end of their schedule such that every zone is guaranteed
to have at least one actor, performs better both in terms of increased
lifetime and controlled deadline miss ratio.

1 Introduction

A Wireless Sensor Network (WSN) is a self-organizing ad hoc network with
potential applications in autonomous monitoring, surveillance, military, health-
care, and security [1]. It consists of a group of nodes, called sensor nodes, each
with one or more sensors, an embedded processor, and a low power radio. Typ-
ically, these nodes are linked by a wireless medium to perform distributed sens-
ing tasks. Sensor nodes are usually deployed in a large quantity to form an
autonomous network. The data acquired by each node is sent to a base station
or a sink node which uses this data for taking necessary actions.

Wireless Sensor and Actor Networks (WSANs) [2] are a new class of heteroge-
neous networks which include special nodes called asActuators or Actors which are
capable of acting on the environment. For example, in an application like intrusion
detection, a set of sensors can relay the exact location and directional information
of an intruder, to the sink node, which in turn can command the actors to pump
gas on the intruders or otherwise to close the doors, thus preventing from further
� This work was supported by the Department of Science and Technology, New Delhi,
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intrusion. These networks have widely differing sensor and actor node characteris-
tics. While sensor nodes are small, inexpensive, usually static devices with limited
computation, communication and energy resources, actor nodes are resource-rich
and usually mobile. Also, the number of sensor nodes deployed may be in the or-
der of hundreds or thousands. In contrast, actor nodes are smaller in number due
to the different coverage requirements and physical interaction methods of actua-
tion. Typically, a deployed WSAN is expected to operate autonomously in unat-
tended environments. Real-time reporting of the events, scheduling of the actors
such that actions are completed before deadline, coordination among the sensors
and actors, and security are some important research issues in WSANs.

The rest of this paper is organized as follows. Section 2 gives an overview of re-
lated work. Section 3 gives the problem formulation for finding optimal schedule
of actors in WSANs. Section 4 proposes the heuristics to achieve near optimal
schedule in a distributed manner and outlines various policies for actor place-
ment after carrying out the assigned tasks. Section 5 discusses the simulation
results and compares with the solution obtained by the MINLP solver. Finally,
Section 6 concludes the paper with a summary of its contributions and suggests
scope for future work.

2 Related Work

Providing end-to-end real-time guarantees is a challenging problem in sensor
networks. The routing protocol should be adaptive to avoid any congestion and
coverage holes that might occur in the network. SPEED [3] is one such adaptive
real-time routing protocol which reduces the end-to-end deadline miss ratio in
sensor networks. In this protocol, every node maintains only the states of one-
hop neighbors, hence scales well in sensor networks. RAP [4] is a multi-layer
real-time communication architecture for sensor networks.

The authors of [5] formulated the problem of emergency vehicle routing and
dispatching in real-time, as an integer programming model in which a dynamic
shortest path algorithm is used. Emergency vehicles and incidents are divided
into categories so that different constraints could be incorporated. The authors
of [6], address two important issues of WSANs, viz., Sensor-Actor coordination
and Actor-Actor coordination. In the latter case, it is assumed that sufficient
number of actors are deployed so as to give enough coverage of the action range
in the entire observation area. The problem is formulated as a Residual Energy
Maximization Problem which finds, for each portion of the event area, the subset
of actors that maximizes the average residual energy of all actors involved in the
action, under the constraint of meeting the action completion bound. The work
also proposed a localized auction control protocol in which actors coordinate
among themselves so that a relatively resource rich actor is assigned to act on
a selected overlapping area. This work assumes only static actors and does not
consider the mobility of actors. Our work considers the case of mobile actors and
finds optimum assignment of actors in order to minimize the energy consumed
by the actors for mobility.
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3 Problem Statement

In our work, we consider the problem of optimum assignment of actors to the
events reported by sensor nodes with the objective of minimizing the overall
movement of the actors required, guaranteeing the real-time deadline, and re-
source constraints of the events. Our model considers the case of mobile actors
such that they can move to the event area and act upon the environment. In
this work, we consider the problem of maximizing the residual energy of the
actors by utilizing the energy required for mobility at the minimum level possi-
ble. The problem has been formulated as a Mixed Integer Non-Linear Program
(MINLP) [7] optimization problem. This problem which is equivalent to the
Traveling Salesman Problem, can be shown to be NP-Complete. In this work we
propose heuristics that find near optimal scheduling of actors in a distributed
manner and investigate the effect of various policies by which actors are reposi-
tioned at the end of their schedules.

In this section, we present the system model, and then formulate the
problem of optimal assignments of actors in real-time sensor and actor network
applications.

Cluster−head

Zone

Cluster Region

Event

Actor

Sensor

Agent

Fig. 1. Wireless Sensor and Actor Network Architecture

3.1 System Model

We consider the model of WSAN in which a large number of sensor nodes are
deployed randomly but without any sensing holes, and relatively a small num-
ber of actors distributed uniformly throughout the monitoring area. The entire
monitoring area is assumed to be divided into several zones such that every zone
is provided with at least one actor initially (Fig. 1). The actors are capable of
moving freely in the area and it is the energy required such as the battery in the
case of robots, fuel energy in the case of vehicles like trucks which we intend to
minimize, by way of optimal scheduling of events in the tour of actors such that
real-time constraints of the events are satisfied.
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A relatively resource rich sensor node in every zone is elected to act as an
agent which could schedule the actors for the tasks either individually (intra-
zone), or by collaborating with its neighbor agents (inter-zone). All the sensor
nodes within a zone report the events detected by them periodically to this
agent node. This leads to a heterogeneous architecture in which multiple sink
nodes are present in the network. This assumption simplifies the routing protocol
to be static as the topology never changes. The actor(s) lying inside a zone
get registered with their current position, and resource availability to the home
agents. It is also assumed that the sensor nodes inform the position information
of the detected event along with other parameters like deadline and resource
constraints. The agent nodes periodically exchange the position of actors and
events belonging to their zones. Thus, every agent node has a status information
about its own and its neighborhood (one hop) actors and events. In the case of
intra-zone scheduling, the agent nodes compute the optimal schedule of actors
within their zone and disseminate the schedule to them. The actor(s) receives
the schedule from the agent node and visit the events as per the schedule in
order to take specified action to bring the events under control. In the case of
inter-zone scheduling, the zones are further formed as clusters. One of the agent
nodes is elected to be cluster-head which runs an algorithm to find the optimal
schedule of all the actors within this cluster and disseminates the tour to the
agents of respective zones. The agent nodes disseminate the tour to the actors
of their own zone.

3.2 Problem Formulation

We formulate the following optimization problem as a Mixed Integer Non-Linear
Program (MINLP). The objective is to find, the optimal assignment of actors to
the events with deadline and resource constraints such that the overall movement
of actors is minimized.

Given : A, E, Smax(Ai), RA(Ai, q, r), D(Ej), RR(Ej , q, r), P (Ai),
P (Ej), ∀i,∀j (1)

Find : Tlist(Ai), ∀i (2)

Minimize : Z =
a∑

i=1

dist(P (Ai), P (Tlist(Ai, 1))) +

a∑
i=1

|Tlist(Ai)|∑
j=2

dist(P (Tlist(Ai), j − 1), P (Tlist(Ai, j)) (3)

Subject to:

Tlist(Ai) ∩ Tlist(Aj) = ∅ ∀i,∀j s.t i, j ∈ {1, 2, ..., a} and i �= j. (4)

a∑
i=1

|Tlist(Ai)| = e (5)



On Maximizing Residual Energy of Actors in WSANs 231

Table 1. Notations used in the MINLP

Notation Description

A Set of Actors - {A1, A2,. . . ,Aa}
E Set of events - {E1, E2,. . . ,Ee}

P(Ai) Position of the actor Ai

P(Ej) Position of the event Ej

D(Ej) Deadline of the event Ej

Tlist(Ai) List of events assigned to the actor Ai

P(Tlist(Ai,l)) Position of the lth event in Tlist(Ai)
Smax (Ai) Maximum speed of movement of actor Ai

RA(Ai,q,r) Ai has q units of resource type r
RR(Ej,q,r) Ej requires q units of resource type r

Tc Action completion time bound
dist(P(Ai), P(Ej)) Euclidean Distance between Ai and Ej

D(Tlist(Ai, j)) ≥ dist(P (Ai), P (Tlist(Ai, 1))
Smax(Ai)

+ Tc+

|Tlist(Ai)|∑
k=2

(
dist(P (Tlist(Ai, k − 1)), P (Tlist(Ai, k)))

Smax(Ai)
+ Tc

)
(6)

if |Tlist(Ai)| ≥ 1. ∀i and ∀j, s.t i ∈ {1, 2, ..., a} and j ∈ {1, 2, . . . , | Tlist(Ai) |}.

|Tlist(Ai)|∑
j=1

RR((Tlist(Ai, j)), q, k) ≤ RA(Ai, q, k) (7)

∀i, and ∀k, s.t i ∈ {1, 2, . . . , a} and k ∈ {1, 2, . . . , r}.

Table 1 explains the notations used in the formulation. In the formulation,
the objective function Z (3) consists of two terms: The first term refers to the
sum of distances between the current position of ith actor and the first task of
Ai in its task list. The second term refers to the total sum of distances between
the positions of successive tasks assigned for ith actor. The individual terms and
hence the total value of Z should be minimized.

The constraint (4) guarantees that the tasks are uniquely assigned for actors.
It prevents from an event covered by more than one actor. The constraint (5)
requires that the schedule of all the actors do not miss any events. The con-
straint (6) states that the actor Ai is able to reach and take action before the
events miss their deadlines. It is to be noted that the action completion time,
Tc, is added between every migration of the actor from an event to another. The
constraint (7) states that the net resources required for every task assigned for a
particular actor should be sufficient enough to carry out. That is, the availability
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of kth type of resource should be sufficient to carry out all the events that are
scheduled for that actor.

4 Heuristics for Residual Energy Maximization of Actors

The problem finds tour of actors which visits the events exactly once, which is
similar to the Traveling Salesman Problem. In case of TSP, the tour starts and
completes at the same place, whereas in our problem, an actor visits the events
in the schedule till the last event and does not return to the original position.
Thus, the problem of finding optimal tour for the actors can be shown to be
NP-complete. Moreover, the size of the sensor networks is typically larger. So,
directing all the information about the tasks and actors for decision making
process at a centralized sink node, will result in an unrealistic amount of time to
find the optimal assignment which necessitates distributed computing in order
to achieve real-time responses. Hence, we propose the following heuristics to find
near-optimal assignments in a distributed manner which will minimize deadline
miss ratio as well.

We assume that the entire monitoring area is divided into several zones (Fig. 1)
in which a relatively resource rich sensor node acts as an agent and also as sink for
that zone. Thus, all the sensor nodes within that zone will statically route their
information regarding the events toward this agent/sink node. It is also assumed
that the sink node has the knowledge of existence of actors in its zone and their
related information such as position, and resource availability. We classify the
heuristics into two broader categories: viz. Intra-Zone and Inter-Zone. In case
of Intra-Zone, the assignment of actors is done locally within the zone while in
the latter case, the assignment is done collaboratively by agents of neighboring
zones. Thus, we propose and study the distance, deadline, and priority based
heuristics with respect to intra and inter zone classifications. Here, we define
priority, P of an event Ej as

P(Ej) ∝ 1
dist(P (Ai), P (Ej))×D(Ej)

(8)

The schemes are described in the following subsections:

4.1 Intra-zone

In the following intra-zone heuristics, we assume that at least one actor is placed
in every zone.

Distance based: The agent nodes compute the tour of their own actors such
that the actors visit the nearest event first. While forming the tour of actors, if an
event is found to be infeasible due to deadline or resource constraints, then it is
dropped. As outlined in Algorithm 1, this heuristic aims to achieve the objective
of minimizing the overall movement of the actor(s) by avoiding communication
overheads among neighborhood agents.
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Algorithm 1. Intra-Zone Distance based Task Assignment
1: for every actor inside the zone do
2: Sort the unassigned events in non-decreasing order of their distances w.r.t actor.
3: Assign the event to the actor, if and only if the event can be reached before its

deadline AND the actor has enough resources for action.
4: Append the event in the task list of the actor and update the new position of

the actor.
5: Mark the event as assigned
6: Repeat steps 3 to 5 until all the events in the sorted list are examined.
7: end for
8: Transmit the schedule to all the actors within the zone.

The schedule of actors obtained by Algorithm 1 is disseminated by the agent
node to all the actors within its zone. This and all the other intra-zone schemes
have a potential demerit of not considering an event which might be closer to
the current position of the actor, but located in the neighborhood zone.

Deadline based: In this algorithm, the events are first sorted in non-decreasing
order of their deadlines and the actor(s) are assigned to the events with the
earliest deadline. In forming the tour of the actor(s) within the zone of the agent
node, the positions of the actor(s) are updated and feasibility of including the
event in the tour is checked. The events are dropped, if found infeasible. The
main focus of this, ‘earliest deadline first’ heuristic is to minimize deadline miss
ratio and accommodate as many events as possible in the schedule.

Priority based: The above algorithms either try to minimize the overall move-
ment of the actor(s) or to keep the deadline miss ratio as low as possible. In order
to address these dual objectives collectively, we propose priority based heuristic
which captures both distance and deadline parameters. As mentioned in Equa-
tion 8, the priorities of the events are calculated at the agent node and sorted
in decreasing order. The actor(s) within the zone are assigned to the events
from this sorted list, provided they are feasible to schedule. Otherwise, they are
dropped.

In all the above three schemes, the agent nodes schedule events to the actor(s)
within their zone, independently. Though, it helps in finding the schedule quickly,
the resulting assignment may not be significantly closer to the optimal assign-
ment. Hence, we propose the following inter-zone heuristics in which an agent
node collaborates with its one-hop neighbors in assigning the actors to the ad-
jacent zones in an effective manner.

4.2 Inter-zone

This is similar to the intra-zone with the exception that a set of actors and
events in the adjacent zones are also considered for schedule. The agent nodes
form a cluster of one-hop region and one node is elected to be cluster-head which
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takes the responsibility of computing the feasible schedule for all the actors. The
agent nodes in the cluster reveal the position of actors and events in their zone
to the cluster head.

Distance based: Upon collecting this information from the neighborhood agent
nodes, the cluster-head, in addition to its own zone, computes the schedule for
all the actors with the distance metric, as discussed earlier in the case of intra-
zone distance based heuristic. Infeasible events are dropped from assigning to
the actors. The computed schedule of actors are then communicated to the other
agent nodes in the cluster, which in turn, merely pass on this assignment to the
actors of their own zones.

Deadline based: Similar to the above algorithm, the cluster-head sorts the
events of all the adjacent zones (including its own zone) within the cluster in non-
decreasing order of their deadlines. It then computes the feasible schedule for all
the actors of its own zone and the neighborhood zones, such that the events from
this sorted list are assigned to the nearest actors. The computed schedule is com-
municated to the other agent nodes which in turn, communicate to the actors of
their own zones. The pseudo code of this scheme is outlined in Algorithm 2.

Algorithm 2. Inter-Zone Deadline based Task Assignment
Transmission (by agent nodes other than cluster-head):
Transmit the following parameters to the cluster-head
P(Ai), P(Tj), Smax(Ai), RA(Ai, r), RR(Tt, r), and D(Tj)
Listen mode (by the cluster-head agent node):
Receive and store the above parameters from neighbor agents of its cluster area
Scheduling mode (by the cluster-head agent node):

1. Sort the events of its own zone and of neighboring zones in non-decreasing order
of their deadlines.

2. Assign the event to a nearest actor only if the event can be reached before its
deadline and the actor has enough resources for action.

3. Append the event in the task list of the actor and update the new position of
the actor.

4. Repeat steps 2 and 3 until all the events in the sorted list are examined.
5. Transmit the schedule to all the actors within the zone.
6. Transmit the schedule of actors for neighborhood zones to the respective agent

nodes.

Transmission (by the other agent nodes):
Transmit the schedule to all the actors within the zone

Priority based: In this algorithm, the priority lists of all the events are com-
puted for all the actors within the zones covered by the cluster where the priority
is defined as in Equation 8. This scheme has an additional computational over-
head of re-computing the priority for every assignment of events as the current
positions of the actors are updated.
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Backtracking: In addition to the above mentioned heuristics, we have also
attempted backtracking in scheduling algorithms. That is, when an actor Ai can
not reach the event under consideration, say Ej , due to deadline constraint, then
we backtrack up to k-past events in the schedule and try to accommodate this
event. Here, the parameter k is the maximum allowed level of backtracking. While
backtracking, care is taken to protect the deadline guarantee for the already
assigned tasks, failing which this event is dropped from schedule. The intuition
behind this backtracking is to minimize the deadline miss ratio further.

4.3 Actor Repositioning After Completing Tasks

The key idea behind residual energy maximization of actors at every instant of
scheduling is to yield increased lifetime of the actors. That is, given a set of
events, all the heuristics aim at arriving an optimum schedule that requires least
energy possible and minimize the infeasible events. In all the above discussions,
it is assumed that the tour of the actors start from the current position of actors
and end at the last event in the schedule. This implies that over the period of
time, it is possible that the distribution of actors in the terrain get changed. This
might result in more number of actors moved to some part of the terrain leaving
many other zones without having any actors. This is purely determined by the
nature of the events occurring in the terrain. If new events are detected at such
zones, then bringing in the actors from the zones that far away, may result in
several tasks becoming infeasible in the schedule, due to their stringent deadline
constraints. This necessitates the proactive schemes for optimal repositioning of
actors at the end of their tour.

One possible proactive scheme would be to move back the actors to their home
zones after completing all of their assigned tasks. This will guarantee that the ac-
tor distribution is not disturbed, but this happens at the expense of severe energy
drain by the actors for movement. An equivalent approach to minimize deadline
miss ratio but relatively with less energy consumption for moving would be to
make sure that none of the zones are actorless. That is, if the schedule by any of
the schemes outlined in the previous sections are such that none of the zones are
actorless, then the actors remain at the place of last event. But, if any of the zone
is left with no actor, then a good strategy may be to move an actor from a zone
where redundant actors are available to this zone, but with energy constraint. We
investigate the impact of three actor repositioning schemes viz. Home, Stay, and
One Guarantee, on the lifetime of actors and deadline miss ratio. The Home strat-
egy always moves back the actor to its starting position at the end of the tour. The
Stay scheme is same as what has been discussed in the previous sections, i.e., ac-
tors remain at the last event’s position. The One Guarantee strategy will move an
actor to a zone only if the latter does not have one.

5 Simulation Results and Discussions

The algorithms mentioned in Section 4 are implemented in C++ for performance
study. We considered the terrain dimension of 1000 m × 1000 m with 100 actors
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and 500 events placed randomly. We simulated 100 such scenarios, averaged
the objective function value and the deadline miss ratio. The values of deadline
parameters for the events were uniformly drawn between 10 and 500 seconds.
The speed of all the actors was considered to be 5 m/s.

Simulation results in Fig. 2 compare the overall distance covered by all the
actors according to the schedule generated by the heuristics mentioned in Sec-
tion 4. The inner chart in the same figure shows the number of events missed
in the schedule by these algorithms. In Fig. 3 normalized values of distance and
infeasible events are plotted. Though the intra-zone distance heuristic seems to
be giving least movement required, it happens at the cost of sacrificing more
number of events due to deadline constraints. 3.5% of the events were not ac-
commodated in the schedule by this heuristic.

Fig. 2. Comparison of
Heuristics w.r.t. Over-
all Distance Covered by
Actors

Fig. 3. Comprehensive
Comparison of Heuristics

Fig. 4. Comparison of
MINLP Result with
Inter-zone Heuristics

Similarly, the deadline miss ratio for intra-zone deadline and priority based
heuristics was found to be 1.54% and 1.36%, respectively. The ratio for these
heuristics in the case of inter-zone was found to be 2.6%, 1%, and 1%, respec-
tively. With respect to deadline miss ratio, the inter-zone algorithms outperform
the intra-zone. It can also be observed from this plot that with equal deadline
miss ratio for inter-zone deadline and priority heuristics, the former gives better
objective value which is 6.71% lower than that of priority based one. The reason
for inter-zone deadline based heuristic performing better with respect to both
the overall movement and deadline miss ratio is due to the fact that Algorithm 2
captures both deadline as well as distance together. Thus, this heuristic is equiv-
alent to saying, “assign the task with the earliest deadline, to the nearest actor
with enough resources”. The model of the MINLP problem was implemented
in GAMS [8] and solved with the SBB solver available through NEOS opti-
mization server [9] [10]. In solving the model, the problem size was restricted
to have only 5 actors and 25 events, due to the time restriction imposed by the
NEOS server. The results are compared with the schedule generated by all the
inter-zone algorithms for the same scenario and results are shown in Fig. 4. As
can be seen from this figure, all the schedules resulted in accommodating all the
given events and hence, the distance heuristic gives the overall movement of
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the actors closer to the MINLP result. The objective function values of deadline
and priority heuristics are found to be about 7% and 19%, respectively when
compared with that of the optimum value.

Fig. 5. Effect of Backtracking in Inter-zone
Heuristics
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As mentioned in Section 4, we attempted backtracking with window size,
k with values of 0 (no backtracking) and 1. Observations from the Figure 5
reveal that significant improvement is seen in case of inter-zone distance based
algorithm, while it shows only marginal improvement in the case of inter-zone
deadline algorithm. This is due to the fact that unlike distance based algorithm,
events with earliest deadlines are considered first in the process of scheduling,
thus showing no further improvement in backtracking.

Figures 6, 7, and 8 give the plot of distance travelled by actors, residual energy
of actors, and the deadline miss ratio respectively, over simulation runs. The
results are plotted only for inter-zone distance and deadline based heuristics.
As can be seen from these plots, the distance based heuristics with the “stay
at last event” repositioning policy survives for longer duration. But, at every
simulation run, the same trend as in Figures 2 and 3 can be observed. Thus,
infer from these results that the inter-zone deadline would perform better than
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other heuristics if the events have stringent deadline constraints. The stay at last
event repositioning policy fairs better with respect to increase in lifetime as far
as the events happen at random places.

6 Conclusions

We formulated the problem of optimal assignment of mobile actors in Wireless
Sensor and Actor Networks (WSANs) as Mixed Integer Non Linear Program
(MINLP), in order to conserve the energy needed for actor mobility but other-
wise fulfill the deadline and resource constraints of events. As the sizes of the
WSANs are typically larger, finding optimum assignment by a centralized sink
node using this MINLP would be unrealistic. Hence, we presented a distributed
architecture such that entire monitoring area is divided into zones in which a
relatively resource rich sensor node is elected to be sink and agent node for that
zone. We presented intra-zone and inter-zone distributed algorithms to obtain
near-optimal assignment of events to the actors and compared their performance.
The impact of various schemes for actor positioning at the end of the schedule,
on the lifetime of actors and deadline miss ratio is investigated. Future work will
be focused on relaxing the constraint on proposed architecture such as the need
for cluster heads in zones.
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Abstract. An efficient location service is a prerequisite to any robust,
effective and precise location information aided Mobile Ad Hoc Network
(MANET) routing protocol. Locant, presented in this paper is a nature
inspired location service which derives inspiration from the insect colony
framework, and it is designed to work with a host of location information
aided MANET routing protocols. Using an extensive set of simulation
experiments, we have compared the performance of Locant with RLS,
SLS and DLS, and found that it has comparable or better performance
compared to the above three location services on most metrics and has
the least overhead in terms of number of bytes transmitted per location
query answered.

1 Introduction

Location or position information based routing protocols for ad hoc networks
have emerged as a class which has invited renewed research in the recent past.
Location services provide position based routing algorithms with information
about the positional information of other nodes. A node acquires information
about its own position by a GPS[1,2] or some related service housed on itself.
Essentially, there are two categories of location service, viz., reactive and proac-
tive. In reactive location service(RLS)[3], a location query is generated when the
need arises and no ready repository of location information is kept. In proactive
location service, information about the location of nodes is either stored in a
database or in all nodes of the network. Schemes like Dream Location Service
(DLS)[3] and Simple Location Service (SLS)[3] fall in the category of proactive
location service in which information is stored in all nodes of the network. Lo-
cation services suggested so far in literature, depend explicitly on the routing
protocol for which they have been designed since they make use of the routing
protocol itself in the location service. Some of these location services append
the node’s location table to the location information packet being propagated
and send the location information packet on previously stored paths. This leads
to higher overhead per location query answered. In this paper we present Lo-
cant, a nature inspired location service based on the insect colony framework
for position information based routing protocols in MANETs. The rest of the
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paper is organized as follows. In section 2, we briefly describe the insect colony
framework. Section 3 contains the description of our algorithm. In section 4, we
present the results of simulation experiments. Section 5 concludes the paper.

2 Insect Colony Framework

Ants moving between the nest and a food source deposit a volatile chemical
called pheromone on the path traversed, and preferentially move towards areas of
higher pheromone intensity. Future generation of ants hooked to the same source
will travel on the same path thus reinforcing the goodness. Shorter paths can be
completed quickly and frequently by the ants, and will therefore be marked with
higher pheromone intensity. Changes in the environment, such as topological or
path quality change, are accounted for by allowing pheromone to decay over time.
This requires paths to be continuously reinforced with new information about
the traffic in the network. This form of distributed control based on indirect
communication among agents, which locally modify the environment and react
to these modifications leading to a phase of global coordination among the agent
is called stigmergy[3]. Locant derives inspiration from this insect colony frame-
work to ensure optimal location service availability at all times with minimal
overheads. The ingredients of ant colony behavior have been reverse engineered
in the framework of the Ant Colony Optimization (ACO)[5].

3 Locant

3.1 Assumptions

The nodes are assumed to be equipped with a GPS or an allied service which
provides it accurate position of itself. It is assumed that the location information
provided by the GPS is accurate and without error. The universal time clock is
also available which is synchronized in the network. The allocation of address to
each node in the network is unique and is allotted prior to its initiation into the
network.

3.2 Structure of Ants in Locant

There are three types of ants defined in Locant, viz., Normal Ant, Request Ant
and Virtual Ant, the details of which are shown in Fig 1, Fig 2 and Fig 3
respectively. Fig 4 shows the entries of the location table hosted by each node
in the network.

The Source ID is the unique address of the node, which is given to each node
prior to its initiation into the network. The location of a node is characterized by
the three dimensional coordinates in a Cartesian coordinate system derived from
the information provided by the GPS. The velocity of a node is also recorded at
the time of recording its location. The timestamp is the time instant when the
current location and velocity information are recorded. The goodness of a node
is the number of entries in its location table.
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AntType =1 SourceID

Location Velocity

Goodness Timestamp

Fig. 1. Normal Ant

AntType =2 SourceID

Source Location Source Velocity

Source Goodness Source Timestamp

Destination ID

Fig. 2. Request Ant

AntType =3 SourceID(v)

Location(v) Velocity(v)

Goodness(v) Timestamp(v)

Fig. 3. Virtual Ant

Node ID Location Velocity

Goodness Timestamp

Fig. 4. Location Table at Each Node

3.3 Algorithmic Description of Locant

On powering on, a node tries to find out activities of its neighbors. A node
continues to check for activity of its neighbors after waiting for a random time
interval trandom until it finds an active neighbor. Once the node detects that
it is in the neighborhood of another active node, the Locant location service
is initiated. After initiation, Locant broadcasts a normal ant to intimate the
network of its existence. Three concurrent activities take place while Locant is
active. These activities are as follows:
Location Information Update. Both the normal ant the request ant carries
information about the source node. The virtual ant carries information about the
node for which the corresponding request ant is supposed to gather information.
On arrival of an ant at a node, this information is used to update the location
table of the node.
Ant Creation. A normal ant is created proactively in Locant based on two
metrics. The first one is on the occurrence of a timeout tresend and the other
after a node moves a distance dresend. tresend indicates the time interval after
which we can assume that the location information regarding the node in the
network is available on all nodes or can be found after a using a request ant. The
second factor dresend generates a normal ant when the node has moved a thresh-
old distance from the previously recorded location. When a node need location
information about another node, and the location information of this table is
not in its location table, it generates a request ant and broadcasts the same.
When a request ant reaches a node which has information about the destination
node, this intermediate node generates a virtual ant carrying information about
the destination node.
Destruction of Ants. All the ants are killed when they become stale. In ad-
dition, a request ant s killed when it finds information about the destination
location.

The pseudocode for the algorithm is as given below:
while(!(received reply from neighbor))
{broadcast(HELLO);wait_random;}
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Broadcast(Normal Ant);
while(1)
{
switch(event_occur_at_node)
{

case(receive_location_request):
{if(!loc_exist) broadcast(Request Ant);
else send_loc_info_to_routing_protocol;
break;}

case(time_resend_exceed):
{broadcast(Normal Ant);
break;}

case(distance_resend_exceed);
{broadcast(Normal Ant);
break;}

case(receive Normal Ant): // from other nodes
{if (Timestamp>current_entry){

update_location_table;
rebroadcast(Normal Ant);}

else drop(Normal Ant);
break;}

case(receive Request Ant):
{if (Timestamp>current_entry){

update_location_table;
if(req_loc_exist){

send Virtual Ant;
drop(Request Ant);}

else rebroadcast(Request Ant);}
else drop(Request Ant);

break;}
case(receive Virtual Ant):

{if(SourceID == self){
broadcast(Normal Ant);
drop(Virtual Ant);}

else if (Timestamp>current_entry){
update_location_table;
rebroadcast(Virtual Ant);}

else drop(Virtual Ant);
break;}

}}

4 Simulation Experiments

We have compared Locant to three other popular location services available
in literature, viz., SLS, DLS and RLS. A detailed comparison of these three
location services has been made in the much cited paper by Tracy et. al. in
[3]. The source code for the implementation of the location services mentioned
in [3] was obtained from the authors of [3] and has been partly used in this
simulation. NS2 [6], a popular network simulator was used for simulation of all
the four algorithms. The implementation of SLS, DLS and RLS were available
for NS version 2.1a7b. Locant was implemented on version 2.29 of NS. Effort
has been made to retain the same simulation environment for location services
studied in [3]. For Locant, the simulation details are presented in Table 5.

4.1 Simulation Results

The metrics used to compare Locant with other three location services are re-
sponsiveness, accuracy, convergence time, and control overheads. Figs. 5 and 6
give the overheads that each location service generates. Fig. 5 shows the number
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Table 1. Simulation Parameters and Assumptions

Input Parameters

Simulation Area 300x600, 500x500

Number of Nodes 50,100

Transmission Range 100m

Simulation Duration 200sec, 1000sec, 2000sec

Mobility Model

Mobility Model Random Waypoint Model ( setdest : ns2)

Mobility Speeds 0,5,10,15,20 m/sec

Pause Time 10μ sec

Simulator Details

NS2 ver 2.1a7b for SLS, DLS, RLS & 2.29 for Locant

MAC 802.11

Link Bandwidth 2Mbps

Number of trials per simulation 10

 0.5

 1

 1.5

 2

 2.5

 3

 2  4  6  8  10  12  14  16  18  20

N
um

be
r 

of
 P

ac
ke

ts
 T

ra
ns

m
itt

ed

Speed m/sec

SLS
RLS
DLS

Locant

Fig. 5. Number of packets transmitted per Location Query Answered

of packets transmitted for each location query answered. In case of Locant, the
metric is the number of ants produced per location query. Fig. 5 gives a perspec-
tive of the bandwidth requirements of each protocol. Locant having a flooding
nature of propagation, transmits more packets, but consumes lesser bandwidth
due to small size of ants. Overall, Locant provides a higher performance and
lower overhead compared to a RLS and DLS and is comparable to SLS on most
metrics of performance and scalability.
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5 Conclusions

In this paper, we have presented Locant, a nature inspired location service and
have compared its performance to three other location services. Locant being a
proactive location service during initiation, and reactive during location query
phase scores favorably on most metrics. Overall, we conclude that Locant, a
unique location service based on the insect colony framework and designed to
work along a host of location information aided routing protocols scores favorably
in its class of location service.
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Abstract. In the context of the IEEE 802.11e standard for WLANs, we
provide an analytical model for obtaining the maximum number of VoIP
calls that can be supported on HCCA, such that the delay QoS con-
straint of the accepted calls is met, when TCP downloads are coexistent
on EDCA. In this scenario, we derive the TCP download throughput
by using an analytical model for the case where only TCP sessions are
present in the WLAN. We show that the analytical model for combined
voice and TCP transfers provides accurate results in comparison with
simulations (using ns-2 ).

1 Introduction

The IEEE 802.11e [1] standard has been introduced in order to provide dif-
ferentiated services to different traffic flows in an IEEE 802.11 WLAN. The
802.11e standard defines a new coordination function called hybrid coordination
function (HCF). HCF has two modes of operation: enhanced distributed chan-
nel access (EDCA) which is a contention-based channel access function, and
HCF controlled channel access (HCCA) which is based on a polling mechanism
controlled by the hybrid co-ordinator (HC), which is normally resident in the
QoS aware access point (QAP). EDCA and HCCA can operate concurrently in
IEEE 802.11e WLANs. In this paper we provide an analysis of HCF with VoIP
calls being carried on HCCA, and TCP file transfer downloads on EDCA. Each
VoIP call comprises a wireless QSTA (QoS aware wireless STAtion) engaged in
a VoIP call with a wired client via the QAP. In the case of TCP sessions, each
STA engaged in a TCP transfer is downloading a long file from a server on the
wired LAN via the QAP.

There have only been a few attempts to model and analyze the IEEE 802.11e
MAC when subjected to actual Internet traffic traffic loads, e.g., TCP or VoIP
traffic. Duffy et al. [6] and Sudarev et al. [15] propose models for the throughput
of 802.11b WLANs in finite load conditions. Tickoo and Sikdar [16] obtain a delay
and queue length analysis for an 802.11b WLAN assuming Poisson arrivals, and

� This paper is based on research sponsored by Intel Technology India.

S. Chaudhuri et al. (Eds.): ICDCN 2006, LNCS 4308, pp. 245–256, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



246 S. Harsha et al.

TXOP1
HCCAHCCA
TXOP2 TXOPs

EDCA...

SI

CAP

TXOP1
HCCAHCCA
TXOP2 TXOPs

EDCA...

SI

CAP

B TXOPs
EDCA B

CFP CP

TXOP1
HCCAHCCA
TXOP2

...

SI

CAP

... ...... ...

Beacon HCCA TXOP HCCAB
EDCA TXOPs 
contended by QSTAsTXOPs

EDCA
TXOP i allocated to QSTA i

Fig. 1. HCF medium access pattern during a beacon interval in IEEE 802.11e WLANs

a decoupling approximation that is an extension of the one in [2]. Detti et al.
[5] and Pilosof et al. [13] discuss throughput unfairness between TCP controlled
transfers in 802.11 WLANs. Leith and Clifford [12] discuss how TCP unfairness
can be removed using the QoS extensions in 802.11e. Bruno et al. [3] consider the
scenario of STAs performing TCP transfers via an AP in 802.11 WLANs. Our
modeling assumptions for TCP transfers on EDCA are drawn from this work.
Our modeling approach follows [10] (see also [11]) and is a special case of the
analysis we report in [7]. We discuss the relationship between this work and [10]
and [3] in Section 3. Though performance evaluation of VoIP calls on HCCA has
been done by Shankar et al. [14], they do not evaluate the throughput obtained
by the background traffic they consider.

We provide a simple and yet accurate model to capture the performance
when both EDCA and HCCA are used. First, we model the case when TCP file
downloads are considered on the EDCA access category AC1. From this model
we derive the total download throughput. Next, we consider the case where voice
calls are serviced on HCCA and TCP download traffic is serviced on EDCA. We
set a QoS objective that the WLAN delay does not exceed d (say 20 ms) (with
a high probability) for voice calls. We show how many CBR VoIP calls can
be accepted into the network, and also how the TCP throughput decreases with
increasing number of voice calls up to the voice admission control limit. In related
work, we have also provided an analytical model for IEEE 802.11e infrastructure
WLANs, where voice and TCP downloads are handled on EDCA [7].

2 Overview of HCCA and EDCA

In the 802.11e standard, a superframe consists of two phases: a contention period
(CP) and a contention free period (CFP); see Figure 1. EDCA is used only in
the CP while HCCA can be used in both periods. Therefore a CP consists of
controlled access periods (CAP), which refer to HCCA activity, alternating with
EDCA activity.

HCCA is based on polling and is controlled by a hybrid coordinator (located
in the QAP). In order to be included in the polling list of the HC, a QSTA must
send a QoS reservation request using a special QoS management frame, and each
individual traffic stream (TS) needs one reservation request. The QoS manage-
ment frame contains traffic specification (TSPEC) parameters. The mandatory
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Table 1. Parameters of the EDCA ACs as defined in 802.11e. “NA” means “not
applicable.”

AC CWmin CWmax AIFS TXOP AC CWmin CWmax AIFS TXOP

AC(0) 31 1023 7 NA AC(2) 15 31 2 6.016ms
AC(1) 31 1023 3 NA AC(3) 7 15 2 3.064ms

TSPEC parameters include the mean data rate of the corresponding applica-
tion, the MAC Service Data Unit (MSDU) size, the maximum service interval
(the maximum time allowed between adjacent TXOPs allocated to the same sta-
tion) and the minimum PHY rate (the minimum physical bit rate assumed by
the scheduler for calculating transmission time). Basically, each TS first sends
a QoS request frame to the QAP. Using these QoS requests, the QAP deter-
mines first the minimum value of all the maximum service intervals required by
the different TSs that apply for HCCA scheduling. Then it chooses the highest
submultiple value of the 802.11e beacon interval duration as the selected service
interval (SI), which is less than the minimum of all the maximum service in-
tervals. Thus, an 802.11e beacon interval is cut into several SIs and QSTAs are
polled accordingly during each selected SI (see Figure 1).

EDCA defines a DCF-like random access to the wireless channel through ac-
cess categories (ACs) [1]. At any node, the incoming traffic is mapped to one
of the four ACs. Each AC executes an independent backoff process to deter-
mine the time of transmission of its frames. The backoff process is regulated by
four configurable parameters: minimum contention window(CWmin), maximum
contention window (CWmax), arbitration inter frame space (AIFS), and trans-
mission opportunity (TXOP) limit. See Table 1 for the parameters of different
ACs. It is through these ACs that the differentiation is achieved.

3 Modeling and Analysis of TCP File Transfers

We follow the modeling approach of Kuriakose [10] wherein the analysis has been
done for the RTS/CTS mechanism. The approach of Kuriakose [10] is further
based on the related work in [3]. Our approach is different from [3] since we incor-
porate the IEEE 802.11 DCF backoff procedure by using the saturation analysis
from [2] and [9]; in particular, as against the constant attempt probability p in
[3], the attempt probability in our model depends on the number of contending
stations. Further, we extend the analysis of [10] to the basic access mechanism.

We use the TCP traffic assumptions of Kuriakose [10] and recall them here for
sake of continuity. Each STA has a single TCP connection to download a large
file from a local file server. Hence, the AP delivers TCP data packets towards
the STA, while the STAs return TCP ACKs. It is assumed that when a STA
receives data from the AP, it immediately sends an ACK, i.e., the delayed ACK
mechanism is not modeled, though the delayed ACKs case can also be studied
(see [10]). Further it is assumed that the AP and the STAs have buffers large
enough so that TCP data packets or ACKS are not lost due to buffer overflows.
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We assume that there are no bit errors and so packets in the channel are lost
only due to collisions. Also, we assume that these collisions are recovered by
the MAC before TCP time-outs occur. As a result of these assumptions, for
large file transfers, the TCP window will grow to its maximum value and stay
there.

We then adopt an observation made by Bruno et al. [3]. Since all nodes (in-
cluding the AP) will contend for the channel and no preference is given to the
AP, most of the packets in the TCP window will get backlogged at the AP. If
there are M STAs (each involved with one TCP download session), we can as-
sume that the probability that a packet transmitted by the AP is destined to a
particular STA is 1

M . Thus it is apparent that the larger the M , the lower is the
probability that the AP sends to the same STA before receiving the ACK for
the last packet sent. Thus, it is assumed that the probability that any STA has
more than one ACK is negligible. We can thus simply keep track of the number
of STAs with ACKs. If there are several STAs with ACKs then the chance that
the AP succeeds in sending a packet is small. Thus, the system has a tendency to
keep most of the packets in the AP with a few STAs having ACKs to send back.
We observe that AP is the bottle-neck and hence can be considered saturated
all the time.

3.1 The Analytical Model

In the case of the RTS/CTS mechanism, the transmission time of an RTS packet
from the AP is smaller than the transmission time of an ACK packet from the
STA. Therefore the total collision time when there is a collision between an RTS
packet from the AP and an ACK packet from the STA is the same as when there
is a collision between an ACK packet from one STA and an ACK packet from
another STA. This is not true in the case of basic access mechanism. In basic
access, the collision between an ACK packet from one STA and an ACK packet
from another STA will result in a smaller collision time than the collision between
the data packet from the AP and an ACK packet from an STA. This is because
the data packet from the AP is larger than the ACK packet size. Thus we need
to incorporate the two kinds of collisions in the analysis of Kuriakose [10].

In order to keep track of the kind of collisions as well, we need to embed
the Markov chain in [10] at channel slots rather than at the end of successful
transmissions. Figure 2 shows the evolution of the back-off process and the chan-
nel activity in the WLAN. Let the system slot length be δ (for IEEE 802.11b,
δ = 20μs). Uj , j ∈ 0, 1, 2, 3, . . . , are the random instants that represent channel
slot boundaries, where a channel slot could be an idle system slot, or a successful
transmission, or a collision. Let the time length of the jth channel slot be Lj ,
i.e., Lj = Uj − Uj−1.

Let there be M stations that are downloading files using TCP. Let Yj be the
number of non-empty STAs, i.e., STAs with an ACK packet to be transmitted,
at the channel slot boundary Uj . At most one departure can happen in any
channel slot. Thus, 0 ≤ Yj ≤ M . Let η(Yj) be the probability of a channel slot
being idle, σ(Yj) be the probability that an AP transmission succeeds, α(Yj)
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Fig. 2. An evolution of the back-off process and the channel activity. Uj , j ∈
0, 1, 2, 3, . . . are the instants where jth channel activity ends.

be the probability that a STA transmission succeeds, ζ1(Yj) be the probability
that there is a long collision (involving an AP packet and a STA packet) and
ζ2(Yj) be the probability that there is a short collision (not involving an AP
packet), in the j + 1th channel slot. For determining these expressions, we use
the following state dependent attempt probability model: let βn be the attempt
probability of any node in the network when there are n contending nodes. Our
approximation is that βn is obtained from the fixed point saturation analysis of
[2] or [9] for each n. Then, since we have Yj + 1 non-empty nodes (including the
AP, that is always assumed saturated) at Uj , the probabilities defined above are
as follows: η(Yj) = (1 − βYj+1)(Yj+1), α(Yj) = YjβYj+1(1 − βYj+1)Yj , σ(Yj) =
βYj+1(1 − βYj+1)Yj , ζ1(Yj) = βYj+1

∑Yj

l=1

(
Yj

l

)
βl

Yj+1(1 − βYj+1)Yj−l, ζ2(Yj) =∑Yj

l=2

(
Yj

l

)
βl

Yj+1(1− βYj+1)Yj+1−l.

We now can write the evolution equation of the chain {Yj , j ≥ 0}, as follows:

Yj+1 =

⎧⎨
⎩

Yj + 1 w.p. σ(Yj)
Yj − 1 w.p. α(Yj)
Yj w.p. η(Yj) + ζ1(Yj) + ζ2(Yj)

With the state dependent probabilities of attempt, it is easily seen that {Yj, j ≥
0} forms a finite irreducible discrete time Markov chain on the channel slot
boundaries and hence is positive recurrent. The transition probabilities, Pij , 0 ≤
i, j ≤M of the Markov Chain {Yj, j ≥ 0} are given by

Pij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 for j < i− 1
α(i) for j = i− 1
η(i) + ζ1(i) + ζ2(i) for j = i
σ(i) for j = i + 1
0 for j > i + 1

The stationary probabilities πn of the Markov Chain {Yj , j ≥ 0} can then be
numerically determined.

We then use the state dependent attempt probabilities to obtain the mean of
the channel slot durations. The channel slot duration, Lj can take five values (in
number of system slots): 1 if it is an idle slot, Ts−AP if it corresponds to a suc-
cessful transmission of AP, Ts−STA if it corresponds to a successful transmission
of a station, Tc−long if it corresponds to a collision between an AP packet and



250 S. Harsha et al.

Table 2. Parameters used in analysis and simulation

Parameter Symbol Value Parameter Symbol Value

PHY data rate Cd 11 Mbps AIFS (AC 1) Time TAIF S(AC1) 70μs

Control rate Cc 2 Mbps SIFS Time TSIF S 10μs

Data pkt size LTCPdata 12000 Bits EIFS Time TEIF S 384μs

TCP/IP Header LIPH 320 Bits PIFS Time TPIFS 30μs

PLCP preamble time TP 144μs Min. CW (AC 1) CWmin 31
PHY Header time TPHY 48μs Max. CW (AC 1) CWmax 1023
MAC ACK Pkt Size LACK 112 bits CF-Poll overhead TCF−Poll 346μs

MAC Header size LMAC 288 bits Voice pkt size Lvoice 200 Bytes
TCP ACK pkt size TTCPACK 320 bits

any STA packet, and Tc−short if it corresponds to a collision between one STA
packet and another STA packet. Then, the state dependent mean channel slot
duration, EYj L is as follows:

EYj+1L = η(Yj)+Ts−AP σ(Yj)+Ts−STA α(Yj)+Tc−long ζ1(Yj)+Tc−short ζ2(Yj)

where Ts−AP = TP + TPHY + LMAC+LIPH+LT CPdata

Cd
+ TSIFS + TP + TPHY +

LACK

Cc
+ TAIFS(AC1); Ts−STA = TP + TPHY + LMAC+LTCP ACK

Cd
+ TSIFS + TP +

TPHY + LACK

Cc
+ TAIFS(AC1); Tc−long = TP + TPHY + LMAC+LIP H+LTCP data

Cd
+

TEIFS; Tc−short = TP + TPHY + LMAC+LTCP ACK

Cd
+ TEIFS ; TEIFS = TSIFS +

TP + TPHY + LACK

Cc
+ TAIFS(AC1).

In the above equations, Cd is the PHY data rate, Cc is the control rate, TP is
preamble transmission time, TPHY is the PHY header transmission time, LMAC

is MAC header length, LIPH is the length of TCP/IP Header, LTCPdata is the
length of data packet, and LACK is length of MAC ACK packet. See Table 2 for
values of these parameters.

On combining the channel slots with the above Markov chain, we find

P (Yj+1 = y, (Uj+1 − Uj) ≤ l| ((Y0 = y0, U0 = u0),

(Y1 = y1, U1 = u1), ..., (Yj = yj , Uj = uj)))
= P

(
Yj+1 = y, (Uj+1 − Uj) ≤ l|(Yj = yj, Uj = uj)

)
and conclude that {(Yj ; Uj), j = 0, 1, 2, . . .} is a Markov renewal process.

Throughput Calculation: Let Aj be the number of successes of the AP in succes-
sive channel slots, j ∈ 0, 1, 2, 3, · · · . We see that Aj is 1 if the AP wins the channel
contention and 0 otherwise. If there are n STAs active at the j − 1th channel
slot, then we have, Aj = 1 w.p. σ(n) and 0 otherwise. Let ΘTCP (M) denote the
aggregate TCP download throughput (in bps). Applying Markov regenerative
analysis [8], defining EnA = E(Aj |Yj−1 = n) and EnL = E(Lj |Yj−1 = n), we
have

ΘTCP (M) =
LTCPdata

δ
lim

t→∞

A(t)

t
a.s.
=

LTCPdata

δ

M
n=0 πn EnA

M
n=0 πn EnL

(1)
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Fig. 3. An IEEE 802.11e WLAN scenario where voice calls are serviced on HCCA and
TCP traffic is serviced on EDCA

and each TCP connection will obtain an equal share of the aggregate download
throughput.

4 Voice on HCCA and TCP on EDCA

We use the reference scheduler [1] for the IEEE 802.11e Hybrid Coordination
Function. We assume that there are no CFPs and we ignore the transmission
time of the beacon frames. We do not consider voice activity detection and so the
voice calls are considered as full duplex CBR packet streams. We assume that
the calls use the G.711 codec. Therefore, we model the voice traffic as generating
200 (= 40 + 160) bytes per 20 ms, i.e. 160 bytes of voice payload + 40 bytes of
header (IP + UDP + RTP). We assume that there are no transmission errors
due to the channel.

We now consider the scenario where voice calls are serviced on HCCA and
TCP transfers are serviced on EDCA as AC1. See Figure 3. We have N QSTAs
with one voice TS each, and M QSTAs each performing one TCP download.
At the QAP there are N queues for the N HCCA TSs, and one AC1 queue for
EDCA TCP traffic.

Let the QoS constraint for VoIP calls be that the WLAN delay does not
exceed d. Let TSI denote the chosen service interval. Then, the TSI assigned by
the AP to the voice stream is TSI = d. Each QSTA first sends a QoS request for
inclusion into the polling list of the QAP. Since this is a one time affair, we can
ignore this traffic. In a TSI , each QSTA shall have one voice packet for uplink
transmission to the QAP. As we are considering duplex voice calls, the QAP also
has an equal number of voice packets to be sent downlink to the QSTAs. Thus,
when the QAP seizes the channel, we can consider that the QAP first sends the
voice packet to the QSTA. The QSTA after successful reception, sends an ACK
packet to the QAP. The QAP then sends a QoS CF (QCF) Poll packet to the
STA. In reply, the QSTA sends a voice packet to the QAP and this is followed
by an ACK packet from the QAP. The QAP then starts a similar transmission
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for the next QSTA. We see that a bidirectional voice packet exchange of one call
consists of transmission of a voice packet by the QAP, transmission of a QCF
Poll packet by the AP and then transmission of a voice packet by the station.
Let Tvoice be the one way transmission time for a voice call packet, including all
the overheads. Then

Tvoice = TP + TPHY +
LMAC + Lvoice

Cd
+ TSIF S + TP + TPHY +

LACK

Cc
+ TSIF S

where Lvoice is the voice packet length. See Table 2 for values of the parameters.
For the 11 Mbps PHY and G711 voice codec, Tvoice = 630.2 μs.

Let TCF−poll be the time for transmission of a QCF poll packet from the
QAP to a QSTA. Then the total time required in each TSI , for one bidirectional
call is 2Tvoice + TCF−Poll. In one TSI , the QAP has to send voice packets and
QCF poll packets to all nodes and all the nodes have to send their voice packets
to the QAP. Hence in order that the QoS delay constraint is met, N calls are
supportable if

N ≤
⌊

TSI

2Tvoice + TCF−Poll

⌋
=
⌊

d

2Tvoice + TCF−Poll

⌋
=: Nmax

where Nmax is the maximum number of voice calls permissible with the delay
bound d.

When voice calls are placed on HCCA along with TCP transfers on EDCA,
the EDCA service takes vacations as in Figure 1. If TCAP denotes the time of
HCCA activity in one TSI , it is as though, intermittently, the TCP download
activity gets frozen and resumes again after the channel is again available after
TSI − TCAP . Let the TCP download throughput when the whole of the time is
available for the EDCA mechanism be ΘTCP . The TCP download throughput,
ΘTCP in the presence of HCCA voice activity can then be obtained as

ΘTCP =
(TSI − TCAP )

TSI
ΘTCP

=
(TSI −N(2Tvoice + TCF−Poll))

TSI
ΘTCP (2)

Observation: When the EDCA activity resumes after the HCCA activity, there
is a possibility of TCP activity spilling over into the next SI interval. This is
because the STAs involved in EDCA TCP download activity are ignorant of any
HCCA activity on the channel. When HCCA activity is going on, these STAs
just sense that the medium is busy, freeze their back-off values and continue to
sense the medium, until it is idle. Once found idle, all STAs wait for TAIFS(AC(1))

and if the medium still continues to be idle, they start to decrement the back-off
values. The STA which had the least frozen back-off value seizes the channel
(assuming no other activity is there during the countdown on the medium and
that no 2 STAs had the same least frozen back-off value). Once the medium is
seized, the STA transmits one full packet, without regard to whether it might
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Fig. 4. Channel activity showing the start of a new SI. In A, the next SI starts as
scheduled. In B, the next SI gets delayed by Tmax−spillover due to EDCA activity.

spill-over into the next TSI . See Figure 4 that shows the activity of two scenarios.
In Figure 4 A the last EDCA transmission finishes just PIFS time before the
next SI has to start. Thus the AP is able to grab the channel as scheduled,
for beginning a CAP. At the other extreme, we show a possible scenario (in
Figure 4 B) where the last EDCA transmission starts just PIFS before the start
of the next SI. Now just when the AP was about to grab the channel, it finds
it busy and so has to defer to the next SI. The channel remains busy until this
EDCA transmission ends. Once this happens, the AP will grab the channel (by
waiting for PIFS time that is smaller than the AIFS time of any QSTA) and
thus start the SI. �
Equation 2 does not take into account the spill over time that can happen as
explained above. Therefore it provides a lower limit of the obtainable throughput
(hence the lower bar in the notation). Let the maximum spill over time be
denoted by Tmax−spillover . Depending upon whether the TCP sessions are using
the basic mechanism or the RTS/CTS mechanism, we have different values of
Tmax−spillover . For the basic access mechanism, Tmax−spillover is the time length
of one EDCA TXOP as seen from Figure 4 B. Therefore Tmax−spillover = TP +
TPHY + (LMAC + LIPH + LTCPdata)/Cd + TSIFS + TP + TPHY + LACK/Cc

For a TCP download packet size of 1500 bytes, at 11 Mbps data rate, for IEEE
802.11b PHY, Tmax−spillover is 1.60 ms for the basic access mechanism. Utilizing
this extra time gives the upper bound for the TCP download throughput

ΘTCP =
(TSI −N(2Tvoice + TCF−Poll) + Tmax−spillover)

TSI + Tmax−spillover
ΘTCP

Maximum Number of Voice Calls: If λ is the voice packet arrival rate, then in
the time TSI +Tmax−spillover , due to N ongoing calls, 2Nλ(TSI +Tmax−spillover)
packets arrive in the network. The multiplicative factor ‘2’ is needed because each
VoIP call corresponds to two streams: upstream and downstream. These packets
need to be serviced in the next TSI . The time required for the transmission of one
packet is 2Tvoice+TCF poll

2 . The QoS delay constraint is met if the time required for
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Fig. 5. Results from analysis and simulation: total download throughput ΘTCP ob-
tained as a function of the number of TCP downloads, M ; the basic access mechanism
is used for TCP transfers

the transmission of these packets by the HCCA mechanism does not overshoot
TSI . Thus for admission control, N ≤ Nmax calls are permissible with

Nmax =max {N : 2Nλ(TSI + Tmax−spillover)(Tvoice + 0.5TCFpoll) ≤ TSI} . (3)

5 Numerical Results and Validation

Due to the nonavailability of a simulator that implements both EDCA and
HCCA functions concurrently, we modify the ns-2 simulator to simulate our
scenario as follows. First, we apply the HCCA patch [4] on ns-2. The HCCA
patch [4] provides a simulation of HCCA on the 802.11 DCF WLAN; thus we
can simulate VoIP calls on HCCA. However, in the time left over by the CAPs
of HCCA, only channel access by DCF is possible. In order to simulate EDCA
AC 1 activity in the remaining time, we configure the back-off parameters of
AC 1 into the DCF of ns-2. Thus, we obtain the simulation scenario where the
VoIP calls are on HCCA and the TCP sessions are on EDCA. Note that since
DCF is designed for only one queue, at a time we can have only one AC of EDCA
working with HCCA, which suffices for our purpose.

Figure 5 shows the total TCP download throughput vs. the number of TCP
connections, as obtained from our analysis (using Equation 1), and also the
simulation for different PHY data rates. The simulation results also show 95%
confidence intervals. We see that the throughput obtained by analysis matches
very closely with that obtained from the simulation for a number of STAs greater
than 4. The analysis assumes that the AP is always saturated and the STAs have
at most packet at any time. This assumption is not valid when the number of
TCP sessions is small. For instance, in the case of 11 Mbps, when there is only
one TCP session, there are only two nodes - the AP and one STA. In this case the
queues behave symmetrically, i.e., the TCP window is split randomly between
the two queues. This symmetry decreases with increase in the number of STAs.
Thus our model is not valid for a small number of STAs, i.e., less than 5 (for
11 Mbps) as seen from Fig. 5.
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Fig. 6. Left: total download throughput ΘTCP obtained as a function of the number
of voice calls, N , on HCCA; bounds from analysis are also shown. Right: Prob(delay ≥
20ms) for voice packets at the QAP and the QSTAs as a function of the number of
voice calls, N , on HCCA; simulation results.

In the left panel of Figure 6 we show the simulated TCP download throughput
as a function of the number of voice calls. We also calculate ΘTCP and ΘTCP

using the value of ΘTCP from Figure 5 for the 11 Mbps PHY (i.e., 4.5 Mbps). We
notice that the two analytical values are indeed bounds, and the upper bound
is closer to the simulation results, as the EDCA spill over occurs with a high
probability.

Fig. 6 can also be used for admission control of voice calls in order to guarantee
a net minimal throughput to the TCP sessions. For instance if at least 2 Mbps
of total throughput is to be allotted to TCP sessions then the figure says that
only 7 voice calls should be admitted on HCCA.

When only HCCA VoIP traffic is present, we obtain the maximum number of
calls possible from Equation 3, as 12 calls, using the G711 codec, when the delay
bound is 20 ms. In the presence of EDCA TCP download traffic, we obtain the
analytical maximum number of voice calls, using Equation 3, as Nmax = 11 calls.
Thus, due to EDCA TCP traffic, the maximum number of VoIP calls decreases
by 1, while guaranteeing the QoS delay constraint of 20 ms.

To validate the admission control region, we show the simulation results
for the QoS measure, Prob(delay ≥ 20ms), for voice at the QAP and at the
QSTAs in the right hand panel of Figure 6. This probability at the QAP is
almost zero for all number of VoIP calls. This is because the QAP knows the
VoIP packet arrivals at its queue and so schedules their transmission before
polling the QSTAs. The probability of delay incurred by the VoIP packets
at the QSTAs is also almost zero except at N = 12, where it suddenly in-
creases when TCP traffic is added. Thus the delay QoS is not met when the
number of calls is 12 and there is also TCP traffic on EDCA. This implies
that a maximum of 11 calls are possible on HCCA when TCP traffic exists
on EDCA. This confirms the analysis result. We observe that the maximum
number of calls decreases only by one when the TCP streams are added in
the WLAN. This can be attributed to the spill over of EDCA activity into the
subsequent SI.
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Abstract. In peer-to-peer (p2p) networks, peer nodes communicate
with each other with the help of overlay structure. As the peers in the
p2p system join and leave the network randomly, it makes the over-
lay network dynamic and unstable in nature. In this paper, we propose
an analytical framework to assess the robustness of different topologies
adopted by these overlay structures, to withstand the random movement
of peers in the networks. We model the dynamic behavior of the peers
through degree independent as well as degree dependent node failure. Re-
cently superpeer networks are becoming the most widely used topology
among the p2p networks [8]. Therefore we perform the stability analysis
of superpeer networks as a case study. We validate the analytically de-
rived results with the help of simulation.

Keywords: peer to peer networks, complex networks, percolation the-
ory, network resilience.

1 Introduction

Peer to peer (p2p) networks have recently become a popular medium through
which huge amount of data can be shared. P2p file sharing systems, where files
are searched and downloaded among peers without the help of central servers,
have emerged as a major component of Internet traffic. Peers in p2p networks
are connected among themselves by some logical links forming an overlay above
the physical network. It has been found that these overlay networks, consisting
of a large amount of peers are analogous to complex real world networks and can
be modeled using various types of random graphs [15]. Generally the degrees of
these random graphs are statistically distributed and become the characteristic
feature of the topology of the overlay networks.

The topology of the overlay network is important from two aspects.

– The spread of information flow through the network is essential to perform
efficient search in the p2p networks. The speed at which information spread
is dependent on the topology of the network.

– As peers in the p2p system join and leave network randomly without any
central coordination, overlay structures become highly dynamic in nature.

S. Chaudhuri et al. (Eds.): ICDCN 2006, LNCS 4308, pp. 257–268, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



258 B. Mitra et al.

Frequently it partitions the network into smaller fragments which results in
the breakdown of communication among peers.

In this paper we concentrate on understanding the stability1 of the overlay struc-
tures which is a major challenge in front of the p2p network community. There is
no formal framework available to measure the stability of various overlay struc-
tures modeled by random graphs. However different works in bits and pieces
have been done mainly by the physicists which analyzes the dynamics of ran-
dom graphs. Effect of random failures and intentional attacks in various kind
of graphs are discussed by Cohen et al. in [1,2]. It has been observed from the
results that Internet, which can be modeled by power law networks is more re-
silient to random failure than E-R graphs (Poisson random graphs). They also
found both analytically and experimentally that scale free networks are highly
sensitive to intentional attack leading support to the view of Albert [3]. In [4],
Newman et al. developed the theory of random graphs with arbitrary degree
distribution with the help of generating function formalism. Using this formal-
ism, Callaway [5] found the exact analytic solutions for percolation2 on random
graphs with any degree distribution where failure has been modeled by an arbi-
trary function of node degree. In [7], researchers have addressed a more realistic
scenario in which a network is subjected to simultaneous targeted and random
attacks. This attack has been modeled as a sequence of “waves” of targeted and
random attacks which removes fractions pt and pr of the nodes of the network.
In all these works except [5], researchers have considered some particular types
of networks like E-R, scale free or bimodal networks and analyzed the effect of a
few specific kinds of failures like random, intentional or mixed upon them. In [5],
researchers have dealt a more general case but failed to propose any generalized
equation to measure the stability of random graphs. This paper utilizes many
of aforesaid results and proposes a generalized equation to measure stability of
p2p overlay structures against dynamic movement of peers.

As examples of random and frequent movement of peers, we model two kinds
of node failures in random graph.

– The most common type of failures are denoted as degree independent failure
where probability of removal of a node is constant and independent of degree
of that node.

– In p2p networks, peers having higher connectivity (e.g. superpeers) are more
stable in the network than the peers having lower connectivity because those
loosely connected peers enter and leave the network quite frequently. These
observation leads us to model a new kind of failure where probability of
removal of a node is inversely proportional to the degree of that node. We
denote this kind of failure as degree dependent failure.

1 In this paper, we do not differentiate between the terms stability and robustness.
They are therefore used interchangeably.

2 Percolation indicates the existence of a critical probability pc such that below pc

the network is composed of isolated clusters but above pc, a giant cluster spans the
entire network.
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As example of topology, we consider superpeer networks. This is because, as most
widely used overlay structures, considerable amount of interest has been recently
generated in understanding the stability of these networks. We also verify the
correctness of our theoretical model with the help of experimental results.

The rest of the paper is organized as follows. Section 2 models the generalized
random graph for any kind of failures. It shows the condition for giant component
disruption for any kind of disturbances in the networks. In section 3 we classify
two different kinds of random failure and mathematically analyze their effect on
the generalized random graph. Section 4 theoretically examines the stability of
superpeer networks for degree independent and degree dependent failures. This
section also compares the results derived from our mathematical model with
experimental results. Section 5 concludes the paper.

2 Stability Analysis of Overlay Networks

In this section, we use generating function formalism to derive the general for-
mula for measuring the stability of overlay structures undergoing failure. We
formally model the overlay structures and various kinds of failures and define
the stability metric which are the parameters of our analytical framework.

2.1 Topology of the Overlay Networks

The different types of overlay structure of the p2p networks can be modeled using
the uniform framework of probability distribution pk, where pk be the probability
that a randomly chosen node has degree k. So the degree distribution pk signifies
the topology of the overlay network which can be modeled as E-R graph, power law
network, superpeer network or any other arbitrary topology. The most common
overlay structures are the simple unstructured p2p networkswhere data are shared
among peers in a naive fashion. In such a system like Gnutella [12], all peers have
equal roles and responsibilities. Such topologies can be modeled by E-R graph with
degree distribution pk = zke−z

k! where z is the mean degree or power law network
pk = ck−β where β is a parameter and c is a constant.

Recently, the superpeer networks have become a potential candidate to model
overlay structure where a small fraction of nodes are superpeers and rest are
peers. Many popular p2p systems like KaZaA [13] have adopted superpeers in
their design. A superpeer node having higher connectivity, acts as a centralized
server to a subset of clients where client peers submit queries to their superpeer
and receive results from it. However superpeers are also connected to each other
to route messages over the overlay network and submit and answer queries on
behalf of their clients and themselves. Superpeer networks can be modeled by
bimodal degree distribution where a large fraction (r) of peer nodes with small
degree kl are connected with superpeers and few superpeer nodes (1 − r) with
high degree km are connected to each other. Formally

pk > 0 if k = kl, km; pk = 0 otherwise

kl & km are degrees of peers and superpeers respectively.
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2.2 Different Kinds of Failure Models

Let qk be the probability that a vertex of degree k be present in the network
after the removal of a fraction of nodes. In our framework qk is used to specify
the various failure models.

– In degree independent random failure, the probability of removal of any
randomly chosen node is constant, degree independent and equal for all
other nodes in the graph. Therefore the presence of any randomly cho-
sen node having degree k after this kind of failure is qk = q (independent
of k).

– In degree dependent random failure, probability of failure of a node (fk)
having degree k is inversely proportional to kγ . i.e fk ∝ 1/kγ ⇒ fk =
α/kγ where 0 ≤ α ≤ 1 and γ is a real number. Therefore probability of
the presence of a node having degree k after this kind of failure is qk =
(1− α

kγ ).

2.3 Stability Metric

The stability and robustness of overlay networks are primarily measured in terms
of certain fraction of nodes fc called percolation threshold or critical fraction [10],
removal of which disintegrates the network into smaller, disconnected compo-
nents. Below that threshold, their exists a connected component which spans
the entire network also termed as giant component3. The value of percolation
threshold or critical fraction fc signifies the stability of the network, higher value
indicates greater stability against failure.

2.4 Generating Function Formalism

Based upon the above described model parameters, we use generating function
formalism to find out the general formula to measure the stability of various
overlay structures. In mathematics a generating function is a formal power se-
ries whose coefficients encode information about a sequence that is indexed by
the natural numbers [4]. This generating function can be used to understand
different properties of graphs. For example, the generating function G0(x) gen-
erates the probability distribution of the vertex degrees k. Therefore G0(x) =∑∞

k=0 pkxk where pk is the probability that a randomly chosen vertex in the
graph has degree k. Importance of the generating function lies in the conve-
nient way the average over the probability distribution can be generated - for
instance, the average degree z of a vertex in the case of G0(x) is given by z =
〈k〉 =

∑
k kpk = G′

0(1). Higher moments can be calculated from higher deriva-
tives also. Here we are using the generating function to explain a slightly more
complicated concept.

3 Giant component is a technical term which signifies the largest connected component
in the network whose size is of the order of size of the network [11].
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In our formalism qk and pk specifies the failure model and network topology
respectively whose stability is subjected to examination. The formalism helps
us to locate the transition point where the giant component breaks down into
smaller components. pk.qk specifies the probability of a node having degree k to
be present in the network after the process of removal of some portion of nodes
is completed. Hence

F0(x) =
∞∑

k=0

pk.qkxk

becomes the generating function for this distribution. Distribution of the out-
going edges of the first neighbor of a randomly chosen node can be generated
by

F1(x) =
∑

k kpkqkxk−1∑
k kpk

= F ′
0(x)/z

where z is the average degree [5].

= +  + +  +  .+  . . .

Fig. 1. Schematic representation of the sum rule for the connected component of ver-
tices reached by following a randomly chosen edge. The probability of each such com-
ponent (left-hand side) can be represented as the sum of the probabilities (right hand
side) of having no vertex (which has been removed), only a single vertex, having a sin-
gle vertex connected to one other component, or two other components, and so forth.
The entire sum can be expressed in closed form as equation (1) and similarly (2).

Let H1(x) be the generating function for the distribution of the component
sizes that are reached by choosing a random edge and following it to one of its
ends. The component may contain zero node if the node at the other end of the
randomly selected edge is removed, which happens with probability 1−F1(1), or
the edge may lead to a node with k other edges leading out of it other than the
edge we came in along, distributed according to F1(x). That means that H1(x)
satisfies a self-consistency condition (Fig. 1) of the form [5]

H1(x) = 1− F1(1) + xF1(H1(x)). (1)

The distribution for the component size to which a randomly selected node
belongs to is similarly generated by (Fig. 1) H0(x) where

H0(x) = 1− F0(1) + xF0(H1(x)). (2)
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Therefore the average size of the components becomes

H ′
0(1) = 〈s〉 = F0(1) +

F ′
0(1)F1(1)
1− F ′

1(1)

which diverges when 1 − F ′
1(1) = 0. Size of the component becoming infinite

implies that the entire network joins together forming one giant component.

F ′
1(1) = 1⇒

∞∑
k=0

kpk(kqk − qk − 1) = 0 (3)

The equation (3) states the critical condition for the stability of giant component
with respect to any type of graphs (characterized by pk) undergoing any type
of failure (characterized by qk). Formulating this general formula is the primary
contribution of the paper. In the rest of the paper, we investigate the stability
situation under various special conditions.

3 Stability at Various Failure Scenario

We have seen that random movement of the peers in the p2p network can be
modeled by different kinds of failures in the complex graph. As discussed, we ad-
dress two kinds of random failures - degree independent and degree dependent.
In the next two subsections, we deal with these two kinds of failures and inves-
tigate their effect on the stability of overlay structure modeled by generalized
random graph.

3.1 Degree Independent Random Failure

In this section, we discuss the effect of degree independent random failure in
generalized random graph. If q = qc is the critical fraction of nodes whose pres-
ence in the graph is essential for the stability of the giant component after this
kind of failure then according to equation (3)

∞∑
k=0

kpk(kqc − qc − 1) = 0

⇒ qc =
1

〈k2〉
〈k〉 −1

Now if fc is the critical fraction of nodes whose random removal disintegrates
the giant component then fc = 1− qc . Therefore percolation threshold

fc = 1− 1
〈k2〉
〈k〉 −1

(4)

This is the well known condition [1] (derived differently) for the disappear-
ance of the giant component due to random failure. Note that, we have repro-
duced it to show that it can also be derived from the proposed general formula
(equation 3).
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3.2 Degree Dependent Random Failure

In p2p networks, the peers (or superpeers) having higher connectivity are much
more stable and reliable than the nodes having lower connectivity. Therefore
probability of the presence of a node having degree k after this kind of failure is

qk = (1− α

kγ
). (5)

Using equations (3) and (5), we obtain the following critical condition for the
stability of giant component after degree dependent breakdown

〈k2〉 − α〈k2−γ〉+ α〈k1−γ〉 − 2〈k〉 = 0

where percolation threshold is

fc =
∞∑

k=0

α

kγ
pk.

Considering the value of α = 1, where the fraction of nodes removed due to this
kind of failure becomes maximum, the condition for percolation becomes

〈k2−γ〉 − 〈k1−γ〉 = 〈k2〉 − 2〈k〉 (6)

Thus the critical fraction of nodes removed is given by

fc =
∞∑

k=0

1
kγ

pk. (7)

where γ satisfies the equation (6).
Thus from the equations (6) and (7), we can determine the variation of perco-

lation threshold fc for various networks due to degree dependent random failure.
We apply these formalism for superpeer networks and compare the results with
experimental results in section 4.

4 Case Study: Stability of Superpeer Networks with
Respect to Failure Models

In this section we study the robustness of the superpeer networks with the help of
our analytical framework. We investigate the change of percolation threshold (fc)
due to the change of fraction of peers (r) and the connectivity of the superpeers
(km) in the networks for various types of failure. To ensure fair comparisons,
we keep the average degree 〈k〉 constant for all graphs. We verify our theoretical
results with the help of experiments; the experimental setup is explained below.
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4.1 Experimental Setup

The p2p overlay structure is represented by a simple undirected graph stored
as an adjacency list. In order to generate the topology, every node is assigned
a degree according to the topology being simulated. In the case of bimodal net-
work the nodes are assigned the degrees depending on the kl and km values and
the fraction of these nodes in total. Thereafter the edges are generated using the
“switching method” and the “matching method” referred to in [14]. However
since these methods (as far as our knowledge goes, no better method exists) do
not sample the total ensemble of all possible desired graphs (here bimodal) uni-
formly, the experimental results might vary a little from the theoretical results.
Failure of a peer effectively means deletion of the node and its corresponding
edges. In the case of degree independent failure, nodes are randomly selected
using a time-seeded pseudo-random number generator and its edges removed
from the adjacency list. In degree dependent failure, first the fraction of nodes
having a certain degree that need to be removed is calculated, thereafter that
many nodes are selected from the total set of all such nodes randomly and its
corresponding edges are removed from the adjacency list.

4.2 Degree Independent Failure

Bimodal structure is mostly used to model superpeer networks. Let r be the
fraction of peers in the superpeer networks having degree kl and and rest are
superpeers having degree km where kl << km. Therefore bimodal degree distri-
bution pk becomes non zero only at kl and km [6]. Mathematically

klpkl
+ kmpkm = 〈k〉 and pkl

+ pkm = 1 which provides

pkm =
〈k〉 − kl

km − kl
pkl

=
km − 〈k〉
km − kl

⇒ 〈k2〉 = k2
mpkm + k2

l pkl
= 〈k〉(kl + km)− klkm and using equation (4) we get

fc = 1− 〈k〉
〈k〉(kl + km − 1)− klkm

As the fraction of peers having degree kl in the network is r therefore the average
degree of the network 〈k〉 = klr+km(1−r) implies that kl = 〈k〉−(1−r)km

r . Hence
percolation threshold

fc = 1− 〈k〉r
〈k〉2 − 2〈k〉km + 2rkm〈k〉 − r〈k〉 + k2

m − rk2
m

(8)

Using equation (8), we study the variation of percolation threshold (fc) due to
the change of the fraction of peers (r)(Fig 2(a)). Here we keep the average degree
〈k〉 = 5 fixed and vary the superpeer degree km = 25, 30, 40 for each curve. The
results for the same parameters are also deduced experimentally and shown in
Fig 2(b). We first explain the features commonly observed in both theoretical
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Fig. 2. The above plots represent critical fraction (fc) Vs fraction of peers (r) for vari-
ous superpeer networks undergoing degree independent failure. Here X-axis represents
the fraction of peer nodes (r) exists in the superpeer network and Y-axis represents
the corresponding critical fraction or percolation threshold (fc).

and practical results and then provide a comparative study between the two
results.

General observations: It can be observed (in both theoretical and experi-
mental results) that with the increase of the fraction of peers in the network,
the percolation threshold decreases which indicates the increase of fragility of
the network. That means increase of the fraction of superpeers in the net-
work improves the stability of the network. When the fraction of superpeers
is above 15% to 20% , the percolation threshold is quite high. But after that,
there is a sharp fall of fc thus drastically increases the vulnerability of the
network.

Comparative study between theoretical and experimental results: It
can be observed from the theoretical (Fig.2(a)) and experimental (Fig.2(b)) re-
sults that the behavior of critical fraction (fc) with the change of the percentage
of peers (r) is almost same for both cases. The only significant observation for
the experimental result is when percentage of superpeers is quite high (80% to
90%), the value of fc starts from a lower value. With the decrease of superpeers
fraction, fc goes up and reaches an optimum value. This indicates the optimum
superpeer to peer ratio for which overlay network becomes most stable due to
this kind of failure. The further decrease of superpeers again reduces the value of
fc. The initial increase of fc cannot be captured by our analytical model. From
the theoretical perspective, giant component size is the order of the network size
and is intuitively considered same for all cases. But in practice, giant component
is a finite fraction of size of the network which is not fixed for all cases but may
vary (albeit slightly) from case to case. For the lower values of r (i.e. percent-
age of superpeers is high), some superpeers remain isolated in the network thus
reducing the size of the giant component. This results in lower values of fc. But
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with the decrease of percentage of superpeers, all the superpeers get connected
which increases the stability of the network.
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Fig. 3. Change of γc with respect of superpeer degree km for superpeer networks un-
dergoing degree dependent failure. Here mean degree 〈k〉 varies from 8 to 16. X-axis
represents the superpeer degree(km) and Y-axis represents the corresponding γc.

4.3 Degree Dependent Failure

As introduced in section 2, in this case the probability of failure of a node is
inversely proportional to the degree of that node. Mathematically the fraction of
nodes removed f =

∑∞
k=0

α
kγ pk. According to equation (6), the bimodal network

percolates if
〈k2−γ〉 − 〈k1−γ〉 = 〈k2〉 − 2〈k〉.

If the value of γ = γc satisfies this equation then removal of fc =
∑∞

k=0
1

kγc pk

fraction of nodes destroys the giant component. In most of the commercial su-
perpeer networks like KaZaA [13], peers are only directly connected to the local
superpeer making their degree kl = 1. In that case, the value of γc which perco-
lates the bimodal network can be derived from equation (6) and becomes

γc = 1−
ln 〈k〉(km+1)−km−2〈k〉

〈k〉−1

ln km
(9)

where lowest degree is assumed to be kl = 1. We plot the variation of the γc

that is required to percolate the bimodal networks with respect to the superpeer
degree km for various average degree 〈k〉(Fig 3(a)). Like degree independent
failure, the results for the same parameters are also deduced experimentally and
shown in Fig 3(b). We first explain the features commonly observed in both
theoretical and practical results and then provide a comparative study between
the two results.

General observations: It can be easily identified from Fig 3, that with the in-
crease of superpeer degree, the value of γc that percolates the network decreases.
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These curves can be approximated by the polynomial a/(x− b) (0 < a < 1 and
b is some positive integer). Thus the decrease of γc follows hyperbolic trajectory.
Another interesting observation is after a certain threshold km, the curves be-
come parallel to the X-axis and never cuts it thus the value of γc is small but
never becomes 0 (in that case fc =

∑∞
k=0

1
k0 pk = 1). It implies that for any large

value of km, although fc becomes significantly large however it is required to
remove only a part of nodes (and not all the nodes) from the network to dissolve
the giant component.

Comparative study between theoretical and experimental results: In
the case of degree dependent failure, the experimental results (Fig.3(b)) differ
from theoretical (Fig.3(a)) for lower average degree 〈k〉 but matches quite well
for higher values of 〈k〉. In both cases, initially γc decreases with the increase of
superpeer degree (km). But after crossing a threshold value (which also reflects
the optimum superpeer degree), further increases of km increases the value of
γc which is not reflected by the theoretical analysis. The reason is almost same
as explained in degree independent failure. Keeping average degree constant
and increasing the superpeer degree leaves many of the superpeers isolated.
This decreases the stability of the network thus increases the value of γc. This
phenomenon becomes significant when the average degree of the network is low.

5 Conclusion and Future Work

The basic contribution of this work is the development of general framework to
analyze the stability of various p2p overlay structures against dynamic movement
of peers. We have modeled the behavior of these peers using degree independent
and degree dependent random failure. As superpeer networks are currently most
promising and widely used overlay structure, we perform stability analysis of
these networks as a case study of our analytical model. It has been observed
that when the fraction of superpeers in the network is less than 15%, the robust-
ness of the network sharply decreases for degree independent failure. This result
points to a zone where superpeer network is most vulnerable. Similarly for degree
dependent failure, our analysis shows that increase of superpeer degree improves
the stability of the network and the improvement follows a hyperbolic trajectory.
Although our theoretical and experimental results have matched fairly, however
the little differences between them result from the contradiction of the theoret-
ical and practical concept of giant component. Difficulties to generate accurate
graph with a given degree sequence are also responsible for the slight mismatch
between theoretical and experimental results.

Deeper look into the differences between experimental and theoretical results
is part of our future work. Similarly we have to perform a detailed compara-
tive study of the stability of various overlay topologies like E-R graph, power
law network, various kinds of superpeer networks like mixed Poisson and bi-
modal structure etc. In addition to the simple failure models discussed here, in
future we will consider different kinds of attacks where nodes having more im-
portance are been targeted and attacked to destroy the connectivity of the p2p
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network. Importance of a node can be determined by degree centrality, between-
ness, eigenvector centrality etc. Moreover, comparative stability analysis of all
these topologies with respect to combination of different attacks and failures will
bring completeness to the work.
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Abstract. Testing network processor based high throughput applications re-
quire high-speed traffic generator. Commercial traffic generators are very ex-
pensive and their internal working is proprietary. Hence, we have designed a 
network processor based network Traffic Generator (TG). The Control Plane 
(CP) takes care of the configuration of the traffic profile. The data plane (DP) is 
responsible for actual generation of the traffic. The TG requires another copy of 
TG or any other traffic generator for calibration. We explain the calibration 
methodology and the results of our experiments. Our system has been able to 
generate traffic up to 10Gbps. 

Keywords: Traffic Generator, Network Processor, High Throughput, System 
Testing. 

1   Introduction 

General-purpose processors are ill suited for high speed networking applications 
where packets need to be processed at line-speed. These applications typically have 
very low memory reference locality, they have packet level parallelism instead of in-
struction level parallelism, and they generally do not use floating-point unit. Hence 
special purpose network processors [1, 8] (NP) are designed for high performance 
networking applications. Traffic generator must satisfy a number of requirements. It 
should generate various types of packet such as raw Ethernet frames, ARP packets, 
IPv4 datagrams, IPSec packets, and UDP datagrams. It should configure header part 
of all these protocols. It should also be capable of generating mixture of traffic at mul-
tiple ports. Given the cost and the proprietary nature of existing commercial traffic 
generators, we have decided to develop a Traffic Generator (TG) using the Network 
Processor itself. While our traffic generator uses a proprietary network processor, it 
has been designed as a general-purpose traffic generator capable of running on any 
network processor architecture. The organization of the rest of the paper is as follows. 
Section 2 describes the related work. Section 3 presents our architecture in detail and 
explains the functioning of the traffic generator. In Section 4, we describe the experi-
ments required to calibrate the CP for traffic control purposes. Section 5 presents the 
future work, and Section 6 concludes the paper. 
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2   Related Works 

More details on the design and architecture of Network Processors can be found in [7, 
8]. While routers were one of the earliest applications built on top of these processors 
[2], a large number of applications, including Intrusion Detection Systems [3], Stream 
Processing [4], High Capacity Link Emulators [15], Load-balancing of High Speed 
Links [14] etc. have been developed on top of network processors. An architecture that 
pushes application and middleware-level functionality to Network Processor has been 
proposed [13]. Schemes described in [11, 12] are specialized for generating UDP 
traffic. Other solutions like netperf [6] utilize general-purpose processors and hence are 
limited in speed. In contrast, using our approach, anyone developing applications for 
any Network Processor can use the very same NPs to develop a traffic generator. Our 
work only deals with how to generate traffic, given a traffic profile. It does not deal 
with what traffic profile should be used. This issue is discussed in [9, 10]. 

3   System Architecture 

TG architecture is divided into two basic modules: CP and DP. The CP handles opera-
tions that do not need to be processed at wire speed like configuration of the traffic 
profile, and is responsible for the control and management of the network processor. 
The DP is responsible for the actual generation of the traffic. The operations per-
formed by the CP are less time critical and have complex processing requirements. 
CP controls and configures various traffic profiles. It decides how many hardware 
threads are required to generate particular traffic profile at a given rate. It keeps  
information on DP resource consumption. User configures desired traffic profile using 
TCL scripts and passes it to CP.  Output of the CP module is an intermediate data 
structure that is fed to DP. Hence any change in traffic profile is achieved by chang-
ing the CP code and the configuration file while the performance critical DP code 
stays unchanged.  

 

Fig. 1. CP Architecture 

3.1   Control Plane Architecture 

Figure 1 shows CP architecture. Command Generator and Response Analyzer gener-
ate actual command for DP and analyzes response packet that comes from DP. TCL 
parser is invoked when user wants to configure packets through a TCL file. A sepa-
rate Command Level Interface (CLI) is also provided using which users can give  
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explicit low level commands. Output of the Command Generator is encoded using an 
intermediate data structure. Intermediate data structure is designed in a way such that 
the DP only has to manipulate the offset values in the packet without having to know 
the packet. This makes the DP code independent of traffic profile. To add a new traf-
fic profile, the needed module is plugged in CP side while DP stays untouched. 

3.2   Data Plane Architecture 

DP code runs on the network processor. It uses micro kernel services provided for the 
specific hardware. DP architecture is shown in Figure 2. It is divided into three sub 
modules: Control and Maintenance, Traffic Generation, and Traffic Receiver module. 
Control and Maintenance module (CMM) is responsible for communication with CP. 
Single request–response mechanism is implemented between CP and the CMM. 
CMM also maintains other threads and allocates job to available thread pool. It keeps 
track of resources of NP such as ports thread pool etc. Traffic generation threads act 
upon the intermediate data structure generated by the CP and make copy of a new 
packet and send it out on the specified port.  

 

Fig. 2. DP Architecture  

3.3   Traffic Generation Mechanism 

The CP decides the number of threads required to generate packets at a particular 
port. A single thread generates packets on a single port at a time. Each thread has a 
predefined template area in on-chip memory. The pre-constructed packet for a thread 
is located in its template area that is the first packet to be generated by thread. Thread 
allocates same amount of memory in packet buffer area as the size of the pre-
constructed packet. The thread then copies the pre-constructed packet into the packet 
buffer and writes it into the output queue of the desired port.  

4   TG Calibrations 

To generate traffic at a given rate, CP needs to know how much data can be generated 
by a single DP thread. The parameters affecting the overall throughput of a single 
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thread are message size, and the number of fields to be modified from packet to 
packet. To check how these parameter variations affect the throughput, TG is cali-
brated using the IXIA [5] traffic generator. IXIA tool is able to measure the incoming 
traffic rate. Note that if one has another Network Processor available than one can use 
the TG in the ‘receive’ mode to profile itself. 

 

Fig. 3. Test Bed for TG calibration 

4.1   Experiment 1 

Objective: To decide single thread’s capacity to generate traffic for a given packet 
size and the number of fields to vary.  

Methodology: We use the test-bed shown in figure 3.The NP’s port that is generat-
ing traffic is serially connected to the one of the IXIA’s port. At receiving end, we can 
measure the rate at which packets are coming through that interface. 

Discussion: The results of the experiments are shown in Figure 4. The throughput 
increases with the packet size. As the packet size increases, only the data payload sec-
tion of each frame needs to be copied. No other instructions are required to process 
the payload. The overhead of header processing per packet gets reduced. With  
increase in the number of fields to modify, the throughput for a given packet size de-
creases. But the change is not linear. If the field that needs to be varied is on the 
boundary of the next buffer, then the whole of the next buffer needs to be written in 
the buffer pool again. This overhead decreases the rate slightly. 

 

Fig. 4. Single Thread’s throughput 
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4.2   Experiment 2 

Objective: To determine the throughput variation with the number of threads and 
message sizes. 

Methodology: Same as that of the Experiment 1. Each output port of the NP is con-
nected to an input port of the IXIA. Here no field is varying from packet to packet. 

Discussion: The results of the experiments are shown in Figure 5. Results are almost 
linear with periodic dips occurring when a new buffer is added to the payload. The av-
erage throughput per thread goes up as the number of threads increases. In general ap-
plications, scale-up due to multi-threading is typically sub- linear due to the contention 
between threads. In the current application, there is no contention between the threads 
and hence the shared overhead goes down with the increasing number of threads. 

 

Fig. 5. Throughput variation 

4.3   Configuring CP 

Data from these experiments is used to configure the CP for deciding the number of 
threads to employ for a given traffic profile. We maintain a static table based on the 
results of the Experiment 1. This gives us the bandwidth of a single thread for a given 
message size and the number of fields to vary. We approximate the results of Experi-
ment 2 by assuming linear scale-up of the throughput with the number of threads. To 
verify this assumption, we repeated Experiment 1 with two and three threads. Resulting 
throughput scale-up is shown in Figure 6 and Figure 7. This shows that the throughput  
 

 

Fig. 6. Throughput scale-up for two threads 
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scales with the number of threads with a relative error of at most 6%. Dividing the de-
sired throughput with the throughput for a single thread gives us the number of threads. 
To get the desired throughput, inter-packet delay is introduced appropriately in each 
thread. 

 

Fig. 7. Throughput scale-up for three threads 

 

Fig. 8. T G Throughput with 60 threads 

Figure 8 presents the result of running the traffic generator with all 60 threads in 
our NP. For packet sizes above 289 bytes, the Input-Output module is not capable of 
sending data at a rate more than 10 Gbps and becomes the bottleneck. 

5   Future Works 

At present TG design is using a static allocation of Traffic generation and receiving 
threads. In future dynamic load balancing of threads will be done. It requires some of 
the CP code to change but the main architecture will remain unchanged. TG supports 
10 Gbps traffic. We plan to combine Multiple Network Processors to generate traffic 
at higher speeds. 

6   Conclusions 

In this paper, we have presented the design and implementation of a Network Proces-
sor based Traffic Generator. The architecture takes advantage of the control plane and 



 Design and Implementation of a Network Processor Based 10Gbps Network TG 275 

data plane division found in NPs. The CP parses the given traffic profile and config-
ures the threads of the DP for carrying out traffic generation task. An intermediate 
data-structure is employed so that DP code stays unchanged for changing a wide vari-
ety of traffic profiles. CP itself needs to be calibrated using another Traffic Generator. 
We have presented the experiment results and the methodology for calibrating CP. 
While we have worked with a proprietary processor, our design is generic and can be 
used with any Network Processor. 

Acknowledgements. We thank anonymous reviewers for giving valuable suggestions. 
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Abstract. In the network traffic, the nature of the input output data/signal 
signals are used to demonstrate the statistical characterization of the traffic 
performance. Observations of traffic on network links typically reveal intensity 
levels (in bits/sec) averaged over periods of time periods which are relatively 
predictable from day to day. Systematic intensity variations occur within the 
day reflecting user activity. In this paper, the stochastic spectral analysis is 
performed on the input/output signal signals and the ratio of the spectral power 
of the output and input signals are taken as the characteristics of the statistical 
nature of the network traffic. For different time averaging schemes this 
characteristic ratio shows a bounded nature. In this paper the theoretical 
analysis is done on the boundedness of the characteristics ratio through the 
process of stochastic spectral density analysis.  

Keywords: Network traffic, stochastic spectral power. 

1   Introduction 

Traffic theory currently plays an important role in the design of the network 
systems. Network provisioning is generally based on simple rules of thumb while 
considerable effort is spent on the design of a variety quality of service (QoS) 
mechanisms. It is necessary to apply the appropriate traffic-performance relation if 
the objective is to ensure that QoS [1-4] meets specific design targets for a given 
population of such users. The precise characteristics of this stationary process 
depend on the composition of Internet traffic [5]. It is well known that the arrival 
process of IP packets can exhibit extreme signal variations at multiple time scales 
forming the self-similarity phenomenon on network performance [6]. Yet more 
extreme variability (so-called multi-fractal behavior) occurs at smaller time scales 
due to the burstiness induced by TCP. It proves much simpler to describe traffic in 
terms of flows [7]. 

The analysis of traffic system of a network can be achieved by the process of the 
analysis of each node in the network. In this paper the concept of input/output bit 
signals are analyzed through stochastic power spectrum in which the characterization 
of the given node is done using the concept of spectral density of the bit signals.  
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2   Stochastic Spectrum Analysis of Traffic Characteristics 

The network traffic is a time dependent discrete signal and hence, 0{ }t tX ∞
=  can be 

considered as the set of traffic such that 0tX ≥ for 0t ≠  and without loss of 

generality we may assume that 0 0X =  through out the process. Here 0{ }t tX ∞
=  can be 

assumed as a random process as the traffic input- output characteristics in the network 
due to uncoordinated actions of very large population of users but some analytical 
behavior can be represented through stochastic modeling. Let B represent the 
backwards shift operator, i.e., t tBX X= , and let 1 B∇ = −  represents the differencing 

operator which acts on the discrete values of the network at different time steps.  For a 
positive real value d the process { }tX  can be said to be a d-dimensional traffic if 

d
t tX ε∇ = , where the operator d∇  can be defined through the binomial expansion of 

(1 )dB− ; d
t tX ε∇ =  can be defined as d-dimensional changing parameter of the 

traffic. In reality, the network traffic can be considered as a non-stationary process 
due to its variability in the changing parameter, and can be assumed the spectral 
power density as [8],  

2

,
1 1 1

1 1 1
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n n n

ω ω ωω λ λ− −

= = =

= = = −  (1) 

where jλ ω= . 

Considering 0 0{ } { }n
t t t tX X ∞

= =⊆  for n < ∞  be the n-sample set of the infinite 

domain traffic characteristics, we can state that  

Theorem 1. Let 0{ }t tX ∞
=  is a random process with d

t tX ε∇ = . Consider the 

realization sample 0{ }n
t tX =  and assume that 0 0X = . Then , ( )X nI λ  of 0{ }n

t tX =  and 

, ( )nIε λ of 1{ }n
t tε =  are related through the inequality 
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ελ λ λ− −− ≤ + −  (2) 

where, for any fixed (0, )λ π∈ , [ ( )] 0nE R λ →  as n → ∞ . (3) 

Proof 
Since 1

d
t t t tX X Xε −∇ = ≥ − , we get  
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Multiplying each side by its conjugate, 
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Since d
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Hence for any fixed 0λ > , [ ( )] 0nE R λ →  as n → ∞ . 

3   I/O Traffic Characterization 

Theorem 1 gives the behavioral nature of the network traffic relating the traffic flow 
and the changing parameter of the network. For input output characteristics let us 
consider a characteristic parameter, which can be considered as characteristic 
ratio, , ; , ;( ) ( ) / ( )n X out n X in nI Iρ λ λ λ= , and can be defined as the ratio of output traffic 

spectrum to the input traffic spectrum. It can be related with the changing parameter 
of traffic as follows. 

Theorem 2. For d-dimensional traffic ( 1d ≥ ), , ; , ;( ) ( ) / ( )n out n in nI Iε ερ λ λ λ≤  as 

n → ∞ . 
Proof 

2 1 2
, ; , ; ; ;1 ( ) ( ) ( )i

X in n in n in n in ne I I n X Rλ
ελ λ λ− −− ≤ + −  

and 
2 1 2

, ; , ; ; ;1 ( ) ( ) ( )i
X out n out n out n out ne I I n X Rλ

ελ λ λ− −− ≤ + − Hence 

1 2
, ; ; ;

1 2
, ; ; ;

( ) ( )
( )

( ) ( )
out n out n out n

n
in n in n in n

I n X R

I n X R
ε

ε

λ λ
ρ λ

λ λ

−

−

+ −
≤

+ −
 

From Theorem 1, [ ( )] 0nE R λ →  as n → ∞ ; which implies that  

, ; , ;( ) ( ) / ( )n out n in nI Iε ερ λ λ λ≤  as n → ∞ . (4) 

Theorem 2 gives the realization of the bounded nature of characteristic ratio; it may 
be assumed that there must exist a strong bound for the characteristic 
parameter ( )nρ λ . In reality the nature of network traffic can be assumed as a 

behavioral representation of Gaussian distribution. As d-dimensional changing 
parameter can be assumed as the noise pattern in the network traffic and may be 
positive or negative over the average traffic, the averaged squared nature of the 
changing parameter is taken into analysis.  
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Theorem 3. [9] Let 1{ ,......, }nξ ξ  be independent random variables such 

that
2

[ ]iE
δξ + < ∞ ,1 i n≤ ≤ , for some (0,1]δ ∈ . Let η  be a zero-mean Gaussian 

random variable such that 2 2

1

[ ] [ ]
n

i
i

E Eη ξ
=

= . Then for any 0k > , 

( ) 2

2
1 1

Pr Pr [ ]
n n

i i
i i

c
k k E

k

δ
δξ η ξ +

+
= =

> − > ≤  (5) 

where c is an absolute constant. 

4   Time Averaging of Network Traffic 

In network characterization different time slot averaging like 5 min averaging, 30 min 
averaging etc. is done on the network traffic 0{ }t tX ∞

= . Similarly different time slot 

averaging can be done on 1{ }t tε ∞
=  , where 1{ }t tε ∞

=  be the independent random variable 

known as the changing parameter of the network traffic. If p-time slot averaging is 
considered then  

1 1( ..... ) /p
p pε ε ε= + + , 2 1 2( ..... ) /p

p p pε ε ε+= + +  and similarly on generalization 

of the network traffic ( 1) 1( ..... ) /p
t t p tp pε ε ε− += + +  and hence 1{ }p

t tε ∞
=  makes the  

p-time averaging changing parameter characteristics of the network. Then 

1

( ) /
n

p p i t

t

F e nλ
ε ελ ε −

=

=  for 1 1{ } { }p n p
t t t tε ε ∞

= =∈ . Now ( )pFε λ  can be defined as  

1

( ) /
n

p p i t
t

t

F e nλ
ε λ ε −

=

= . 

Lemma. If 1{ ,......, }nε ε  be independent random variables such that 
2

[ ]tE
δε + < ∞ ,1 t n≤ ≤ , for some (0,1]δ ∈ . Let η  be a zero-mean Gaussian random 

variable such that
2

2

1

[ ]
n

t

t

E E
n

εη
=

=  and if , ( )p
nIε λ  be the power spectrum of p-th 

averaging traffic pattern then with high probability , ,( ) ( )p
n nI Iε ελ λ→  as n → ∞ . 

Proof 

1

( ) /
n

p p i t
t

t

F e nλ
ε λ ε −

=

=  ( 1) 1
1

( ..... ) /
n

i t
t p tp

t

e p nλε ε −
− +

=

= + +  

                ( )( 1) 1
1

..... /
n

i t
t p tp

t

e p nλε ε −
− +

=

≤ + +  

Hence for large n , ( ) [ ]( )Pr ( ) Pr ( )pF k F kε ελ λ> ≤ > But using Theorem 3 , 

which tells that [ ]( ) ( )Pr ( ) PrF k kε λ η> → >  as n → ∞ , and similarly 
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( ) ( )Pr ( ) PrpF k kε λ η> → >  as n → ∞ , then for large n , 

( ) [ ]( )Pr ( ) Pr ( )pF k F kε ελ λ> → > ; which implies that with high probability 

, ,( ) ( )p
n nI Iε ελ λ→  as n → ∞ .  

Using this lemma we can state the following statement, 

Corollary. If p
nρ  be the p-th average characteristic signal of input-output network 

traffic, then with high probability p
n nρ ρ→  as  n → ∞ . 

5   Experimentation 

The following shows the 5 minutes time averaging input and output signal of a typical 
academic institute LAN; and their complex power spectrum is calculated. The power 
is calculated in dBc. Similarly we can get the characteristic ratio of the network traffic 
for different time averaging.  

 

Fig. 1. 5 minutes averaging input signal 

 

Fig. 2. 5 minutes averaging output signal 

 

Fig. 3. Power Spectrum input signal 

 

Fig. 4. Power Spectrum output signal 

 

 5 min  30 min  2 hr 

 Averaging Averaging Averaging 
Charecteristic Ratio ρ  -1.79 -0.81 -1.29 

 



 Stochastic Spectral Density Analysis on Network Traffic Characterization 281 

  
Input 
Signal    

Output 
Signal  

Spectral 
Power (dBc) 5 min  30 min  2 hr  5 min 30 min 2 hr 

 
 

Averaging 
 

Averaging 
 

Averaging 
  

Averaging 
 

Averaging 
 

Averaging 
 

Total 13.23 14.5 16.5  11.47 13.69 15.21 
Fundamental 0 0 0  0 0 0 

Distortion -3.82 -5.12 -1.12  -5.44 -4.12 -0.61 
Noise 12.93 13.79 16.32  11.05 12.97 14.96 
SNR -11.42 -7.5 -13.84  -9.96 -7.43 -12.24 

6   Conclusion 

In this paper we are mainly concentrated on the statistical nature of network traffic 
and the theoretical characterization of its patterns. Though it is very much unusual to 
use analog signal processing parameters in the measure of network traffic, the use of 
statistical behavioral model enlightens the idea of probabilistic behavior randomness 
in network traffic pattern. The spectral analysis of input output traffic signals gives 
much scope to analyze the stochastic behavior of noise, distortion and signal to noise 
ratio in the particular node of network traffic unlikely other characterizations of 
network traffic. For a given network the value ρ  can be taken as the characteristic 

value of the network traffic and hence can be used to measure the statistical nature of 
the network.   
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Abstract. We are interested in the problem of coordination of ground-
based control stations and orbiting space probes for allocating monitor-
ing tasks for emerging environmental situations that have the potential
to become catastrophic events threatening life and property. We assume
that ground based sensor networks have recognized seismic, geological,
atmospheric, or some other natural phenomena that has created a rapidly
evolving event which needs immediate, detailed and continuous monitor-
ing. Control stations can calculate the resources needed to monitor such
situations, but must concurrently negotiate with multiple autonomous
orbiters to allocate the monitoring tasks. While control stations may pre-
fer some orbiters over others based on their position, trajectory, equip-
ment, etc, orbiters too have prior commitments to fulfill. We evaluate
three different negotiation schemes that can be used by the control sta-
tion and the orbiters to complete the monitoring task assignment. We
use utilitarian and egalitarian social welfare as the metric to be maxi-
mized and discuss the relative performances of these mechanisms under
different preference and resource constraints.

1 Introduction

Recently there has been a research initiative to coordinate between Earth-based
sensors (such as a video camera or devices on an ocean buoy) and orbiter missions
for efficient monitoring and investigation of a large variety of natural phenom-
ena [1]. Creating operation plans in such distributed settings is especially difficult
when so many entities have input. Currently, the activities of a spacecraft are often
planned weeks or months in advance for Earth orbiters; thus, these missions are
practically unable to respond to events in less than a week. We study the prob-
lem of fully autonomous response to emerging, potential natural disasters that
require coordination of control stations and earth orbiters for adequate monitor-
ing. We are interested in expediting the response time and accuracy to different
rapidly evolving natural phenomenon. Space orbiters are autonomous and have
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prior commitments and resource constraints which may or may not allow them
to take on additional monitoring load at short notice. We assume that orbiters
can negotiate between themselves and with ground control centers and can eval-
uate the utility of an announced monitoring task based on their current schedule
and resource constraints. An allocation of a monitoring task between multiple or-
biters will have different utilities from the perspective of each of the orbiters and a
ground-based control station. We are especially interested in the utilitarian (sum
of utilities of all agents) and egalitarian (the utility of the least happy agent) met-
ric of social welfare of such a system. Maximizing utilitarian social welfare in a
system corresponds to maximizing the efficiency of the system while maximizing
the egalitarian metric corresponds to maximizing fairness in the system.

2 Coordination Via Negotiation

For most of this paper, we restrict our discussion to one control station negoti-
ating with two orbiters for allocating a fixed number of monitoring tasks given
an impending emergency detected by a ground based network of sensors. The
overall monitoring task can be divided among the two orbiters by partitioning
the total time period into n non-overlapping sets. We now present three alterna-
tive negotiation mechanisms we have evaluated for task assignments and briefly
discuss their merits and demerits.

Sequential auction: Auction mechanisms [3] can be used to find subtask al-
locations to maximize social welfare. Due to exponential time complexity of
combinatorial auctions, a more feasible, simplified, auction scheme can be to
auction each of the n time units sequentially. Suppose the utility to orbiter i for
doing the jth unit task is uij and the corresponding utility to the control station
is uc

ij . The control station will award the jth unit task to the orbiter k, where
k = arg maxi∈I{uij + uc

ij}, where I = {1, 2} is the set of negotiating orbiters.

Multi-issue monotonic concession protocol (MC): The orbiters arrange
the possible task allocation agreements in decreasing order based on their util-
ities and propose allocations in that order. If one party finds that the utility of
the allocation it is going to propose is as good as any proposal it has already
offered, it accepts that proposal, A disadvantage of this protocol is the relatively
slow exploration of different possibilities. This can, however, be improved by
increasing the amount of concessions made at each step.

Mediator-based simulated annealing: Another distributed approach to task
allocation is proposed by Klein et al. [2], where the negotiating parties try to
improve on the current proposal. A simulated annealing scheme is used to search
for better proposals where the current proposal is used as the starting point. In
this approach, a mediator proposes an allocation offer1, and the negotiating
parties either accept, or reject the offer. If all of the parties accept the offer the
mediator generates a new proposal by mutating the current offer. Otherwise, the

1 The mediator initially generates this offer randomly.
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mediator generates a new proposal by mutating the most recently accepted offer.
The search terminates if any mutually acceptable proposal is not generated by
the mediator for a fixed number of proposals.

3 Logistics of the System

Each orbiter is capable of sending pictures of different quality (q). We assume
that uτ

i , the utility that the orbiter receives in the form of payment for any time
unit τ is proportional to the quality of service. Orbiters have a current schedule
Si, a vector of preassigned tasks for a finite horizon. We represent the vector Si

as {Sτ
i }l(Si) where l(Si) is the the total length of time for which the orbiter has

preassigned tasks. The utility for Si given by μSi is a distribution of uτ
i over l(Si)

while the utility distribution of task t given by μt is a distribution of uτ
i over l(t).

A proposal made by an orbiter is a vector Pi ∈ {P τ
i }l(t) where P τ

i ∈ {0, 1}. Next,
we need to define an allocation α as the set {α1, . . . , αl(t)}, where ατ = i if the
time unit τ of the monitoring task has been assigned to orbiter i. We assume that
the utility of an allocation is characterized by the following factors: the orbiter
prefers to allocate the same task for consecutive time periods; performing a new
task (a task not allocated before) incurs a overhead cost which is half the value
of the utility that the orbiter is supposed to receive for doing the task for that
time unit; switching back to a task incurs a penalty that is proportional to the
number of time units that elapsed in between. The control station maintains
a tuple V =< p1, p2 > where pi denotes the preference of control station for
orbiter i.

4 Experimental Section

In our experiments, we assume that μt and μSi can be approximated by the
function fζ(x) = ψζ × 1/(

√
(2 × π) × dζ) × e−(x−mζ)2/2×d2

ζ with parameters
mζ , dζ and ψζ , where ζ ∈ {t, S1, S2}. The values of mζ and dζ are represented
as fractions of l(t). These parameters determine the shape of ζ and we vary them
throughout our experiments to obtain different forms of μt and μSi .

In the first series of simulations, we first tried to evaluate the performance
of the three negotiation techniques when both the orbiters have similar light
schedules (results in Figure 1): we use mS1 = mS2 = 0.5, dS1 = dS2 = 0.5
and ψS1 = ψS2 = 0.5. The values of mt and dt for all our experiments are
chosen randomly for each run. From Figure 1 we see that for such schedules, the
sequential auction approach dominates the other techniques when the metric
is utilitarian social welfare while monotonic concession does better in terms
of egalitarian social welfare. Under such a situation maximizing the utilitarian
social welfare for each individual time unit leads to maximizing the metric for
all the time units. The corresponding egalitarian social welfare is low as the
bulk of the task is allocated to one orbiter to minimize the cost of switching
between orbiters. The monotonic concession, does better on the latter metric as
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Fig. 1. Utilities obtained with different negotiating schemes when orbiters have similar
light schedules

it supports a more fair allocation by requiring agents to make concessions until
the allocation is mutually acceptable.

Next, we tried to evaluate the performance of the three negotiation tech-
niques when both the orbiters have similar loaded schedules (results in
Figure 2). For this scenario, we use mS1 = mS2 = 0.5, dS1 = dS2 = 0.5 and
ψS1 = ψS2 = 1.5. Under such a situation, sequential auction is never a better
solution which is reflected by its poor utilitarian and egalitarian social welfare
values. In such resource constrained situations, the myopic approach of maximiz-
ing utility per subtask does not maximize the overall system utility. Mediator
based simulated annealing performs best in terms of utilitarian social welfare
while monotonic concession continues to provide the highest egalitarian social
welfare. In the final simulation of the series, we tried to see the effect on per-
formance of the three techniques when the orbiters schedules vary from being
similar to being perfectly complimentary. We use mS1 = dS1 = 0.25 and vary
mS2 from 0.25 to 0.75 (results in Figure 3). The results show that sequential
auction performs the best of the three mechanisms as long as the schedules
are somewhat similar (for mS2 <= 0.5). The other protocols produce better
utilitarian social welfare with the increase in complementarity of the sched-
ules. Monotonic concession continues to dominate in terms of egalitarian social
welfare.

In another series of simulations, we tried to study the effect on the utilitarian
social welfare of all the three mechanisms with varying mS2 and p2/p1 keeping
mS1 fixed. Figure 4(a) plots the difference of the utilitarian social welfare of
the sequential auction and monotonic concession mechanisms against mS2 and
p2/p1. Figure 4(b) plots the difference of the utilitarian social welfare of the
sequential auction and simulated annealing mechanisms against mS2 and p2/p1.
In both the plots, it is clear that for a fixed schedule of orbiter 2 (fixed value
of mS2), the value in the z axis shows an increase with increase in the value
of p2/p1. This suggest that as the preference of control station for one orbiter
increases, it is better to use the sequential auction mechanism if maximizing
the utilitarian social welfare is the main criterion. The high utility received by
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Fig. 2. Utilities obtained with different negotiating schemes when orbiters have similar
loaded schedules
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Fig. 3. Utilities obtained with different negotiating schemes by varying the schedule of
the second orbiter

the control station for allocating most of the monitoring task to orbiter 2 is
manifested in the high utilitarian social welfare of the system. The value in the z
axis stabilizes for p2/p1 ≥ 2.5 hinting that the control station can gain no more
with further increasing in its preference for orbiter 2. This trend is true for all
values of mS2 (refer Figure 4). But the low value of egalitarian social welfare
suggests that gain in total utility comes at the price of loss of utility of one
agent. Such allocations will work in practice only if side payments are used by
the control station to compensate the deprived orbiter.

To summarize our results, if the chief criterion of mechanism selection is high
egalitarian social welfare, then monotonic concession should be the preferred
choice. However, if the chief criterion is utilitarian social welfare maximization,
then there is no single mechanism that can guarantee high value for all sit-
uations. When the allocations for each individual time unit are uncorrelated,
maximizing the utilitarian metric for the entire monitoring task is achieved by
maximizing the metric for each individual interval, sequential auction performs
better. Unfortunately due to the dynamic nature of μSi and μt, such a situation
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is not very common. Mediator based simulated annealing performs better under
such circumstances as it provides fair approximations to the global optimum
allocation through heuristic search over the entire search space.

5 Conclusion

In this paper we have studied the problem of fully autonomous response to
emerging, potential natural disasters that require coordination of control stations
and earth orbiters for adequate monitoring. We have compared three different
negotiation mechanisms used by the orbiters and the control station to reach
an efficient agreement on the allocation of the task. Our objective was to find
a robust, fast and efficient negotiation mechanism that enables the orbiters and
the control station to quickly reach an efficient and fair agreement. As part of our
future work, we would also like to explore if the negotiating parties can adaptively
choose the most suitable negotiation mechanism for different emergencies.
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Abstract. In this survey, we describe three algorithms for testing pri-
mality of numbers that use Fermat’s Little Theorem.

1 Introduction

Pierre de Fermat, a 17th century mathematician, is famous for the Fermat’s Last
Theorem:

Theorem (Fermat’s Last Theorem). For any number n > 2, there is no
integer solution of the equation xn + yn = zn.

Fermat did not give a proof of this theorem and it remained a conjecture for
more than three hundred years. The quest for a proof of this theorem resulted in
the development of several branches of mathematics. The eventual proof of the
theorem is more than a hundred pages long [6]. A less well known contribution
of Fermat is the Fermat’s Little Theorem:

Theorem (Fermat’s Little Theorem). For any prime number n, and for
any number a, 0 < a < n, an−1 = 1 (mod n).

Unlike Fermat’s Last Theorem, this theorem has a very simple proof. At the
same time, the theorem has had a great influence in algorithmic number theory
as it has been the basis for some of the most well-known algorithms for primality
testing – one of the fundamental problems in algorithmic number theory. In this
article, we describe three such algorithms: Solovay-Strassen Test, Miller-Rabin
Test, and AKS Test. The first two are randomized polynomial time algorithms
and are widely used in practice while the third one is the only known determin-
istic polynomial time algorithm.

2 Preliminaries

The proofs in next section use basic properies of finite groups and rings which
can be found in any book on finite fields (see, e.g., [2]). For numbers r and n,
(r, n) equals the gcd of r and n. If (r, n) = 1 then Or(n) equals the order of
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r modulo n, or, in other words, Or(n) is the smallest number 	 > 0 such that
n	 = 1 (mod r).

For number n, φ(n) denotes Euler’s totient function which equals the number
of a’s between 1 and n that are relatively prime to n. If n = pk for some prime
p then φ(n) = pk−1(p− 1).

3 Solovay-Strassen Test

The test was proposed by Solovay and Strassen [5] and was the first efficient
algorithm for primality testing. Its starting point is a restatement of Fermat’s
Little Theorem:

Theorem (Fermat’s Little Theorem, Restatement 1). For any odd prime
number n, and for any number a, 0 < a < n, a

n−1
2 = ±1 (mod n).

It is an easy observation that for prime n, a is a quadratic residue (in other words,
a = b2 (mod n) for some b) if and only if a

n−1
2 = 1 (mod n). The Legendre symbol(

a
n

)
equals 1 if a is a quadratic residue modulo n else equals −1 for prime n.

Therefore, for prime n, ( a

n

)
= a

n−1
2 (mod n).

Legendre symbol can be generalized to composite numbers by defining:

(a

n

)
=

k∏
i=1

(
a

pi

)ei

where n =
∏k

i=1 pei

i , pi is prime for each i. This generalization is called Jacobi
symbol. Jacobi symbol satisfies quadratic reciprocity law:( a

n

)
·
(n

a

)
= (−1)

(a−1)(n−1)
4 .

This, along with the property that
(

a
n

)
=
(

a+n
n

)
gives an algorithm to compute(

a
n

)
that takes only O(log n) arithmetic operations.

For composite n, it is no longer neccessary that
(

a
n

)
= 1 iff a is a quadraric

residue modulo n or that
(

a
n

)
= a

n−1
2 (mod n). This suggests that checking if(

a
n

)
= a

n−1
2 (mod n) may be a test for primality of n. Solovay and Strassen

showed that this works with high probability when a is chosen randomly. To see
this, let n have at least two prime divisors and n = pk ·m with (p, m) = 1, p a
prime, and k odd. (If every prime divisor of n occurs with even exponent then
n is a perfect square and can be handled easily.) Let

A = {a (mod pk) | (a, p) = 1}.
Clearly, |A| = pk−1(p− 1) and exactly 1

2pk−1(p− 1) numbers in A are quadratic
non-residues modulo p. Let a0 ∈ A be a quadratic residue modulo p and b0 ∈ A
be a non-residue modulo p. Pick any number c, 0 < c < m and (c, m) = 1, and
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let a, b be the unique numbers between 0 and n such that a = b = c (mod m)
and a = a0 (mod pk), b = b0 (mod pk). Then,

(a

n

)
=
(

a0

p

)k

·
( c

m

)
=
( c

m

)
= −

(
b

n

)
.

If a
n−1

2 =
(

a
n

)
(mod n) and b

n−1
2 =

(
b
n

)
(mod n) then a

n−1
2 = −b

n−1
2 (mod n).

This implies

c
n−1

2 (mod m) = a
n−1

2 (mod m) = −b
n−1

2 (mod m) = −c
n−1

2 (mod m).

This is impossible since (c, m) = 1. Hence, either
(

a
n

) �= a
n−1

2 (mod n) or
(

b
n

) �=
b

n−1
2 (mod n). Therefore, for a random choice of a between 0 and n, either

(a, n) > 1 or with probability at least 1
2 ,
(

a
n

) �= a
n−1

2 (mod n).
The above analysis implies that the following algorithm works.

Input n.

1. If n = mk for some k > 1 then output COMPOSITE.

2. Randomly select a, 0 < a < n.

3. If (a, n) > 1, output COMPOSITE.

4. If
(

a
n

)
= a

n−1
2 (mod n) then output PRIME.

5. Otherwise output COMPOSITE.

The test requires O(log n) arithmetic operations and hence is polynomial time.

4 Miller-Rabin Test

This test was proposed by MIchael Rabin [4] slightly modifying a test by Miller [3].
The starting point is another restatement of Fermat’s Little Theorem:

Theorem (Fermat’s Little Theorem, Restatement 2). For any odd prime
n = 2s · t with t odd, and for any number a, 0 < a < n, the sequence at (mod n),
a2t (mod n), a22t (mod n), . . ., a2st (mod n) either has all 1’s or the pair −1, 1
occurs somewhere in the sequence.

If n is composite, then the sequence may not satisfy the above property. Miller
proved that, assuming Extended Riemann Hypothesis, for at least one a between
1 and log2 n, the above sequence fails to satisfy the property when n is composite
but not a prime power. Miller proved that the same holds with high probability
for a random a without any hypothesis. We will give Miller’s argument.

Assume that n is composite but not a prime power. Let p and q be two odd
prime divisors of n. Let k be the largest power of p dividing n. Let p−1 = 2v ·w
where w is odd.
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We first analyze the case when there is a −1 somewhere in the sequence.
Define set Au as:

Au = {a | (0 < a < n) ∧ (a2u·t = −1 (mod n))}
for some 0 ≤ u < s.

Then a2u·t = −1 (mod pk) for every a ∈ A. Let

Ap,u = {a (mod pk) | a ∈ Au}.
Since the size of the multiplicative group modulo pk is pk−1(p − 1), for every
a ∈ Ap,u, apk−1·(p−1) = 1 (mod pk). Therefore, a(pk·(p−1),2u+1·t) = 1 (mod pk).
Prime p does not divide t since otherwise it divides n − 1 = −1 (mod p) which
is absurd. Hence, a(p−1,2u+1·t) = 1 (mod pk). Since t is odd and p − 1 = 2v · w,
a2min{v,u+1}·(w,t) = 1 (mod pk). If v ≤ u then we get a2u·t = 1 (mod pk) which is
not possible. Hence, v > u implying that a2u·(w,t) = −1 (mod pk). It is easy to
see that the equation x	 = ±1 (mod pk) for 	 | (p − 1) has at most 	 solutions.
It follows that |Ap,u| ≤ 2u · (w, t) ≤ 2u · t ≤ 1

2u−v (p− 1).
An identical argument shows that |Aq,u| ≤ 1

2u−v′ (q− 1) for u < v′ where Aq,u

is defined similarly to Ap,u and q−1 = 2v′ ·w′ for odd w′. By Chinese Remainder
Theorem, it follows that |Au| ≤ 1

4u−v′′ (n−1) if u < v′′ = min{v, v′}, 0 otherwise.
Hence, ∑

0≤u<s

|Au| ≤
∑

0≤u<v′′

n− 1
4u−v′′ = (

1
3
− 1

3 · 4v′′ ) · (n− 1).

For the case when the whole sequence is all 1’s, one can argue exactly as
above to obtain that the number of a’s giving rise to such a sequence is at most

1
4v′′ (n − 1). Hence the probability that the sequence generated by a randomly
chosen a satisfies either of the two properties is less than 1

2 .
The above analysis implies that the following algorithm works.

Input n.

1. If n = mk for some k > 1 then output COMPOSITE.

2. Randomly select a, 0 < a < n.

3. If (a, n) > 1 output COMPOSITE.

4. Let n− 1 = 2s · t.
5. Compute the sequence at (mod n), a2t (mod n), . . ., a2s·t (mod n).

6. If The sequence is all 1’s or has a −1 followed by a 1 then

output PRIME.

7. Otherwise output COMPOSITE.

The test requires O(log n) arithmetic operations and hence is polynomial time.
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5 AKS Test

This test was proposed by Agrawal, Kayal and Saxena [1]. It is the only known
deterministic polynomial time algorithm known for the problem. The starting
point of this test is a slight generalization of Fermat’s Little Theorem.

Theorem (Fermat’s Little Theorem, Generalized). If n is prime then for
any r > 0 and any a, 0 < a < n,

(x + a)n = xn + a (mod n, xr − 1).

On the other hand, if n is composite and not a prime power, then it appears
unlikely that the above equation holds for several a’s. This can be proven formally
as follows.

Suppose that n is not a prime power and let p be a prime divisor of n. Suppose
that (x + a)n = xn + a (mod n, xr − 1) for 0 < a ≤ 2

√
r log n and r is such that

Or(n) > 4 log2 n. Define the two sets

A = {m | (x + a)m = xm + a (mod p, xr − 1), 0 < a ≤ 2
√

r log n},
and

B = {g(x) | g(x)m = g(xm) (mod p, xr − 1), m ∈ A}.
Clearly, p, n ∈ A and x + a ∈ B for 0 < a ≤ 2

√
r log n. Moreover, it is straight-

forward to see that both sets A and B are closed under multiplication and hence
are infinite. We now define two finite sets associated with A and B. Let

A0 = {m (mod r) | m ∈ A},

and
B0 = {g(x) (mod p, h(x)) | g(x) ∈ B}

where h(x) is an irreducible factor of xr − 1 over Fp such that the field F =
Fp[x]/(h(x)) has x as a primitive rth root of unity.

We now estimate the sizes of these sets. Let t = |A0|. Since elements of A0 are
residues modulo r, t ≤ φ(r) < r. Also, since Or(n) ≥ 4 log2 n and A0 contains
all powers of n, t ≥ 4 log2 n.

Let T = |B0|. Since elements of B0 are polynomials modulo h(x) and degree
of h(x) ≤ r − 1, T ≤ pr−1. The lower bound on T is a little more involved.
Consider any two polynomials f(x), g(x) ∈ B of degree < t. Suppose f(x) =
g(x) (mod p, h(x)). Then f(xm) = f(x)m = g(x)m = g(xm) (mod p, h(x)) for
any m ∈ A0. Therefore, the polynomial f(y)−g(y) has at least t roots in the field
F (as x is a primitive rth root of unity). Since the degree of f(y)−g(y) is less than
t, this is possible only if f(y) = g(y). This argument shows that all polynomials
of degree < t in B map to distinct elements in B0. The number of polynomials in
B of degree < t is at least

(
2
√

r log n+t−1
t−1

) ≥ (4
√

t log n
2
√

r log n

)
> 22

√
t log n. This follows

because B0 has at least 2
√

r log n distinct degree 1 polynomials assuming that
p > 2

√
r log n. Therefore, T > 22

√
t log n.
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With the above lower bound on T , we can now complete the proof. Since
|A0| = t, there exist (i1, j1) �= (i2, j2), 0 ≤ i1, j1, i2, j2 ≤

√
t such that ni1pj1 =

ni2pj2 (mod r). Let g(x) ∈ B0. Then

g(x)ni1 pj1 = g(xni1pj1 ) = g(xni2pj2 ) = g(x)ni2pj2 (mod p, h(x)).

Hence, the polynomial yni1pj1 − yni2pj2 has at least |B0| = T > 22
√

t log n roots
in the field F . The degree of this polynomial is at most n2

√
t, and therefore the

polynomial is zero. This implies ni1pj1 = ni2pj2 which means that n is a power
of p. This is not possible by assumption.

The above argument shows that the following test works.

Input n.

1. If n = mk for some k > 1 then output COMPOSITE.

2. Find the smallest r such that Or(n) > 4 log2 n.

3. For every a, 0 < a ≤ 2
√

r log n, do

If (a, n) > 1, output COMPOSITE.

If (x + a)n �= xn + a (mod n, xr − 1), output COMPOSITE.

4. Output PRIME.

The test requires O(r
3
2 log2 n log r) arithmetic operations. An easy counting

arguments shows that r = O(log5 n) and hence the algorithm works in polyno-
mial time.
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Abstract. There is a handshake between two nodes in a network, if the
two nodes are communicating with one another in an exclusive mode.
In this paper, we give a mobile agent algorithm that allows to decide
whether two nodes realize a handshake. Our algorithm can be used in
order to solve some other classical distributed problems, e.g., local com-
putations, maximal matching and edge coloring. We give a performance
analysis of the algorithm and we compute the optimal number of agents
maximizing the mean number of simultaneous handshakes. In particular,
we obtain Ω(mδ/Δ2) simultaneous handshakes where m is the number
of edges in the network, and Δ (resp. δ) is the maximum (resp. min-
imum) degree of the network. For any almost Δ-regular network, our
lower bound is optimal up to a constant factor. In addition, we show
how to emulate our mobile agent algorithm in the message passing model
while maintaining the same performances. Comparing with previous mes-
sage passing algorithms, we obtain a larger number of handshakes, which
shows that using mobile agents can provide novel ideas to efficiently solve
some well studied problems in the message passing model.

Keywords: mobile agent model, message passing model, handshake,
matching, random walk.

1 Introduction

Goals and motivations: This paper presents new efficient handshake algo-
rithms in the distributed model of computation. Generally speaking, a handshake
algorithm enables the establishment of safe communications between two nodes,
which guarantees that both the two nodes are communicating with one another
in exclusive mode. Distributed solutions of this problem are known in networks
supporting message passing [1,2,3,4]. What happens if we consider a distributed
system based on mobile agents? In particular, can we solve the problem while
maintaining the same performances? More generally, the growing demand for
distributed applications makes a case for the comparative study of the perfor-
mances of systems based on mobile agents and systems based on more classical
network communications. Many works in the last few years were intended to
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understand the computational power of mobile agents and to solve new specific
problems raised by their use. In this paper, we show how to efficiently solve
the handshake problem by using mobile agents. Surprisingly, our mobile agent
approach also leads to improved solutions and new ideas in the more classical
message passing setting. Generally speaking, this work can be viewed as a part of
a larger study concerning the complexity power of mobile agents and the benefit
they may provide.
Models and notations: We model a network by a connected graph G = (V, E)
where V is the set of nodes and E the set of edges. We denote by Δ (resp. δ)
the maximum (resp. minimum) degree of G and by n = |V | (resp. m = |E|) the
number of nodes (resp. edges). For each node v ∈ V , we denote by dv the degree
of v and by N (v) the neighbors of v, i.e, N (v) = {u ∈ V | dG(u, v) = 1} where
dG(u, v) is the distance between u and v in G.

In the mobile agent model, an agent (or robot) is an autonomous entity of
computation able to move from a node to another and equipped with an internal
memory. We assume the following:

– each node v is equipped with a white-boardWB(v), which can be viewed as
a memory place where agents can write and read information in a mutual
exclusion manner.

– the outgoing edges around each node are labeled, that is each node has a
numbering of the ports connecting it with its neighbors.

– each agent knows the port from which it is arrived in a given node.
– we only consider the synchronous case where agents have access to a global

clock which generates pulses.
– agents can read and write in a white-board in negligible time.
– it takes one time unit to an agent to move from a node to a neighboring one.

For the clarity of our algorithm, we use a local generic function Write(v) ∈
{true, false} which can be applied by each agent at any node v. At a given
pulse, if many agents apply Write(v) in node v, then Write(v) returns true
for only one agent and false for all others. In this case, the agent for which
Write(v) = true has instantaneously a read/write access to WB(v), i.e., it has
access to WB(v) before the other agents.

In the message passing model, a node is an autonomous entity of computation
that can communicate with its neighbors by sending and receiving messages.
We assume that each node performs computations in negligible time. In the
synchronous model, we assume that all nodes have access to a global clock that
generates pulses. We assume that messages sent in a given pulse reach their
destination before the beginning of the next pulse. In the asynchronous model,
there is no global clock and a message delay is arbitrary but finite.
Problem definition: One can think of several formulations of the handshake
problem depending on the distributed model. In this paper, we have based our
work on the following general definition: “a handshake algorithm is a distributed
procedure that enables a pair of adjacent nodes (u, v) to communicate exclusively
with one another at some time”. In other words, if a handshake occurs between
nodes u and v at some time, then u (resp. v) has the guarantee that v (resp.
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u) does not communicate with any other neighbors. In general, distributed algo-
rithms solving the handshake problem works in infinitely many rounds. At each
round, some handshakes occur between pairs of neighboring nodes. Then, com-
munications take place between nodes where a handshake occurs. In practice,
there are new rounds as long as some communication between pairs of nodes is
required. The handshake problem can then be formulated more practically in
terms of matching: “Given a graph G, at each round, find a set of disjoint edges
of E”. It is clear that the set of these edges defines the nodes that can commu-
nicate with each others in an exclusive manner at each round. The number of
edges computed at each round is called the handshake number. The handshake
number is the ruling performance measure of a handshake algorithm. Our goal
is to design an algorithm providing the highest possible handshake number.
Related works: All handshake algorithms in the literature use randomization
and message passing. For instance, in the asynchronous message passing model
and in the algorithm presented in [3,1,5], each node repeats forever the follow-
ing three steps (i) choose randomly a neighbor, (ii) send him 1, and (iii) send
0 to all other neighbors. Then, there is a handshake if two neighboring nodes
have sent 1 to each others, and a handshake between two nodes occurs with a
given probability. The authors in [3] studied many probabilistic properties of the
above algorithm for many graphs. In the general case, their handshake number is
Ω(m/Δ2). Very recently, the authors in [6] gave a new efficient handshake algo-
rithm. However, they assume a fully synchronous message passing model where
nodes have access to a continuous real-valued global clock, and communications
take no time. Therefore, the results in [6] are fundamentally different from ours.

Independently of its theoretical interest, the handshake problem can be ap-
plied in many settings. For instance, the authors in [4] use the handshake algo-
rithm of [3] in order to efficiently solve the problem of broadcasting information
under a restricted model of communication. In [2], the authors apply the hand-
shake problem in order to practically implement well studied formal models
based on local computations (see e.g., [7,8,9] for a quick survey).

The handshake problem is also tightly related to the fundamental problem
of breaking the symmetry in distributed networks where nodes have to make
decisions depending only on their local views. Typical problems where breaking
the symmetry is essential are finding a maximal independent set (MIS), a coloring
and a maximal matching. For instance, a maximal matching (see, e.g., [10] for a
definition) can be computed using handshakes by deleting the edges computed
at each round, and by iterating until the graph is empty. The same idea can
be applied for distributed edge coloring by assigning a legal color to the edges
computed at each round independently and in parallel.
Results and outline: In Section 2 of this paper, we give an efficient algo-
rithm called Agent Handshake for the handshake problem in the mobile agent
model. Our algorithm is based on random walks of the agents. We give a proba-
bilistic analysis of the performance of our algorithm. In particular, we compute
the optimal (with respect to our method) number of agents that allows a maxi-
mal handshake number in expectation. We show that our algorithm is efficient for
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general graphs, and provides Ω(mδ/Δ2) handshakes per round. It also becomes
of special interest for many graph classes. For instance, for almost Δ-regular
graphs, i.e., graphs such that δ = Θ(Δ), the handshake number is drastically
reduced to Ω(n) which is optimal up to a constant factor.

In Section 3 we show how we can turn back to the asynchronous message
passing model and emulate our algorithm to this model while maintaining the
same performances. The technique is based on simulating agents using tokens.
We obtain new improved message passing handshake algorithms. In additoin
and since the simulation technique is independent of the handshake problem,
our results show that solving a problem using mobile agents can provide new
ideas to design new efficient algorithms in other distributed models. In Section 4
we discuss how to efficiently create the agents. In Section 5 we conclude the
paper and raise some open questions.

2 Handshake Using Mobile Agents

In the rest of this section, we consider the mobile agent model and we assume
that the white-board of each node v contains a single boolean variable b. We write
WB(v) = true when b = true andWB(v) = false when b = false. We assume
that for every v ∈ V ,WB(v) is initially equal to false and that the network con-
tains k agents. We do not make any assumptions on the initial positions of agents.

At pulse 0, each agent begins to execute algorithm Agent Handshake (see
Fig. 1). The algorithm consists of many rounds. At each round, agents in a node
v first try to make a handshake randomly on a given edge. Once the handshake
trial is finished, the agents in v move to an equally likely chosen neighboring
node (see algorithm Random Step in Fig. 2). Then, a new round starts. Note
that in Fig. 1, t0 denotes the pulse at which a given round begins and it is not
used by the agents in order to make any computation.

Let us consider a round which begins at pulse t0 = 3t (with t ≥ 0) and let us
consider an agentA at some node v. It may happen that many agents are in v at t0.
Only one agent in v is allowed to try to make a handshake. Hence, the agents first
“fight” in order to mark the white-board of v. The agent who succeeds in marking
WB(v) is chosen to try a handshake, i.e., line 2 of the algorithm. If agentA is not
chosen to make the handshake, then it just waits (for two pulses) in v until the
chosen agent come back (line 15). Otherwise, agentAmoves to a neighboring node
u (line 5). In this case, at pulse t0 + 1 agentA arrives at u, and three cases arise:

1. WB(u) = true: node u has been marked at pulse t0. Thus, there was an
agent in u at pulse t0, and the handshake fails.

2. WB(u) = false: no agents were in u at pulse t0, and no other agents arrive at
u in pulse t0 +1. Thus, Write(u) returns true and the handshake succeeds.

3. WB(u) = false: no agents were in u at pulse t0, and at least another agent
arrives at u in pulse t0 +1. Thus, if Write(u) returns true then A succeeds
the handshake.

Remark 1. It is important to note that once an agent in a node v executes line 14
of algorithm Agent Handshake, the white-board of v verifies WB(v) = true,
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i.e., there is an other agent for which Write(v) in line 2 returns true, and which
instantaneously writes true in WB(v).

To summarize, when an agent is at some node v, we say that it succeeds a hand-
shake, if it can firstly write the white-board of v and secondly the white-board
of some unmarked node u ∈ N (v). In this case, we also say that a handshake is
assigned to edge (u, v). It is clear that our algorithm is correct, that is at each
round, the set of edges where a handshake is assigned are disjoint.

Line pulse The Algorithm

t0=3t

t0+1

t0+2

t0+2

1: while true do
2: if Write(v) then
3: WB(v) ← true;
4: Choose at random (equally likely) an outgoing edge e = (v, u);
5: Move from v to u;
6: if Write(u) then
7: if WB(u) = false then
8: Handshake Success;
9: end if

10: end if
11: Move back from u to v;
12: WB(v) ← false;
13: else
14: repeat
15: wait;
16: until WB(v) = false
17: end if
18: execute algorithm Random Step;
19: end while

Fig. 1. Algorithm Agent Handshake: code for an agent at node v

1: choose randomly 0 or 1 with probability 1/2;
2: if 0 then
3: do not move.
4: else
5: choose at random (equally likely) an outgoing edge e = (v, v′);
6: move to v′.
7: end if

Fig. 2. Algorithm Random Step: code for an agent at node v

2.1 Analysis of the Algorithm: General Case

Let {Ai}i={1,··· ,k} denotes the set of all agents. For every integer pulse t ≥ 0
and for every integer i ∈ {1, · · · , k}, let Ai(t) ∈ V denotes the position of agent
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Ai at pulse t ≥ 0. Let PG(Ai(3t) = v) denotes the probability that agent Ai is
in node v at pulse 3t, i.e., the beginning of a round.

From the description of the algorithm, each round takes 3 time units. Thus,
each 3 time units, each agent makes a step of a random walk. A classical re-
sult from Markov chain theory [11] claims that there exists a unique stationary
distribution for random walks on graphs (under some additional assumptions
of aperiodicity which is satisfied by line 1 of algorithm Random Step). The
stationary distribution is π the probability measure on G defined by:

π(v) =
dv

2m
, ∀v ∈ V

In other words, if the starting point of a random walk is chosen according to
π, then at each time the position of the random walk is still π-distributed. We
recall that whatever is the distribution of the starting point, the random walk
converges to the stationary distribution, that is, for every i ∈ {1, · · · , k}, when
t −→ +∞, PG(Ai(3t) = v) −→ π(v).

In addition, we assume that each agent aims a proper random generator, and
the agents execute algorithm Random Step independently. Hence, we use the
following definition:
Definition 1. We say that the k agents are under the stationary regime, if for
every v ∈ V and for every pulse t, we have:

PG(Ai(3t) = v) =
dv

2m
= π(v)

and the positions of agents are independent: for any (vi)i∈{1,··· ,k} ∈ V k, we have:

PG

(
(Ai(3t))i∈{1,··· ,k} = (vi)i∈{1,··· ,k}

)
=

k∏
i=1

π(vi)

Let us consider a given fixed round and let us denote by Nv the number of agents
in the node v at the beginning of the round.
Remark 2. It is easy to check that under the stationary regime, the r.v. (Nv)v∈V

has a multinomial distribution that is, for any family of positive integers (jv)v∈V

such that
∑

v∈V jv = k,

P((Nv = jv)v∈V ) =
k!∏

v∈V

jv!
·
∏
v∈V

π(v)jv

Notice also that the distribution of the (Nv)v∈V is preserved by a step of the
random walks.
The handshake number depends on the graph G, on the number of agents k, on
the round and on the initial position of agents. For the sake of analysis, we only
assume the stationary regime and we focus on the expected handshake number
E(Hk(G)). We will see in Section 4 that assuming the stationary regime is more
than of a theoretical interest.

We consider an edge (u, v) ∈ E, and we denote by ω1 the event «an agent
moves from u to v in line 5» and by ω2 the event «no agent moves from N (v)\{u}
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to v in line 5». We denote by p(u � v) = P(Nu ≥ 1, Nv = 0, ω1, ω2) the
probability that {Nu ≥ 1}, {Nv = 0}, w1 and w2 arise altogether. Similarly, let
pi(u � v) = P(Nu = i, Nv = 0, ω1, ω2) for any i ∈ {1, · · · , k}.
Fact 1. The handshake number verifies: E(Hk(G))≥

∑
(u,v)∈E

p(u � v)+p(v � u).

Lemma 1. Under the stationary regime and at any round, the following holds:

1. For every edge (u, v) ∈ E and for every i ∈ {1, · · · , k}, we have:

pi(u � v) ≥ 1
du
·
(

k

i

)
· π(u)i · (1− π(u)− 2π(v))k−i

2. For every edge (u, v) ∈ E, we have:
p(u � v) ≥ 1

du
·
(
(1− 2π(v))k − (1− π(u)− 2π(v))k

)
Using Fact 1 and Lemma 1, we obtain a general lower bound of E(Hk(G)). In
particular, we obtain the following:
Theorem 1. Let G(m) be a sequence of graphs such that G(m) has m edges
and Δ/m → 0 when m → +∞. Then, there exists k = Θ(m/Δ) such that under
the stationary regime E(Hk(G(m))) = Ω(mδ/Δ2).

Remark 3. We note that the performance of the algorithm is not very sensitive
to the value of k. For instance, if the value of k vary by a multiplicative constant
close to 1, then the handshake number is up to a constant factor the same.

The previous theorem has to be compared with the previous best known hand-
shake number which is Ω(m/Δ2) (in the asynchronous message passing model).
For instance, if δ = Θ(Δ), then E(Hk(G)) = Ω(n) for k = Θ(n) which is optimal
up to a constant factor (the maximal theoretical handshake number is n/2). In
the next section, we give a different approach to the problem which provides
exact bounds for d-regular graphs.

2.2 Regular Graphs: Asymptotic Analysis

In this part, we consider a d-regular graph Gn = (Vn, En) where d is fixed. For
every v ∈ Vn, we suppose given an ordering of the neighbors of v from 1 to d.
Let us consider a given fixed round. For every j ∈ {1, · · · , d}, let the r.v. Nv

j be
the number of agents in the j-th neighbor of v at the beginning of the round.
Let N (v) � v be the event: «an agent moves from at least a node in N (v) to
v in line 5». Let Pn (N (v) � v, Nv = 0) the probability that {N (v) � v} and
{Nv = 0} in Gn. In the remainder, we make the following assumption:

Q =
(

n −→ +∞, k = k(n) −→ +∞, k(n)/n −→ c and c ∈ (0, +∞)
)

When Gn is regular and under the stationary regime, agents choose equally likely
each node v. By symmetry of Gn, the distribution of (Nv, Nv

1 , Nv
2 , · · · , Nv

d ) does
not depend on v. Thus, in the following two lemmas, the node v may be seen as
a generic node in Vn, or as the first node for any ordering on the nodes of Gn,
or even as a node chosen randomly.
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Lemma 2. Assume Q. Let v be a generic node in Vn. Under the stationary
regime,
1. the following convergence in distribution holds

(Nv, Nv
1 , Nv

2 , · · · , Nv
d )

(law)−−−−−−−−→
n→+∞

(X0, X1, X2, · · · , Xd)

where the r.v. Xj are i.i.d and follow a Poisson distribution with parameter
c, that is:

P(Xj = 	) = e−c c	

	!
, ∀	 ≥ 0

2. for any round, we have

Pn (N (v) � v, Nv = 0) −−−−−−−−→
n→+∞

e−c ·
(

1−
(

1− 1
d

+
e−c

d

)d
)

Theorem 2. Assume Q. For every d-regular graph Gn with d an integer con-
stant, under the stationary regime, the handshake number verifies:

E(Hk(Gn))
n

−−−−−−−−→
n→+∞

e−c ·
(

1−
(

1− 1
d

+
e−c

d

)d
)

(1)

One can numerically find the optimal constant c that maximize the limit given in
Theorem 2. By taking c = log(2), the right hand side of (1) is larger than 0.196...
for any d. Thus, our bound is optimal up to a small multiplicative constant factor
(� 5/2).

3 Application to the Message Passing Model

In this section, we show how to simulate our agent based algorithm in the asyn-
chronous message passing model. The general outline of the method consists in
using tokens to simulate agents. A similar idea appears in [12,13] in order to
study the computational power of mobile agents.

Initially, we suppose that there are k tokens scattered at some nodes. Each
time a node v has one or more tokens, v locally executes the algorithm that
the agents are supposed to execute in node v. Each white-board can be simu-
lated using the local variables of the corresponding node. The agent movements
can be simulated by sending the tokens from a node to another (If many agents
choose to move to the same direction, then the corresponding tokens are concate-
nated). Because we have only considered the synchronous mobile agent model,
the above simulation method will automatically provide synchronous algorithms
in the message passing model. However, following the technique of network syn-
chronizer α [14] and using extra communication messages, we obtain algorithm
Distributed Handshake which works in the asynchronous case.

We assume that the function sendTo (resp. sendAll) allows to send a message
to a specified (resp. all) neighbor(s), and the function receiveFrom allows to
receive a message from a specified incoming edge (if there are no messages then
the node waits until a message arrives). The variable #tokens(v) corresponds to
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while true do1

if #tokens(v) > 0 then2

Hs-trial ← false;3

choose an outgoing edge i at random;4

sendTo(i,1); /* send a request to one neighbor */5

for j ∈ [1, dv] and j �= i do sendTo(j,0); /* synchronization msg */6

for j ∈ [1, dv] do7

receiveFrom(j); /* receive request or synchronization msg */8

sendTo(j,0); /* send a reject or synchronization msg */9

for j ∈ [1, dv] do10

Msg ← receiveFrom(j); /* receive response of the request */11

if j = i and Msg = 1 then Hs-trial ← true; /* handshake success */12

#moves ← 0; move ← int [1, dv]; /* tabular initialized with 0 */13

for int � = 1 to #tokens(v) do14

choose 1 or 0 with probability 1/2;15

if 1 then16

choose randomly an outgoing edge i;17

#moves ++; move[i]++;18

#tokens(v) -= #moves; /* update tokens: those who stay at the node */19

for int � = 1 to dv do sendTo(�,move.[�]); /* move other tokens */20

else21

sendAll(0); /* send synchronization msg */22

request ← boolean [1, dv]; /* tabular initialized with false */23

for j ∈ [1, dv] do24

Msg ← receiveFrom(j);25

if Msg = 1 then request.[j] ← true; /* handshake request from j */26

if ∃j such that request.[j] = true then27

choose at random i ∈ [1, dv] such that request.[i] = true;28

sendTo(i,1); /* accept request from neighbor i */29

for every � �= i do sendTo(�,0); /* reject the others */30

else31

sendAll(0); /* synchronization msg */32

for j ∈ [1, dv] do Msg ← receiveFrom(j); /* synchronization msg */33

sendAll(0); /* synchronization msg */34

for j ∈ [1, dv] do35

Msg ← receiveFrom(j); /* receive incoming tokens */36

#tokens(v) += Msg; /* update the number of tokens */37

Algorithm 1. Asynchronous Distributed Handshake: code for a node v

the number of agents in node v in the original handshake algorithm. All tokens
are given the value 1. When many tokens are sent to the same direction, we
simply send their sum.
Theorem 3. Algorithm Distributed Handshake is correct and the number
of handshakes at a given round is equal to the number of handshakes in algorithm
Agent Handshake.
Using the previous theorem, it makes sense to compare the performance re-
sults of Section 2 in the mobile agent model and the performances of past algo-
rithms [1,2,3] in the message passing model. Note that our algorithm can also
be applied for implementing the edge local computation model [9] as in [2].
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Moreover, compared with message passing solutions, our mobile agent algo-
rithm allows to reduce the global number of computation entities in the network
from n to only k. We think that this observation defines a new criterion allowing
to compare different distributed solutions of a problem.

4 Distributed Initialization of Agents

In Section 2, we have assumed the stationary regime in our analysis. This is
relevant if the agents have been moving randomly from a node to another in
the network for a sufficiently long time before the computation of a task begins.
For instance, this assumption can be realistic in the case of some distributed
systems where the agents have been created in the past and have been waiting
to do some tasks. In this case, the initial positions of agents do not matter and
the previous analysis still holds.

If the computations begin before the stationary regime, our algorithms are
still correct, only the analysis is different and depends on the initial positions of
agents. For instance, if the agents have the same initial departure node, then the
number of handshakes will be 1 at the first round and then it increases with time.
In opposite, if the agents are well distributed over the network, then intuitively,
there will be more handshakes at the first round and it will take less time to
reach the stationary regime. In the following, we show how to create agents in
such a way they are immediately under the stationary regime. The idea is to
make the nodes start some agents locally and by they own such that the global
number of agents is almost the optimal one since the first round.

First suppose that m is known and let k be the optimal number of agents
computed in Section 2. Then, at time 0, each node v creates a random number
Nv of agents according to a Poisson law with parameter dv

2m · k. Let K denotes
the total number of agents effectively created by the nodes. Let us first describe
the joint distribution of the Nv’s knowing K = 	. Let (jv)v∈V a sequence of
integers such that

∑
v∈V jv = 	. Thus, we have:

P((Nv = jv)v∈V | K = 	) =
P((Nv = jv)v∈V , K = 	)

P(K = 	)
=

∏
v∈V

P(Nv = jv)

P(K = 	)

By a simple checking, conditionally on K = l, the r.v. (Nv)v∈V follows a
multinomial distribution. Using Remark 2, we can conclude that agents are un-
der the stationary regime. To be precise, there is a slight difference with the
consideration of Remark 2, since there the agents were labeled.

Now, it is classical (and easy to show) that K follows a Poisson distribution
with parameter

∑
v∈V

dv

2m ·k = k. Thus, the expected number of agents is E(K) =
k. Due to properties of concentration of the Poisson law, K is very close to k, i.e.,
P(|K − k| > k1/2+ε) −→ 0 when k → +∞. Using remark 3, picking the number
of agents at each node according to the Poisson law given above provides w.h.p.,
the same performances than in Section 2. In particular, we have the following:

Proposition 1. For any graph G, if m is known, then there exists a distributed
procedure for choosing the initial position of agents such that, w.h.p., at any



304 B. Derbel

round, the handshake number is up to a constant factor the same than under the
stationary regime.

In the case where neither m nor n are known, we give another distributed solution
which is efficient in the case of almost regular graphs. Let x ∈ (0, 1) be a para-
meter. Algorithm Dist_Bernoulli depicted in Fig. 3 works in rounds. At each
round, each node creates only one agent according to a Bernoulli law with para-
meter x. If an agent A is created, then it tries to make a handshake with a neigh-
boring node using the same technique than in algorithm Agent Handshake.
Then, the agent A disappears, and a new round is started.

Input: a constant parameter x.
repeat for ever:
1: create an agent A with probability x,
2: agent A tries to make a handshake with a neighboring node chosen at random,
3: agent A commits suicide.

Fig. 3. Dist_Bernoulli: code for a node v

Notice that the total number K of agents created at each round using algo-
rithm Dist_Bernoulli is a r.v. following a binomial distribution with para-
meter n and x; and its mean is n · x (which matches up to a constant factor the
optimal number of agents in Section 2 in the case of almost regular graphs). In
the next theorem, the handshake number is simply denoted by H(G). Inspired
by the analysis of Section 2, one can prove the following:

Theorem 4. For every graph G, at any round of algorithm Dist_Bernoulli,
the expected handshake number verifies:

E(H(G)) =
∑
v∈V

(1 − x) ·
⎡
⎣1−

∏
u∈N (v)

(
1− x

du

)⎤⎦
Corollary 1. For every almost d-regular graph G, at any round of algorithm
Dist_Bernoulli, the expected handshake number verifies: E(H(G)) = Ω(n).

5 Conclusion and Open Problems

We remark that, with some minor modifications, algorithm Agent Handshake
works as well in an asynchronous mobile agent model. It would be very interesting
to give a performance analysis of our algorithm in this case. More precisely, it
would be nice to give a theoretical analysis in the case of a weighted graph
(where each edge has a weight which models the time needed to be traversed)
and weighted agents (where each agent has a weight which models its speed).
Hereafter, we discuss some other open problems:

1. For any graph G, how fast the stationary regime is reached, if initially each
node creates a random number of agents according to a Poisson law (or even
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a Bernoulli law) with some parameter possibly depending on its degree? It
would be nice to create the agents using only local information in such a way
the stationary regime is reached in polylogarithmic time for any graph.

2. Using our algorithms, can we improve the results of [4]? We conjecture that
the answer is yes. Moreover, we are optimistic that our technique can help
improving some other related applications such us maximal matching.

Acknowledgments. I am very grateful to J.F. Marckert for helpful discus-
sions and comments, particularly on the probabilistic analysis. His suggestions
have been extremely precious for writing this paper. I would also like to thank
Y. Métivier, M. Mosbah and A. Zemmari for their helpful remarks.

References

1. Métivier, Y., Saheb, N., Zemmari, A.: Randomized rendez vous. In: Mathematics
and computer science: Algorithms, trees, combinatorics and probabilities. Trends
in mathematics, Birkhäuser (2000) 183–194

2. Métivier, Y., Saheb, N., Zemmari, A.: Randomized local elections. Information
Processing Letters 82 (2002) 313–120

3. Métivier, Y., Saheb, N., Zemmari, A.: Analysis of a randomized rendez vous algo-
rithm. Information and Computation 184 (2003) 109–128

4. Duchon, P., Hanusse, N., Saheb, N., Zemmari, A.: Broadcast in the rendezvous
model. In: 21st Symposium on Theoretical Aspects of Computer Science. Volume
2996 of LNCS. (2004) 559–570

5. Reif, J., Spirakis, P.: Real time resource allocation in distributed systems. In: 1st

Symp. on Principles of Distributed Computing, ACM (1982) 84–94
6. Hibaoui, A.E., Métivier, Y., Robson, J., Saheb-Djahromi, N., Zemmari, A.: Analy-

sis of a randomized dynamic timetable handshake algorithm. Technical Report
1402-06, LaBRI (2006)

7. Litovsky, I., Métivier, Y., Sopena, E.: Graph relabelling systems and distributed
algorithms. In: Handbook of graph grammars and computing by graph transfor-
mation. Volume 3. World Scientific (1999) 1–56

8. Chalopin, J., Métivier, Y.: A bridge between the asynchronous message passing
model and local computations in graphs. In: Mathematical Foundations of Com-
puter Science. Volume 3618 of LNCS., Springer-Verlag (2005) 212–223

9. Chalopin, J., Métivier, Y.: Election and local computations on edges. In: Founda-
tions of System Specification and Computation Structures. Volume 2987 of LNCS.,
Springer-Verlag (2004) 90–104

10. Hanckowiak, M., Karonski, M., Panconesi, A.: On the distributed complexity of
computing maximal matchings. In: 9th Symp. on Discrete Algorithms, ACM-SIAM
(1998) 219–225

11. Loväsz, L.: Random walks on graphs: a survey. Combinatorics, Paul erdos is eighty
2 (1996) 353–397

12. Barrière, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Can we elect if we cannot
compare? In: 15th Symp. on Parallel Algo. and Architectures, ACM (2003) 324–332

13. Chalopin, J., Godard, E., Métivier, Y., Ossamy, R.: Mobile agent algorithms versus
message passing algorithms. Technical Report 1378-05, LaBRI (2005)

14. Peleg, D.: Distributed computing - A locality-sensitive approach. SIAM Mono-
graphs on discrete mathematics and applications (2000)



S. Chaudhuri et al. (Eds.): ICDCN 2006, LNCS 4308, pp. 306 – 318, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Improved Distributed Exploration of Anonymous 
Networks 

Shantanu Das1, Shay Kutten2, and Ayelet Yifrach2 

1 SITE, University of Ottawa, Ottawa ON K1N6N5 Canada 
shantdas@site.uottawa.ca 

2 Faculty of Industrial Engineering and Management, Technion,  
Israel Institute of Technology, Haifa, Israel 

Kutten@ie.technion.ac.il, ayifrach@univ.haifa.ac.il 

Abstract. The problem of constructing a labeled map of an anonymous and 
asynchronous network is addressed. We present an algorithm that explores and 
maps the network by using k identical agents that have no prior knowledge of 
the network topology.  An algorithm of Das, Flocchini, Nayak and Santoro for 
mapping of the network requires that n and k are co-prime. Our improved 
algorithm, presented here, requires at most O(m·logk) edge traversals, while 
theirs uses O(m·k) edge traversals (m is the number of edges in the network). 
The size of the whiteboard memory needed in our algorithm is the same as that 
used in DFNS algorithm O(logn). We employ techniques utilized in solutions to 
the Leader Election task, and introduce a modification to resolve issues of 
electing first “local leaders” among adjacent candidates, which otherwise may 
deadlock the process.  

Keywords: anonymous network, unlabeled nodes, asynchronous distributed 
leader election, k agents, map construction. 

1   Introduction 

1.1   Labeled Map Construction and Related Work 

Problems of exploring an anonymous and asynchronous network have been addressed 
extensively [3, 8, 11-16, 23]. Mapping an anonymous network and labeling its nodes 
by multiple agents was presented as the Labeled Map Construction (LMC) problem 
by Das et al. in [12]. The exploration of anonymous graphs requires the agents to 
label the nodes. We follow earlier works [12, 14, 20] in utilizing the whiteboard 
model (e.g. for labeling) and introduce improvements to the process by reducing the 
number of edge traversals. 

In exploring the network by more than one agent (e.g. see [8, 12, 15, 16]) Das et al 
employ a group of k identical agents having no knowledge of the network’s topology 
or of one another. The agents explore the network (consisting of n nodes), each 
starting from an arbitrary node, and executing identical algorithms. The objectives are 
to construct a map of the graph, and to label each node by a unique label, both map 
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and labels agreed upon by all the agents. The nodes in the graph have no identities1. 
The process eliminates all the agents but one, the elected leader, who maps the graph 
and labels the nodes. Based on [4, 6, 7, 19, 24], Das et al.[12] show that it is not 
possible, in general, to solve the LMC problem  when n (the number of nodes) and k 
(the number of agents) are not co-prime, i.e. gcd(n,k) 1. By introducing the 
requirement that an agent has the knowledge of either n or k and also that n is co-
prime to k we ensure in our algorithm that an agent would always terminate 
successfully, solving the LMC problem. The LMC problem is closely related to other 
problems, such as Leader Election ([1, 2, 18, 20, 22, 28]), Rendezvous ([21, 23]) and 
Labeling ([17]). Solving one of these problems leads to solving all the others as well. 

We consider a distributed solution to the LMC problem, as in [12], using k 
asynchronous agents exploring an undirected simple graph. A lower layer service  
(traversal algorithm) is used to transfer agents from one node to another. The  
traversal algorithm has rules for transfering the agent to another node, once called 
upon by the agent. Section 3.1 and [20] describe the interface between the agent 
algorithm and the lower layer service. 

1.2   Our Results 

Our solution of the LMC problem is deterministic and requires at most O(m·logk) 
edge traversals compared to O(m·k) edge traversals in the algorithm of [12]. 

We modify techniques from solutions to leader election problem to resolve 
mistaken identification between neighboring candidates.  Previous algorithms achieve 
efficiency by competing between neighboring candidates first, and between the far-
away candidates only when a few remain. Such methods may deadlock in anonymous 
networks as nearby candidates may be indistinguishable. The main modification 
presented here is the addition of two search rounds beyond the per-phase used by the 
previous algorithm [20]. We show that this ensures that an agent encounters all 
nearby distinguishable agents and as a result, the algorithm solves the problem using 
at most O(m·logk) edge traversals. We assume that an agent has the knowledge of 
either n or k and it also knows that n is co-prime to k. This ensures that an agent in our 
algorithm always detects termination.  

The rest of the paper is organized as follow: In section 2 we describe the problem 
and the model for the algorithm, in section 3 we describe the full algorithm and 
finally, section 4 we present the proof of correctness and complexity analysis. 

2   Model and Problem 

The network is modeled as a graph G= (V, E) with |V|=n and |E|=m. The network is 
asynchronous, i.e. it takes a finite but unpredictable time to traverse an edge of the 
network. We assume that the edges of the network obey the FIFO discipline. 

There are k mobile agents located in distinct nodes of the network. An agent is a 
mobile entity that can execute an algorithm and move through the edges of the graph. 
The operations of an agent at a node are atomic. Thus, only one agent can be active 

                                                           
1 A similar situation that is solvable by this algorithm is one where the nodes do have identities 

but the identities are not unique. This case is not explicitly discussed.  
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(operating) at a node at any given time. An agent also has a storage that moves with it. 
Initially, the agents do not have any knowledge about the graph or its topology 
(except for the knowledge of n or k).  

Each node contains a whiteboard - a memory area of the node used by agents to 
communicate with each other. An agent visiting a node v can write to the whiteboard 
of node v and also read any information written previously by another agent that 
visited node v. 

The nodes and the agents in the graph are anonymous: they have no distinct 
identities. The edges incident to the nodes are labeled with port numbers providing a 
local orientation among the edges incident at a node. This allows the traversal 
algorithm at a node to distinguish between the edges incident to the node.  

Formally, we re-state the LMC problem as follows: given an instance (G, , p) 
where G(V,E) is a graph,  is an edge-labeling  defined on G, and p: V {0,1} is a 
placement function defining the initial location of the k = |{v ∈ V : p(v) = 1}| agents, 
the LMC problem is said to have been solved when one of the agents, designated as 
the “elected” agent, obtains a uniquely labeled map of the graph. 

3   Presentation of the Algorithm 

Our LMC algorithm proceeds in phases. The traversal algorithm is invoked by the 
agents several times in each phase. It moves an agent from one node to another, based 
on the agent’s label. All agents’ labels are initially identical but are later refined to 
distinguish agents from one another. Nodes and edges visited by an agent are marked 
with the agent’s label (unless already marked by the same or larger label). An agent 
territory is the sub graph of G consisting of the nodes and edges marked by the agent. 

3.1   Traversal Algorithm 

The traversal algorithm used by the agents is a distributed version of the depth-first-
search (DFS) algorithm ([25, 26] and its (serial but) distributed version [5, 9, 20]). 

Each invocation of the DFS algorithm consists of the label of the agent, which is 
used for marking the ports of the nodes during the execution of the algorithm. 
Simultaneous invocations occur when more than one agent traverses the graph at a 
given time. As opposed to [20], not all are distinguishable. Hence, when an agent A 
enters a node v through an unvisited edge and one or more ports of node v are marked 
with A’s label the DFS algorithm acts as if agent A visited this node. These ports may 
have been marked by the execution invoked by agent A or by an execution invoked by 
a different agent B with an identical label. 

The operations agent A can execute at a node v (as a lower-level system call):  

Go-To-Next(): Sends the agent to the next node to be visited.  
Go-Territory(): Sends the agent to the next node to be visited in the A's territory. 
Chase(): Sends agent A through the last port from which an agent (in the same phase) 
was sent (excluding a port which an agent in the same phase marked as back edge). 
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3.2   Informal Overview of the Algorithm 

The message complexity improvement achieved over [12] is due to the usage of 
phases. This bounds the number of graph traversals through node v to O(log k). In 
each phase, an agent searches to find another agent in the same phase so that they can 
merge and become one agent in a higher phase. As we go to higher phases, fewer 
agents remain (there are at most k·2-P+1 agents in phase p>0). The search is performed 
by agents, that annex nodes by writing the label of the agent to the node’s whiteboard.   

Phase 0 is different than all the phases that follow. Its goal is to initialize a label for 
the agent. An agent A wakes up and traverses the graph marking every unvisited node 
by turning on a “visited” flag in the node and destroying any sleeping agent in the 
node. Agent A maintains a node-counter which is increased by 1 after each node 
flagging. By the end of phase 0, each node of the graph would have counted by 
exactly one agent. After phase 0, agent A constructs a label out of its node-counter, its 
phase and the number of agents A annexed (at this point the phase equals 0 and the 
last field equals 1). Agent A then raises its phase to 1. Due to the assumption that 
gcd(n,k)=1, there must be at least two agents with different labels after phase 0.  

In all higher phases, the status of agent A can be in one of the following: 

(i) Annexing status: agent A tries to annex to its territory all the nodes (in lower 
phases) or to find another agent in the same phase. 

(ii) Chasing status: agent A chases some other agent B in the same phase but with a 
lower label. Agent A attempts to reach B and merge, creating a single agent in 
the next phase. 

(iii) Candidate status: agent A is waiting at a node to be merged or annexed. 

Agent A in annexing status traverses the graph looking to encounter other agents. 
During the traversal, agent A annexes nodes by writing its label to the node’s 
whiteboard. When agent A traverses a node that was traversed by another agent, agent 
A compares the label written in the node with its own and decides how to act. Agent A 
ignores labels of lower phase but becomes a candidate when the label is of a higher 
phase. However, if the label L is of the same phase then agent A will chase the agent 
that labeled the node if L is lexicographically smaller than its own label. On the other 
hand, agent A becomes a candidate if label L in the node is lexicographically bigger 
than its own label. When agent A encounters an agent B waiting in a node (B is in a 
candidate status), A will annex B if agent B is in a lower phase or merge with B if 
agent B is in the same phase. Agent A raises its phase only by a merging. When an 
agent recognizes it annexed all n nodes (or all k agents, if it knows k), it is the only 
agent left. At that time, it declares itself a leader. The leader traverses the graph, 
labeling the nodes with unique names and constructing a labeled map of the graph. 

Definition. Agents A and B are adjacent agents if there exists an edge connecting a 
node v labeled by A and a node u labeled by B. 

Our Modification. We now outline the modification (compared to [20]) that we 
introduce in order to deal with adjacent agents with the same label. This is the action 
an agent takes when it fails to merge with an agent in its own phase during its 
annexing traversal. First, if agent A completes an annexing traversal without 
encountering any agent at all (even in lower phases) then it enters the candidate 
status. Note that in [20] each agent has a unique label so when agent A completes an 
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annexing traversal it either becomes a leader, or gets destroyed (at a node labeled with 
a higher phase or during the processes of creating an agent in a higher phase). 

However, in our algorithm, if agent A encountered (and thus annexed) one or more 
agents in lower phases (thus A’s label changed) A should take an action. If agent A 
updates its label during the traversal the nodes it already traversed would not be 
updated. If one of those nodes v is adjacent to a node marked by an agent B with the 
same label A had when it traversed v then A would not notice B (although the updated 
label of A is now different than that of B). Furthermore, when agent A during the 
current round enters a node labeled by it with the former label it would act as if it 
entered a node of another agent and start a chase. Hence, agent A cannot update its 
label during the traversal and should take an action after the termination of the current 
traversal. Notice that if agent A took any of the following options, that would fail to 
solve the problem: 

- If agent A enters candidate status then this might have ended in a deadlock (see 
figure 1). 

- If agent A raises its phase (without merging with an agent in the same phase) then 
the number of phases could be as high as (k-1), thereby increasing the complexity 
of our algorithm. 

- If agent A starts another annexing traversal (without raising its phase) then this 
might again end-up in a deadlock (see figure 2).  

We solved the problem by the following mechanism, for which we prove that no 
deadlock arises and the complexity is still O(m·logk). Let round I be the annexing 
traversal described above for a phase. We add two additional traversals per phase, 
termed round II and round III. 

Round II: Agent A informs the nodes it annexed in round I about A’s new label.  
Round III: Agent A starts a new annexing traversal (the same as in round I). We will 
show that in this round the agent can only encounter agents from the same phase. An 
agent ends this round either by merging with another agent in the same phase (and 
thus starting a new phase) or, by becoming a candidate at a node. 

 

 
Fig. 1. Agents A and B have the same label at the beginning of phase p, hence when they visit 
nodes u and v during round I they do not know of one another. Agent C in phase q (q<p) is 
annexed by agent A during round I. After round I, agents A and B have different labels. Thus, 
had A changed its status to candidate by the end of round I the algorithm would have had 
entered a deadlock (agent A waits for B and vice versa).  
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Fig. 2. Agents A and B have the same label at the beginning of phase p. Hence, during round I 
they cannot distinguish between themselves, and thus do not know of one another. During 
round I, agents C and D in phase q (q<p) are annexed by agent B and agent A respectively. 
After round I, agents A and B have different labels. Thus, had A and B started another annexing 
traversal without performing round II before that, then B would have had started chasing A 
from node v and A would have had started chasing B from node u. This would have had caused 
the algorithm to deadlock.  

3.3   A More Formal Description 

The data held by the agent 
The label of the agent:  

• phase(A) – The phase of agent A.  
• nodesAnnexed(A) – The number of nodes marked at phase 0 by agent A itself 

and by the agents that were annexed by agent A.   
• agentsAnnexed(A) – The number of agents annexed by agent A, including itself. 

The status of the agent:  

• Status –  One of the following: annexing, chasing, or candidate. 

Temporary variables:  

• tname(A) – The value of tname(A) accumulates the values of tname of the agents 
that were annexed by agent A (during round I of the current phase). This value is 
initialized to nodesAnnexed(A) at the beginning of each phase. 

• agentsCounter(A) – The value of agentsCounter(A) accumulates the values of 
agentsCounter of the agents that were annexed by agent A (during round I of the 
current phase). This value is initialized to 1 at the beginning of phase 0 and to 
agentsAnnexed(A) at the beginning of every other phase. 

• nodesCounter(A) – The number of nodes annexed by agent A (initialized to 1). 

Data written to a node v. The label of the node is equal to the label and the status of 
the agent that annexed it (phase(v) , nodesAnnexed(v), agentsAnnexed(v)). 

The name of the node: 

• nodeName(v) – The sequence number of the node (assigned by the last annexing 
agent). 

• visitFlag(v) – Indicates whether the node was marked by an agent in phase 0. 
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The status of the node:  

• Status – One of the following annexed, chased, or round2 (assigned by the agent 
that last traversed the node). 

Comparing variables in labels. During the execution, the agent compares its own 
label with the label of the node lexicographically.  

The Algorithm. Initially, all the agents are asleep and on waking up (spontaneously), 
an agent A starts executing Phase 0.  

3.3.1   Phase 0 
On waking-up in some node (say u),2 agent A sets its label to (phase(A) =0, 
nodesAnnexed(A)=0, agentsAnnexed(A) =1) and sets agentsCounter(A) to 1. Agent A 
marks node u as visited by turning on visitFlag(u). Agent A then starts traversing the 
graph, using the traversal algorithm. When A reaches a node v it acts as follow: 

- If v is unmarked then (1) A increments its nodesCounter(A) by 1; (2) marks node v 
as visited by turning on visitFlag(v); (3) if a sleeping agent exists in the node then 
agent A destroys the agent; and (4) continues the graph traversal. 

- If v is marked visited then A continues the traversal. Recall that the traversal 
algorithm acts as if A has been in node v before (which may or may not be the case), 
so it returns to the node from which A was last sent to node v and continues the 
traversal. 

Upon termination of the traversal of phase 0, A raises its phase to 1 (phase(A)  1), 
sets values of nodesAnnexed (nodesAnnexed(A) nodesCounter(A)), agentsAnnexed 
(agentsAnnexed(A)  agentsCounter(A)) and its status to annexing. If n is known and 
nodesAnnexed(A)=n or k is known and agentsAnnexed(A)= k (k=1) then agent A 
detects the successful termination and performs the leader procedure (described 
below). Otherwise, agent A proceeds to Round I. 

3.3.2   Round I 
Agent A starts an annexing process by starting a graph traversal with the label 
(phase(A), nodesAnnexed(A), agentsAnnexed(A)) and the annexing status. The 
following rules apply:  

Whenever an annexing or a chasing agent A reaches some node v or raises its phase 
at some node v, agent A acts according to its label as follows: 

Either annexing or chasing status 
- If there is an agent C labeled (phase(C), nodesAnnexed(C), agentsAnnexed(C)) 

waiting in node v (as a candidate) then, 
• If phase(A) > phase(C) then agent A annexes agent C by adding the value of C's 

tname and agentsCounter to its own tname and agentsCounter respectively.  
Agent A then continues the traversal. Agent A doesn’t update its label till the end 
of the traversal. Thus agent A uses the variables tname and agentsCounter to 
collect the data from the annexed agents.  

                                                           
2 We use a name such as u for the convenience of a description; note that the algorithm does not 

have an access to unique names such as u or A. 
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• If phase(A) = phase(C) then agent A merges with agent C to create a single agent 
B such that phase(B) = phase(A)+1, nodesAnnexed(B) = tname(A) + tname(C) and 
agentsAnnexed(B) = agentsCounter(A) + agentsCounter(C), with temporary 
variables tname(B) = nodesAnnexed(B), agentsCounter(B) =  agentsAnnexed(B).  
o If n is known and nodesAnnexed(B)=n or k is known and agentsAnnexed(B)= k 

then B detects the successful termination and performs the leader procedure 
(described below). 

o Else: Agent B aborts its current traversal and starts Round I.  
• If phase(A) < phase(C) then A changes its status to candidate and waits at node v 

(aborting its traversal algorithm).  
- Otherwise agent A acts according to its status and label as follow: 

Annexing status 

- If the traversal has terminated and v is in the annexed status: 
• If A annexed one or more agents during the traversal (that is tname(A)> 

nodesAnnexed(A)) then agent A updates its label:  nodesAnnexed(A)  tname(A)  
and agentsAnnexed(A)  agentsCounter(A).(This can happen only in round I ) 
o If n is known and nodesAnnexed(A)=n or k is known and agentsAnnexed(A)= k 

then agent A detects the successful termination and performs the leader 
procedure (described below). 

o Else agent A proceeds to Round II (described below).  
• In all the other cases A changes its status to candidate and waits at node v. 

- If phase(A) > phase(v) then A performs the Annexing procedure (described below) 
and then continues the graph traversal. 

- If phase(A) < phase(v) then A changes its status to candidate and waits at node v 
(aborting A’s traversal algorithm). 

- If phase(A) = phase(v)  
• If v is in the chased status, agent A changes its status to candidate and waits at 

node v (aborting A’s traversal algorithm). 
• If v is in the annexed or round2 status, agent A acts as follows: 
o If (nodesAnnexed(A),agentsAnnexed(A))=(nodesAnnexed(v),agentsAnnexed(v)) 

and node v is with status round2 then A performs the Annexing procedure 
(described below) and then continues the graph traversal. 

o If (nodesAnnexed(A),agentsAnnexed(A))=(nodesAnnexed(v),agentsAnnexed(v)) 
and node v is with status annexed then agent A continues the traversal. Note 
that during this phase either agent A or an identical agent to A has visited node 
v before; in both cases, the edge through which agent A entered node v is now 
marked back edge for the label of agent A.  

o If (nodesAnnexed(A),agentsAnnexed(A))<(nodesAnnexed(v),agentsAnnexed(v)) 
then agent A changes its status to candidate and waits at node v (aborting A’s 
traversal algorithm). (Note that in [20] the agent is destroyed, here the label of 
the candidate is important to maintain at least one distinguishable agent).  

o If (nodesAnnexed(A),agentsAnnexed(A))>(nodesAnnexed(v),agentsAnnexed(v)) 
then agent A (1) changes its status to chasing; (2)  aborts the current traversal; 
(3) starts a new graph traversal in which it acts as described in (see section 
“chasing status”). 
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Chasing status: When agent A labeled (phase(A), nodesAnnexed(A), 
agentsAnnexed(A)) in the chasing status, enters a node v labeled (phase(v), 
nodesAnnexed(v), agentsAnnexed(v)) with no agent in status candidate waiting at 
node v, agent A acts as follows: 
- If v is in the annexed status and phase(A) = phase(v) then A (1) changes node v’s 

status to chased; (2) A then continues the graph traversal. 
- In all the other cases: A changes its status to candidate and waits at node v 

(aborting A’s traversal algorithm). 

Note that the case where an agent in status candidate is waiting at node v was handled 
in the beginning of this paragraph in section “Either annexing or chasing status”. 

3.3.3   Round II 
Agent A starts a traversal of its own territory (using operation Go-Territory() as 
explained earlier). Whenever agent A reaches node v:  

- If node v is in status annexed and in the same phase as A then agent A assigns its 
own label to the label of the node and assigns the node the status round2. 

- Else agent A changes its status to candidate and waits at node v (aborting A’s 
traversal algorithm). 

At the end of the territory traversal (if not aborted), agent A proceeds to round III. 

3.3.4   Round III 
Agent A starts an annexing process by starting a graph traversal with the label 
(phase(A), nodesAnnexed(A), agentsAnnexed(A)) and the annexing status and follows 
the rules applied in Round I. However, as we show later, an agent at the end of this 
round will not re-enter Round II. 
Annexing procedure: Agent A annexes node v by assigning A’s label to node v’s 
label and changing node v’s status to annexed. 

Leader procedure: When A detects a successful termination, agent A acts as follows: 

(1) Agent A sets nodesCounter 0 
(2) Agent A invokes an execution of the graph traversal (using operation Go-To-

Next() as explained in 3.1) to label every node with a unique name and to 
construct a map of the graph. Agent A labels node v by: (a) Incrementing the 
nodesCounter by 1; (b) Naming node v by setting nodeName(v) nodesCounter.  

The agent uses the labels of the nodes and the marks on the edges (the ports of the 
nodes) to construct a map of the graph.  

4   Complexity and Correctness Proofs 

Due to lack of space the proofs were omitted and can be found in 
http://iew3.technion.ac.il/Home/Users/kutten.html#part4 

4.1   Correctness 

All the lemmas concerning correctness are based on the assumption that gcd(n,k) =1 
and the FIFO discipline behavior of the messages sent over the edges. 
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Definitions 
(1) A root is the node from which an agent started the current graph traversal, if it is 

in the annexing mode. 
(2) A chase is the action where an agent A in phase p changes its status to chasing as 

a result of entering a node labeled by some agent B, or agent A is in a chasing 
status, and continues to follow the traversal of agent B. We call agent A the 
chaser and agent B the chased. 

(3) A chase-route is a sub-graph that consists of the nodes and edges traversed by the 
same chaser. The node at which the chaser ended the chase is termed as the end 
of the chase-route and the other brink of the chase-route is termed as the 
beginning of the chase-route. The chase-route is a directed path from the 
beginning to the end.  

(4) A sequence of chase-routes is a maximal directed path in a sub-graph formed by 
the union of sub-graphs of chase-routes from the same phase, where the last node 
of each chase-route is a node that also belongs to another chase-route in the 
sequence.  

Lemma 1. At any time after phase 0, when there are more than one agent, there are at 
least two agents with different labels (phase, nodesAnnexed, agentsAnnexed).   

Lemma 2. The number of agents that ever reach phase p > 0 in an execution of the 
algorithm is at most  k · 2-P+1.  

Lemma 3. When agent A starts to chase agent B, agent A can enter only nodes labeled 
with the same phase of A or higher. 

Lemma 4. When agent A chases agent B, agent A traverses a simple path in the graph, 
except possibly for the last traversed node. 

Observation 1. If the last node v of the chase-route created by some chaser A creates 
a simple circle in the chase-route then the chased agent B became a candidate at v or 
merged with another candidate agent that waited at node v.  

Lemma 5. A maximal sequence of chase-routes forms a simple path except possibly 
for the last traversed node.  

Lemma 6.  When agent A starts a chase after agent B in phase p, eventually, an agent 
in phase p+1 exists. 

Lemma 7. In rounds II and III, agent A finds only nodes labeled with the same phase 
p or higher. 

Lemma 8. If there is more than one agent at the highest phase p, then eventually there 
will be a chase in phase p.  

Lemma 9. If there is more than one agent at a certain phase p, then an agent 
eventually raises its phase from p to p+1.  

Lemma 10. In every execution of the algorithm, one and only one agent is left.  

4.2   Complexity 

The message complexity of an algorithm L acting on a graph G is the maximum 
number of edge traversals over all executions of L on G.  
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Lemma 11. The total number of edge traversals made by all agents in a given phase is 
O(m). 

Lemma 12. The total number of edge traversals performed in an execution is 
O(m·logk). 

Bit Complexity: In our algorithm, the graph map is not carried by the agents but is 
constructed by the elected agent. The information carried by the agents during the 
election process consists of phase(A), agentsAnnexed(A), and agentsCounter(A), each 
of size log2 k, and nodesAnnexed(A), tname(A), nodesCounter(A) of size O(log n). The 
size of status is a constant. The total number of edge traversals during the algorithm is 
O(m·log k). Thus, the bit complexity during the election is O(m·logk·logn). 

In [12] the map is carried by each agent thus the message size is O(m·log n) and 
logn is the size needed to store the identity of a node or an edge. The agent traverses 
the graph using the map it carries. The total number of edge traversals during the 
algorithm is O(m·k). Thus, the bit complexity during the execution of the algorithm 
is O(m2·k·logn). This bit complexity can be reduced to O(m·k) by marking the ports 
(with ‘T’ and ‘NT’) instead of carrying a map. The method of carrying the map by 
the agents at all times is more robust than the method of marking the port of the 
node.  

Time Complexity: The time complexity in our algorithm is measured by the time it 
took the leader agent to traverse the graph in each one of the phases it passed. Thus, 
the time complexity of the algorithm is O(m·logk). 

In the algorithm of Das et al, the time complexity is given by the total number of 
edge-traversals made by all agents together and this was shown to be O(m·k). 

5   Conclusion 

We used the method of separating the algorithm into two layers - the agent algorithm 
and the lower layer traversal. The traversal algorithm used here is the DFS algorithm 
intended for the family of undirected networks. It is possible to generalize the results 
to other families of networks by using other traversal algorithms. As we showed here 
for DFS- the fact that two identical agents may visit the same node does not cause the 
traversal to get "confused". If the algorithm is used for other families of graphs by 
using other traversals, care must be taken to make sure these traversals do not get 
"confused" when the routes of identical agents collide. 

We addressed instances that are solvable because n and k are co-prime. Recall 
that there are other solvable cases [19, 24]. The algorithm can be used, with some 
modifications, to follow the ideas of [24] and solve some other possible cases.  

Our algorithm constructs a map only when it can detect a successful termination 
since we included the map construction in the leader procedure. If desired, it is 
possible to have every agent construct a map as it goes. This will increase the bit 
complexity. However, it will ensure that a map is constructed by the last remaining 
agent also in the case that n and k are co-prime, but neither n nor k is known. 
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Finally, the model of the algorithm is based on the FIFO behavior of the edges. 
Communication protocols that do not guarantee the FIFO discipline do exist. 
Hence, it may be interesting to adapt our algorithm to deal with non-FIFO behavior. 
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The Complexity of Updating Multi-writer
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Abstract. This paper proves Ω(m) lower bounds on the step complexity
of UPDATE operations for partitioned implementations of m-component
multi-writer snapshot objects from base objects of any type. These are
implementations in which each base object is only modifed by processes
performing UPDATE operations to one specific component. In particular,
we show that any space-optimal implementation of a multi-writer snap-
shot object from historyless objects is partitioned. This work extends
a similar lower bound by Israeli and Shirazi for implementations of m-
component single-writer snapshot objects from single-writer registers.

1 Introduction

An important problem in shared memory distributed systems is to obtain a
consistent view of the contents of the memory while updates to the memory are
happening concurrently. This problem can be formalized as the implementation
of a snapshot object that can be accessed concurrently by different processes.
A snapshot object [1] consists of a set of m > 1 components, each capable of
storing a value. Processes can perform two different types of operations: UPDATE
any individual component to have a specific value or atomically SCAN to obtain
the values of all the components. A single-writer snapshot object is a restricted
version in which there are the same number of updaters as components and only
process pi can UPDATE the i’th component. In a multi-writer snapshot object,
there is no restriction on which processes may UPDATE a component.

It is often much easier to design fault-tolerant algorithms for asynchronous
systems and prove them correct if one can think of the shared memory as a
snapshot object, rather than as a collection of individual objects. This is why
researchers have spent a great deal of effort on finding efficient implementations
of snapshot objects from base objects that are provided in real systems, like
registers or swap objects.

Many implementations of snapshot objects are known, most of them from reg-
isters [1,2,3,4,9,13,14], and several from stronger base objects [16,17]. However,
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only a few lower bounds on the complexity of implementing snapshot objects
are known.

Jayanti, Tan, and Toueg [18] proved that any implementation of an m-
component single-writer snapshot object from historyless and resettable con-
sensus objects requires at least m − 1 objects and SCANS take at least m − 1
steps. For multi-writer snapshot objects implemented from historyless objects,
Fatourou, Fich and Ruppert [7] improved the space lower bound to m, which
is optimal, since there are implementations from m registers. More importantly,
they proved that in any space-optimal implementation of a binary snapshot ob-
ject from historyless objects shared by n > m + 1 processes, the worst case step
complexity of SCAN is in Ω(mn), which is asymptotically tight. This proof relies
on a number of structural lemmas which show that any space-optimal snapshot
implementation from historyless objects has a special form.

Israeli and Shirazi [15] proved a tight Ω(m) lower bound on the step com-
plexity of UPDATE, for implementations of m-component single-writer snapshot
objects, under the assumption that only single-writer registers are used. No lower
bounds were known for the step complexity of an UPDATE operation when other
base objects, in particular, multi-writer registers, can be used.

In this paper, we prove that the worst case step complexity of UPDATE in
any implementation of an n-process m-component multi-writer snapshot object
from m < n registers or m < n − 1 historyless objects is in Ω(m). We begin
by extending Fatourou, Fich, and Ruppert’s structural lemmas [6,7] for space-
optimal implementations to show that any such implementation is partitioned.
Partitioned implementations can use any number of base objects, but each base
object can only be modified by processes performing UPDATES to one specific
component. Then we prove that, for any partitioned implementation of a multi-
writer snapshot object implemented from base objects of any type, the worst
case complexity of UPDATE is in Ω(m). We do this in two ways.

First, we observe that, if n ≥ 2m, then any n-process partitioned implemen-
tation of an m-component multi-writer snapshot also gives an implementation
of an m-component single-writer snapshot object, shared by m updaters and m
scanners, from single-writer registers. Then the result follows from Israeli and
Shirazi’s lower bound [15]. Their proof and, hence, this result, requires that the
number of possible values for each component is infinite.

Secondly, we give a direct proof of the lower bound for partitioned imple-
mentations. This proof even applies to binary snapshot objects (i.e. when each
component is only a single bit). Moreover, it does not rely on the existence of a
large number of processes: it suffices that there are three processes, two which
can perform UPDATES and one which can perform SCAN. This shows that it is the
number of components in a snapshot object, not the number of processes, that
is responsible for UPDATES taking a long time in partitioned implementations.

The best known multi-writer snapshot implementation is partitioned [1] and
has O(mn) step complexity for both UPDATE and SCAN. There are also a number
of implementations which are not partitioned and have o(m) step complexity
for UPDATE. They show that the lower bounds do not hold if the restriction to
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partitioned implementations is removed. For example, there is a trivial imple-
mentation of a multi-writer snapshot object with O(1) steps for UPDATE and
SCAN. The implementation uses a single object that contains a view of the snap-
shot object: a SCAN simply reads this view; an UPDATE of component i atomically
reads the view and modifies component i of the view.

Jayanti [16] uses an f -array to implement a multi-writer snapshot object with
O(log m) steps for an UPDATE and one step for a SCAN. It uses m − 1 LL/SC
objects, each containing a view, arranged in a binary tree. This implementation
is not partitioned, since a process doing an UPDATE follows a path to the root
from the leaf corresponding to the component, performing SC operations as it
goes. The root contains the current values of all m components, so a SCAN can
simply read the root.

Another implementation of a snapshot object has O(1) steps for an UPDATE
and an unbounded (but finite) number of steps for a SCAN. The implementation
follows Kirousis, Spirakis, and Tsigas [19], and uses an m×∞ array of registers.
Each row contains values written to a specific component of the snapshot object.
The scanners also maintain a pointer, telling the updaters the column in which
to put their value. An UPDATE to component i reads the pointer and writes its
value in the corresponding place in row i of the array. A SCAN does fetch&inc on
the pointer and then, for each component i, reads backwards in row i from the
current value of the pointer (towards the beginning of the array) until it finds
a non-empty entry. This implementation says that an Ω(m) lower bound does
not exist if scanners can write to the same register or there is only one scanner,
which can write to a single-writer register.

Fatourou and Kallimanis [8] recently presented two implementations of m-
component multi-writer snapshot objects that support a single scanner and any
number of updaters. One of these uses m + 1 registers and has O(m2) step
complexity for both SCAN and UPDATE. Except for a single-writer register used
by the scanner, this implementation is partitioned. The other implementation
uses an unbounded number of registers, but has O(m) step complexity for both
SCAN and UPDATE. It is not partitioned. They also prove that any implementation
from registers which supports a single-scanner must use at least m registers and
the step complexity of SCAN is in Ω(m2) if the implementation is space-optimal.

Riany, Shavit and Touitou [21] implement an m-component single-writer snap-
shot object, from O(m2) LL/SC objects. In their implementation, UPDATE has
constant step complexity and SCAN has O(m) step complexity. Their algorithm
is based on a single-scanner snapshot object, which is a simplification of the
algorithm by Kirousis, Spirakis, and Tsigas [19]. In their multi-scanner algo-
rithm, scanners collaborate in collecting a view in order to reduce work and to
guarantee that returned views are consistent. This algorithm is not partitioned:
Although the updaters write only to a single object associated with their com-
ponent, scanners write to multiple shared objects.

Jayanti [17] implements an m-component multi-writer snapshot object, with
the same step complexity, from O(mn2) CAS objects. This algorithm also starts



322 H. Attiya, F. Ellen, and P. Fatourou

with a single-writer single-scanner snapshot object, and extends it in two steps.
The algorithm is not partitioned.

2 The Model

We use a standard model of asynchronous shared-memory systems [5,20]. In
this model, a set of n deterministic processes P = {p1, . . . , pn} communicate by
accessing shared base objects. The system is totally asynchronous, so the order
in which operations are performed by processes is assumed to be controlled by an
adversarial scheduler. Algorithms must work correctly regardless of the schedule
the adversary chooses.

A configuration is a complete description of the system at some point in time.
It is comprised of the internal state of each process and the state of each shared
object. A step of a process consists of a single operation accessing a shared
object, the response to that operation, and some local computation that may
cause the internal state of the process to change.

An execution starting from a configuration C is a sequence of steps, in which
the steps performed by each process follow the algorithm for that process (start-
ing from its state in C) and the responses to the operations performed on each
object are in accordance with its specification (and the value stored in the object
at configuration C). A configuration C is reachable if there is a finite execution
that results in C starting from some initial configuration. An execution is solo
if every step is performed by the same process.

An object is historyless [10] if all its non-trivial operations (i.e. operations
which might change the value of the object) overwrite one another. The most
familiar historyless object is a register, which is accessed either by a trivial read
operation, which returns the value of the register without changing it, or by
a non-trivial write operation with one parameter, which changes the register’s
value to the value of its parameter, overwriting its previous value. A single-
writer register is restricted so that only one particular process can perform write
operations; a multi-writer register can be written to by any process. Another
type of historyless base object is a swap object, which supports read and swap
operations. A process covers a historyless object in a configuration if the process
will perform a non-trivial operation on that object, when it takes its next step.
A set of processes P ′ ⊆ P covers a set of objects O in a configuration if each
process in P ′ covers an object in O and each object in O is covered by some
process in P ′.

A (multi-writer) snapshot object is an object with m components 1, . . . , m,
each of which stores a value from a specified set. When this set is {0, 1}, it is
called a binary snapshot object. A snapshot object supports two operations. The
operation UPDATE(i, v) sets the value of component i to v. The SCAN operation
returns a vector consisting of the values of the m components.

A (wait-free) implementation provides, for each process, an algorithm for per-
forming UPDATE and an algorithm for performing SCAN. Every process executes
only a finite number of steps to perform these operations, even if other processes
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run at arbitrary speeds or may crash. An UPDATE or SCAN operation by a process
is pending after an execution prefix if the process has already executed the first
step of this invocation of its algorithm, but has not yet finished performing the
algorithm. A serial-update execution of a snapshot implementation is an execu-
tion in which UPDATE operations do not overlap; that is, in any configuration,
there is at most one pending UPDATE operation.

We restrict attention to linearizable implementations [12]. This means that,
in each execution, each simulated UPDATE or SCAN operation appears to take
effect at some instant during the period of time it is pending. Thus, there is
a linearization of the implemented operations which would produce the same
responses for each operation as in the execution. Furthermore, if one simulated
operation finishes before another simulated operation begins, the latter operation
comes later in the linearization.

Consider any execution of a snapshot implementation that reaches a config-
uration C in which no process has a pending UPDATE to component i. Then
there is a value vi such that, for any SCAN starting at or after C and finishing
before any subsequent UPDATE to component i begins, the value of component
i returned by this SCAN is vi. This is because all such SCAN operations must
be linearized after all the UPDATES to component i that complete before C and
before all the UPDATES to component i that start after C. We call vi the value of
component i at configuration C. If there are no processes with pending UPDATES
to any component in configuration C, then the value of the snapshot object at
configuration C is (v1, . . . , vm), where vi is the value of component i at C.

3 Partitioned and Space-Optimal Snapshot
Implementations

In this section, partitioned implementations of snapshot objects are defined and
we prove that space-optimal implementations of multi-writer snapshot objects
from historyless objects are partitioned.

Definition 1. A snapshot implementation is partitioned if all of the objects can
be partitioned into m disjoint sets O1, . . . ,Om such that, in any serial-update
execution from an initial configuration C0, only processes performing UPDATES
to component i can change the value of objects in Oi.

In particular, in any serial-update execution of a partitioned implementation,
SCAN operations cannot change the value of any object. Any implementation
of a single-writer snapshot object from single-writer registers in which SCAN
operations do not write is partitioned.

Consider any n-process implementation of an m-component snapshot object
from a set H of m < n registers or m < n − 1 historyless objects. In the full
version of the paper, we prove that this implementation is partitioned. The proof
relies on structural lemmas from Fatourou, Fich, and Ruppert [6,7], which hold
for such implementations.
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Lemma 1. Let C be a configuration with no pending UPDATES. Suppose that x
is not the value of component i at C. Then the solo execution by any process,
starting from C, in which it performs UPDATE(i, x) (after completing its pending
SCAN, if necessary), must change the value of at least one shared object.

Lemma 2. SCAN operations do not perform non-trivial operations.

For any configuration, C, without pending UPDATES, let H(C, i, j, x) denote
the first object that process pj covers when performing a solo execution of
UPDATE(i, x) starting from C (after completing its pending SCAN, if necessary).
By Lemma 1, if x is not the value of component i at C, then this object exists.

Let C0 denote the initial configuration in which the initial value of every
component is 0. Let Hi = H(C0, i, i, 1) be the first object that process pi covers
when performing a solo execution of UPDATE(i,1) starting from configuration C0.

Lemma 3. Hi �= Hj for distinct i, j ∈ {1, . . . , m}.
Consider any serial-update execution α of the implementation starting from C0.
Let C0, C1, . . . denote the sequence of configurations without pending
UPDATES that occur in α. We state two additional structural properties about
this restricted execution. The proofs appear in the full version of the paper.

Lemma 4. If x is not the value of component i at configuration Ck, then, for
every process pj, H(Ck, i, j, x) = Hi.

Lemma 5. In any serial-update execution starting from C0, the only shared
object to which non-trivial operations are performed during an UPDATE to com-
ponent i is Hi.

Together with Lemmas 2 and 3, Lemma 5 shows that space-optimal implemen-
tations of multi-writer snapshot objects from historyless objects are partitioned.

Corollary 1. Any implementation of an m-component multi-writer snapshot
object shared by n ≥ 3 processes from m < n registers or from m < n − 1
historyless objects is partitioned.

4 A Simple Reduction

Israeli and Shirazi [15] proved the following lower bound for single-writer snap-
shot objects implemented from single-writer registers. Then a simple reduction
extends this result to a lower bound for partitioned implementations of multi-
writer snapshot objects from any base objects. With Corollary 1, this gives a
lower bound on the step complexity of UPDATE operations for space-optimal im-
plementations of multi-writer snapshot objects.

Theorem 1. In any implementation of a single-writer snapshot object, over
an infinite domain, shared by m updaters and m scanners, from single-writer
registers, there is a serial-update execution in which some UPDATE operation takes
Ω(m) steps.
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This lower bound can be extended to partitioned implementations of multi-
writer snapshot objects from any base objects by observing that a partitioned
implementation of a multi-writer snapshot object can be used to implement a
single-writer snapshot object using only single-writer registers. Specifically, the
objects that can be changed by processes performing UPDATES to component i
are represented by different fields of the single-writer register of process pi.

Theorem 2. In any partitioned implementation of an m-component
multi-writer snapshot object, over an infinite domain, shared by m updaters and
m scanners, there is a serial-update execution in which some UPDATE operation
takes Ω(m) steps.

Note that the same reduction also works for implementations in which each
process also has a single-writer register to which it can write at any time.

Combining Corollary 1 and Theorem 2 yields our first lower bound for space-
optimal implementations.

Theorem 3. Any implementation of an m-component multi-writer snapshot ob-
ject, over an infinite domain, shared by n ≥ 2m processes, from m historyless
objects, requires Ω(m) steps for an UPDATE, in the worst case.

This theorem is true even if the implementation only works for serial-update
executions. For this special case, there is a space-optimal implementation with
O(m) step complexity for both SCAN and UPDATE. The algorithm uses m registers,
each containing a view plus a sequence number. A SCAN simply collects all m
registers, picks one with the maximal sequence number, and returns its view. To
perform UPDATE(i, x), a process collects all registers, picks one with the maximal
sequence number, changes component i of its view to x, and writes this new
view, together with a bigger sequence number, to the i’th register.

5 Partitioned Binary Snapshot Implementations

In this section, we give a direct proof of an Ω(m) lower bound on the number of
steps to perform UPDATE in any partitioned implementation of an m-component
snapshot object (from any base objects). Unlike the lower bounds in the pre-
ceding section, it does not require the set of possible values of the components
to be infinite. In fact, this proof even applies to binary snapshot objects. Fur-
thermore, the lower bounds in the preceding section required 2m processes: m
scanners and m updaters. Here, the lower bound for partitioned implementa-
tions applies even when there are only two updaters and one scanner. We also
get a lower bound for space-optimal implementations that applies when the total
number of processes is greater than m (for implementations from registers) or
m + 1 (for implementations from historyless objects).

The proof of our lower bound for partitioned implementations is similar in
structure to the proof of Theorem 1 by Israeli and Shirazi [15]. Specifically, we
prove that if all UPDATES take at most m/6 steps, then it is possible to construct
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an infinite serial-update execution consisting of a single SCAN operation with one
complete UPDATE operation immediately before each step of the SCAN. This will
contradict the assumption that the implementation is wait-free. To do this, we
build successively longer executions of this form.

A flippable execution of length k is a finite execution U0s1U1 · · · skUk per-
formed by two updaters, p0 and p1, and one scanner, q, starting from an initial
configuration C0, such that:

– Uj is a solo execution of a complete UPDATE operation performed by ph,
where h ≡ j mod 2, in which it complements the value of one component,
for j = 0, . . . , k,

– consecutive UPDATE operations are to different components,
– sj is a single step of a SCAN operation performed by q, for j = 1, . . . , k, and
– for any f > 1 and for any sequence j1 < · · · < jf , where 1 ≤ j�+1 < j�+1 ≤ k

for 1 ≤ � < f , the execution U0s1U1 · · · sj�−1Uj�−1sj�
Uj�

sj�+1 · · · skUk start-
ing from C0 is indistinguishable (to all processes) from the flipped execution
U0s1U1 · · · sj�−1Uj�

Uj�−1s�jsj�+1 · · · skUk starting from C0 in which UPDATE
Uj�

is performed before Uj�−1sj�
instead of after Uj�−1sj�

, for � = 1, . . . , f .

When we say that an instance of an UPDATE operation complements the value of
component i, we mean that it is an instance of UPDATE(i, vi), where vi ∈ {0, 1} is
the value of component i of the snapshot object just before the operation begins.

Next, we show that a flippable execution cannot contain a completed SCAN
operation, by showing that there is no place a SCAN operation can be linearized.
This will allow us to extend the flippable execution to a longer one.

Lemma 6. No SCAN operation in a flippable execution has terminated.

Proof. Let E = U0s1U1 · · · skUk be a flippable execution starting from config-
uration C0. To obtain a contradiction, suppose that process q has completed a
SCAN by the end of E. Let v = (v1, . . . , vm) be the result of this SCAN. There
might be many configurations during this execution at which there are no pend-
ing UPDATES and the value of the snapshot object is v. (If the domain of the
snapshot object were infinite, this difficulty could be avoided by requiring ev-
ery UPDATE to use a different value.) Let j1 < · · · < jf be a list of all indices
j� ∈ {1, . . . , k} such that v is the value of the snapshot object between Uj�−1

and Uj�
, for � = 1, . . . , f . Note that, since Uj�

complements the value of some
component, v is not the value of the snapshot object between Uj�

and Uj�+1.
Hence j� + 1 < j�+1.

Consider the flipped execution F = U0s1U1 · · · sj�−1Uj�
Uj�−1sj�

sj�+1 · · · skUk

starting from C0 in which UPDATE Uj�
is performed before Uj�−1sj�

instead of
after Uj�−1sj�

, for � = 1, . . . , f . The executions E and F are indistinguishable
to process q, so q returns the same result for its SCAN in both executions. Thus,
in F , the SCAN by q must be linearized at some point where the value of the
snapshot object is v.

Since the UPDATES do not overlap, they are linearized in the order U0, U1, . . . ,
Uk in E and in the same order in F , except that the order of Uj�−1 and U�j are
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flipped, for � = 1, . . . , f . Consecutive UPDATES are to different components, so
the value of the snapshot object is the same after both have been performed, no
matter which of the two is performed first. Hence, at all points in the linearization
of F , except between Uj�

and Uj�−1, for � = 1, . . . , f , the value of the snapshot
object is the same as its value at the corresponding point in the linearization of
E. Recall that, in E, the value of the snapshot object is not v between Uj−1 and
Uj , for j �= j1, . . . , jf .

Now consider the situation between Uj�−1 and Uj�
for any � ∈ {1, . . . , f}. In

E, the snapshot object has value v and Uj�
is an instance of UPDATE(i, vi), where

vi is the value of component i of v. This implies that, between Uj�
and Uj�−1 in

F , the value of component i of the snapshot object is vi and, hence, the value
of the snapshot object is not v.

Since the SCAN by q begins after U0 in F , it must be linearized after U0. If
jf < k, then the SCAN by q finishes before Uk in both E and F and, hence, must
be linearized before Uk. If jf = k, then the value of the snapshot object is v
between Uk−1 and Uk in E. This implies that the value of the snapshot object
is not v either after Uk in E or after Uk−1 in F . In this case, the SCAN by q must
be linearized before Uk−1 in F .

The value of the snapshot object is not v between U0 and the last UPDATE
performed in F . This contradicts the fact that the SCAN by q must be linearized
at some point where the value of the snapshot object is v. ��

Consider any partitioned implementation of an m-component binary snapshot
object, shared by two updaters, p0 and p1, and a scanner q, in which serial
UPDATES take at most m/6 steps. Suppose that UPDATES to component i only
change the value of objects inOi. We show how to construct a flippable execution
so that it can be repeatedly extended. The key idea is to choose the successive
components to update so that the objects each UPDATE operation might change
are not accessed during the previous or the next UPDATE operation nor during
the step of the SCAN that precedes it. A counting argument shows that this is
possible in each extension of the construction.

It is helpful to use a matrix to keep track of which objects a process ac-
cesses when it performs an UPDATE. For each h ∈ {0, 1} and each configuration
C without pending UPDATES in an update-serial execution, let Bh

C denote the
m × m Boolean matrix where Bh

C [i, j] = 1 if and only if the solo execution
of UPDATE(i, vi) by process ph starting from configuration C accesses an object
in Oj , where vi is the value of component i of the snapshot object in config-
uration C. In particular, Bh

C [i, i] = 1, since a process performing UPDATE(i, vi)
must access an object in Oi. (Otherwise, it changes the value of no objects
and, hence, cannot affect the outcome of a SCAN that follows immediately af-
terwords.) We say that a column j of Bh

C is light if more than half of its
entries are 0.

Lemma 7. If process ph takes at most m/6 steps to perform a solo UPDATE
starting from configuration C, then there are at least 2m/3 light columns in Bh

C .
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Proof. Process ph performs at most m/6 steps in its solo execution of UPDATE(i, b)
starting from configuration C, where b is the value of component i of the snapshot
object in configuration C. Hence, at most m/6 entries in row i of Bh

C are 1 and at
most m2/6 entries in Bh

C are 1. Let � denote the number of light columns in Bh
C .

Then, in each of the other m− � columns, at least m/2 of the entries are 1. Thus
at least (m− �)m/2 entries in Bh

C are 1. This implies that m2/6 ≥ (m− �)m/2
or, equivalently, � ≥ 2m/3. ��

We now prove the main technical lemma, which shows the existence of a flippable
execution, but with one additional property that makes the construction proceed
more easily.

Lemma 8. If every updater takes at most m/6 steps to perform a solo UPDATE,
then, for all k ≥ 0, there is a flippable execution, U0s1U1 · · · skUk, such that Uk

is an UPDATE to some component ik by a process ph starting from configuration
Ck, where h ≡ (k + 1) mod 2 and column ik of Bh

Ck
is light.

Proof. By induction on k.
First consider the base case, k = 0. By Lemma 7, B1

C0
has at least 2m/3 light

columns. Let U0 be a solo execution of UPDATE(i0, vi0) by process p0 starting
from configuration C0, where i0 is the index of a light column in B1

C0
and vi0 is

the value of component i0 in C0. Then the claim holds for k = 0.
For the induction step, suppose E = U0s1U1 · · · skUk is a flippable execution

such that column ik of Bh
Ck

is light, where Uk is a solo execution of UPDATE(ik, vik
)

by process ph starting from configuration Ck and vik
is the value of component

ik in Ck. By Lemma 6, process q has not completed its SCAN at the end of E. Let
sk+1 denote the next step by process q and let Ck+1 denote the configuration at
the end of Esk+1.

The component ik+1 for Uk+1 to update will be chosen so that the resulting
execution is flippable. But we must also choose it with some concern for the
future, so that there is enough flexibility to choose the component to update in
the following step of the induction.

To prepare for the future, we restrict ik+1 to be the index of a light column
in Bh

Ck+1
. Let I ⊆ {1, . . . , m} be this set of indices. By Lemma 7, |I| ≥ 2m/3.

Next, we ensure that it is possible to interchange Uksk+1 and Uk+1. To do
this, we first restrict our choices for ik+1 so that process ph will not access any
object during Uk+1 that might have changed value during Uk. Let I ′ = {i ∈ I |
Bh

Ck
[i, ik] = 0} consist of all indices i ∈ I such that process ph does not access

any object in Oik
when performing a solo execution of UPDATE(i, vi) starting

from configuration Ck, where vi is the value of component i in Ck. This ensures
that Uk+1 behaves exactly the same when performed starting from Ck as from
Ck+1. By the induction hypothesis, column ik of Bh

Ck
is light, so there are less

than m/2 indices i ∈ I such that BCk
[i, ik] = 1. Hence, |I ′| > |I| −m/2 ≥ m/6.

We further restrict our choices for ik+1 so that the other updater, ph, does
not access any object during Uk whose value might be changed during Uk+1. Let
I ′′ = {i ∈ I ′ | Bh

Ck
[ik, i] = 0} consist of all indices i ∈ I ′ such that process ph does
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not access any object in Oi during Uk, the solo execution of UPDATE(ik, vik
) start-

ing from configuration Ck. Then Uk behaves exactly the same when performed
starting from Ck+1 as from Ck. Row ik of Bh

Ck
contains at most m/6 entries with

value 1. Since Bh
Ck

[ik, ik] = 1 = Bh
Ck

[ik, ik], at least one i with Bh
Ck

[ik, i] = 0 is
not in I ′. Thus |I ′′| ≥ |I ′| −m/6 + 1 > 1. Let ik+1 ∈ I ′′ be such that q does not
access an object in Oik+1 during its single step sk+1. Note that ik+1 �= ik, since
Bh

Ck
[ik, ik] = 1. Let Uk+1 be a solo execution of UPDATE(ik+1, vik+1) starting

from Ck+1, where vik+1 is the value of component ik+1 of the snapshot object in
configuration Ck+1.

It remains to prove that the execution E′ = U0s1U1 · · · sk+1Uk+1 starting
from C0 is flippable. Consider any sequence j1 < · · · < jf where 1 ≤ j� + 1 <
j�+1 ≤ k for 1 ≤ � < f . By the induction hypothesis, the execution E =
U0s1U1 · · · sj�−1Uj�−1sj�

Uj�
sj�+1 · · · skUk starting from C0 is indistinguishable

(to all processes) from the flipped execution F =U0s1U1 · · · sj�−1Uj�
sj�

Uj�−1sj�+1

· · · skUk starting from C0. In particular, the configurations at the end of these
two executions are the same. Hence, executions E′ = Esk+1Uk+1 and Fsk+1Uk+1

starting from C0 are indistinguishable to all processes.
If jf + 1 < k + 1, we must also consider the sequence j1 < · · · < jf < jf+1,

where jf+1 = k + 1. In this case, the flipped execution F ′ differs from Fsk+1Uk+1

in that Uk+1 precedes Uksk+1 instead of following it.
F ′ is indistinguishable from Fsk+1Uk+1 to ph because ik+1 ∈ I ′ implies that

ph does not access any objects in Oik
during Uk+1 starting from configuration

Ck. Since the implementation is partitioned, these are the only objects whose
values can change during Uksk+1. F ′ is indistinguishable from Fsk+1Uk+1 to ph

because ik+1 ∈ I ′′ implies that ph does not access any objects in Oik+1 during
Uk and these are the only objects whose values can change during Uk+1. F ′

is indistinguishable from Fsk+1Uk+1 to q because q does not access an object
in Oik+1 during its single step sk+1. F ′ is indistinguishable from Fsk+1Uk+1

to all other processes, since they take no steps during Uksk+1Uk+1. By tran-
sitivity, F ′ is indistinguishable from E′ to all processes and the claim holds
for k + 1. ��
Our lower bounds follow from Lemmas 6 and 8 and Corollary 1. These lower
bounds apply even if the implementation only works for serial-update
executions.

Theorem 4. In any partitioned implementation of an m-component multi-writer
binary snapshot object, shared by at least two updaters and one scanner, there is
a serial-update execution in which some UPDATE operation takes more than m/6
steps.

Theorem 5. Any implementation of an m-component multi-writer binary snap-
shot object, shared by n ≥ 3 processes, from m < n registers or m < n − 1
historyless objects, requires Ω(m) steps for an UPDATE, in the worst case.
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Abstract. We address the problem of solving a task T = (T1, ...Tm) (called
(m, 1)-BG), in which a processor returns in an arbitrary one of m simultaneous
consensus subtasks T1, ...Tm. Processor pi submits to T an input vector of pro-
posals (propi,1, ..., propi,m), one entry per subtask, and outputs, from just one
subtask �, a pair (�, propj,l) for some j. All processors that output at � output
the same proposal.

Let d be a bound on the number of distinct input vectors that may be submit-
ted to T . For example, d = 3 if Democrats always vote Democrats across the
board, and similarly for Republicans and Libertarians. A wait-free algorithm that
immaterial of the number of processors solves T provided m ≥ d is presented.
In addition, if in each Tj we allow k-set consensus rather than consensus, i.e., for
each �, the outputs satisfy |{j | propj,�}| ≤ k, then the same algorithm solves T
if m ≥ �d/k�.

What is the power of T = (T1, ..., Tm) when given as a subroutine, to be
used by any number of processors with any number of input vectors? Obvi-
ously, T solves m-set consensus since each processor pi can submit the vector
(idi, idi, ...idi), but can m-set consensus solve T ? We show it does, and thus
simultaneous consensus is a new characterization of set-consensus.

Finally, what if each Tj is just a binary-consensus rather than consensus?
Then we get the novel problem that was recently introduced of the Committee-
Decision. It was shown that for 3 processors and m = 2, the simultaneous
binary-consensus is equivalent to (3, 2)-set consensus. Here, using a variation
of our wait-free algorithms mentioned above, we show that a task, in which a
processor is required to return in one of m simultaneous binary-consensus sub-
tasks, when used by n processors, is equivalent to (n, m)-set consensus. Thus,
while set-consensus unlike consensus, has no binary version, now that we char-
acterize m-set consensus through simultaneous consensus, the notion of binary-
set-consensus is well defined. We have then showed that binary-set-consensus is
equivalent to set consensus as it was with consensus.

1 Introduction

The Borowsky-Gafni simulation scheme relies on the realization that there is a read-
write algorithm by which n processors involved in n simultaneous sub-consensus-tasks
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T1, ..., Tn, can reach consensus in a wait-free manner in at least some Tk, though k
is unknown a priori. Thus we can define the (m, 1)-BG task: processor pi starts with
some input value vi and has to output a pair (�, vj) for some 1 ≤ � ≤ m, and vj is the
initial proposal of some pj in the participating set. All processors that output with first
argument � have to output the same value.

One can think of a variation of (m, 1)-BG in which the inputs are m-vectors and
processors that output at Tk are to output the same k entry from one of the vectors. But
it is easy to see that the vector problem solves the value problem by each processor
pi inputing (vi, vi, ..., vi), as well as the value problem solving the vector problem by
associating vectors with values, and then for value vi when output at k, a processor
substitutes the kth entry of the associated vector. Henceforth the presentation proceeds
with the value version.

In the BG simulation [3,4], we use n agreement protocols and rely on the fact that
if the first agreement is not resolved then there is a processor “stuck” in the middle
of the first agreement protocol and consequently we can proceed with one processor
less. Here, when we have n proposals rather than n processors, we show a variant
agreement protocol by which in each agreement protocol that does not terminate we,
lose a proposal rather than a processor. Thus a sequence of n agreement protocols will
solve the (m, 1)-BG task, m ≥ n.

Now that we generalized the (m, 1)-BG task to any number of processors, we in-
vestigate the relationship between m and the power of the consensus that each task
provides. Suppose that in each task Tj , we do not require consensus but rather k-set
consensus. Thus, we have m subtasks T1, ..., Tm and processors output (�, vj) for some
1 ≤ � ≤ m and for each � : |{vj |(�, vj) ∈ output }| ≤ k. We call this task
(m, k)-BG.

Our second result is that (m, k)-BG is read-write wait-free solvable for any number
of processors, if the number of initial choices d satisfies m ≥ �d/k�. Thus if we allow
each Tj to solve 2-set consensus, then m can be half the number of initial choices.
Alternatively, it can just be reduced to the consensus case: just solve (m, 1)-BG and
group the outputs 1 to k, k + 1 to 2k, etc.

Until this point we investigated what variation of BG tasks can be solved wait-free.
We then turn to BG tasks with parameters that do not render it solvable and wonder
about the power of these tasks.

Suppose we are given an (m, 1)-BG task as a subroutine. Since each subtask does
consensus, it trivially solves m-set consensus by ignoring the subtask index. Can m-set
consensus solve m-BG? Notice that (m, 1)-BG associates different output values with
different subtasks. Our (m, 1)-BG algorithm answers this question on the affirmative.
By using m-set consensus, the number of initial choices n becomes m, and then we can
wait-free solve the (m, 1)-BG.

What if each subtask in the (m, 1)-BG task is a binary-consensus rather than con-
sensus? We refer to this problem as m-BG-Binary. If m = 1 then we have our beloved
consensus and it is known how to transform binary-consensus into consensus by re-
peated consensus on the binary representation of the eventual output value (A dif-
ferent approach is presented in [14].). But what if m = 2? When we try repeated
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binary-consensus, at the first invocation pi may get a value from T1 and in the second
from T2. How do you build a prefix under these conditions?

The question of the (m, 1)-BG task when each subtask is a binary consensus and
the input is a binary vector with entry for each subtask was recently investigated in
[10,11]. Thus, in subtask Tj if all input values to Tj are 0, only 0 can be returned for
Tj . The problem was called the m-Committee-Decision problem as the connection to
(m, 1)-BG was not realized. Obviously BG tasks encompass Committee-Decision as the
proposed values are vectors and when returning a vector for Tj , one projects on the jth
entry. Thus the interesting direction is to show that Committee-Decision encompasses
BG tasks.

Using explicit topological arguments, it was shown in [10,11] that 2-Committee-
Decision when used by 3 processors is equivalent to (3, 2)-set consensus. Here, as a
simple corollary we show that (m, 1)-BG for n processors is equivalent to (n, m)-set
consensus. Thus we show the equivalence between BG tasks and Committee-Decision.

The paper is organized as follows. We first outline the various tasks we deal with
(section 2). We then outline the rather simple agreement algorithm that wait-free solves
(m, 1)-BG for m ≥ n (sections 3 and 4). We then show a bit more involved construction
that reduced (m, 1)-BG to m-Committee-Decision, or alternatively referred to as m-
BG-Binary (section 5). We conclude with a discussion of the merits of characterizing
set-consensus through simultaneous-consensus (section 6).

2 Problems Definitions and Preliminaries

In all the paper, we are interested in wait free algorithms [12].

2.1 Computational Model

Processor model. The system consists of an arbitrary number of processors [9,15] that
we denote p1, p2, . . . In a run a participating processor pi wakes up with some ini-
tial value inputi. The inputs value are taken from a set Input of size n. It is impor-
tant to notice that n denotes the maximal number of values participating processors
wake up with. The number of processors that participate in a run is unknown to the
processors.

A processor can crash. Given a run, a processor that crashes is said to be faulty,
otherwise it is correct in that execution. Each processor progresses at its own speed,
which means that the system is asynchronous.

Coordination model. The processors communicate and cooperate through atomic
multi-reader/multi-writer registers. To simplify algorithm descriptions, write-snapshot
objects [1,3] are also available to the processors.

A write-snapshot WS object provides the processors with a single operation denoted
WRITESNAPSHOT(). It is a one-shot object in the sense that each processor can invoke
WS at most once. A processor pi invokes WS .WRITESNAPSHOT(vi), and if it does not
crash during the invocation, obtains a set of value si. The sets returned satisfy the two
following properties:
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– Self containment: vi ∈ si,
– Comparability: ∀i, j : i �= j ⇒ si ⊆ sj ∨ sj ⊆ si.

Such an object can be implemented on top of multiple-reader/multiple-writer regis-
ters for an arbitrary number of processors [7].

2.2 The Problems

(m,1)-BG. In the (m, 1)-BG problem, processors are trying to simultaneously solve m
instances of the consensus problem. Each processor is required to decide in at least one
of these instances. There are m consensus subtasks T1, ..., Tm. Processor pi wakes up
with a private value vi and is required to return a pair (�, vj) such that 1 ≤ � ≤ m and
the value vj has been proposed by some pj . All processors that return first argument �
have to agree and return the same vj . More precisely, each processor has to decide a
pair (�, v) such that:

– Termination: No processor takes infinitely many steps without deciding.
– Validity: If a processor pi decides (�, vj) then ∃j such that processor pj wakes up

with value vj .
– Agreement: ∀�, 1 ≤ � ≤ m : |{vj : (�, vj) is decided by some processor }| ≤ 1.

(m,k)-BG. The (m, k)-BG task is a generalization of the (m, 1)-BG problem. As in
(m, 1)-BG, processors have to return a pair (�, v). The processors that return first ar-
gument � may return cumulatively at most k distinct values. The pairs returned have
to satisfy the validity and termination properties of the (m, 1)-BG problem and the
following agreement property:

– ∀�, 1 ≤ � ≤ m : |{vj : (�, vj) is decided by some processor }| ≤ k.

k-Set Consensus. The k-set consensus problem is a generalization of consensus where
processors must decide on at most k different values that have been previously proposed
[5]. When k = 1, the problem boils down to the standard consensus problem [6]. Each
processor is required to decide a value subject to the following conditions:

– Agreement: at most k distinct values are decided.
– Termination: no processor takes infinitely many steps without deciding.
– Validity: a decided value is an initial input value for some participating processor.

It is shown in [2,13,16] that in a system of α > k processors, the k-set consensus
problem has no wait free solution when processors may have distinct input values.

m-Committee-Decision or m-BG-Binary. In the binary consensus problem, processors
start with either 0 or 1 and are required to eventually agree on one of their initial value.
Suppose now that processors are provided with a collection of binary consensus objects
B1, . . . , Bm but are not guaranteed to obtain a response from each object, even if they
propose a value in each binary consensus. A processor pi is only guaranteed to obtain a
response from one object Bj and j is not known a priori. Moreover, j may change from
invocation to invocation.
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More precisely, this coordination scheme is captured by the m-Committee-Decision
problem [11]. In the m-Committee-Decision problem, processors are trying to solve m
binary consensus instances called committees and each processor is required to make a
decision for at least one of them. More explicitly, each processor pi initially proposes a
vector Vi ∈ {0, 1}k (i.e., Vi[c], 1 ≤ c ≤ k is pi’s proposal for the c-th committee) and
decides a pair (c, v) such that:

– Termination: No processor takes infinitely many steps without deciding.
– Validity: If a processor decides (c, v) then ∃j such that v = Vj [c].
– Agreement: Let pi and pj be two processors that decide (ci, vi) and (cj , vj) respec-

tively. ci = cj ⇒ vi = vj .

3 Wait-Free Solution to (m, 1)-BG, n Initial Values, m ≥ n

Processor pi marches in order through T1 followed by T2, etc. In Ti a processor writes
an input value to its cell. The input to T1 is the input it wakes up with. The input to Tj

is adopted from Tj−1.
At Tj a processor writes its input, returns an atomic snapshot of input values and

posts its snapshot in shared memory. If it then sees a snapshot of values of cardinality
one, it returns this value for Tj and quits. Else, it adopts the minimum value from one
of the posted snapshots (maybe its own) and proceeds with it to Tj+1 (figure 1).

The observation is that the number of distinct values proposed to Tj is at most
n − (j − 1), thus a processor that arrives at Tn is guaranteed to get a snapshot of
size one at Tn and to return.

in shared memory: WS [1, . . . , m]; array of write-snapshot objects.
SS[1, . . . , m][1, . . . , m] array of mwmr registers, initially ⊥.

function (m, 1)-BG(vi)
(01) esti ← vi;
(02) for ri = 1 to m do
(03) Si ← WS [ri].WRITESNAPSHOT(esti);
(04) SS[ri, |Si|] ← Si;
(05) for � = 1 to m do ss[�] ← SS[ri, �] enddo;
(06) if ss[1] �= ⊥ then return(ri, ss[1])
(07) else esti ← min(ss[�]) s.t. (� ∈ {1, . . . , m}) ∧ (ss[�] �= ⊥)
(08) endif
(09) enddo

Fig. 1. (m, 1)-BG algorithm, n initial value, m ≥ n, code for pi

4 Wait-Free Solution to (m, k)-BG, n Initial Values, m ≥ �n
k
�

At each Ti, a processor tries to choose a value that appears in a snapshot of size k or
less. The observation is that going from Tj to Tj+1 at least k values are left behind. The
algorithm is described in figure 2.
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in shared memory: WS [1, . . . , m]; array of write-snapshot objects.
SS[1, . . . , m][1, . . . , m] array of mwmr registers, initially ⊥.

function (m, k)-BG(vi)
(01) esti ← vi;
(02) for ri = 1 to m do
(03) Si ← WS [ri].WRITESNAPSHOT(esti);
(04) SS[ri, |Si|] ← Si;
(05) for � = 1 to m do ss[�] ← SS[ri, �] enddo;
(06) if ∃�, 1 ≤ � ≤ k : ss[�] �= ⊥ then return ri, min(ss[�])
(07) else esti ← min(ss[�]) s.t. (� ∈ {1, . . . , m}) ∧ (ss[�] �= ⊥)
(08) endif
(09) enddo

Fig. 2. (m, k)-BG algorithm, n initial values, m ≥ �n
k
�, code for pi

4.1 Proof of the Protocol

In the following, we say that a value v is proposed at stage r, 1 ≤ r ≤ m if it exists a
processor pi that starts stage r with esti = v. For each r, 1 ≤ r ≤ m, let I[r] be the set
of values proposed at stage r.

Lemma 1. (Validity) Let (�, v) be a pair decided by some processor. v is a proposed
value.

Proof. Let pi be a processor that decides (�, v) at stage r. Let us observe v is taken
from the set of input values of stage r, i.e., v ∈ I[r]. Moreover, ∀r′, 2 ≤ r′ ≤ m,
I[r′] ⊆ I[r′ − 1] (line 07). As I[1] = the set of values the processors wake up with and
v ∈ I[r] ⊆ I[1], validity follows. �Lemma 1

Lemma 2. (Termination) A correct processor eventually decides.

Proof. We first observe that ∀r, 1 ≤ r ≤ m : |I[r]| ≤ n − k(r − 1) (Obser-
vation O1). Let us assume for contradiction that there is a correct processor pi that
does not decide. This means that pi marches through stages 1, 2, . . . , m without de-
ciding. In particular, at stage m, pi obtains a snapshot Si ⊆ I[m]. It follows from
O1 that |Si| ≤ |I[m]| ≤ n − k(m − 1). Moreover, as m ≥ �n/k�, we obtain
|Si| ≤ n − k(�n/k� − 1) ≤ k, from which we conclude that pi decides at stage m
(line 06): a contradiction.

Observation O1. ∀r, 1 ≤ r ≤ m : |I[r]| ≤ n− k(r − 1).
Proof of O1. As there are at most n proposed values and these values are the input ones
at stage 1, |I[1]| ≤ n. Let us assume that the observation is true at stage r, 1 ≤ r < m.
Let pi be a processor that proposes a value at stage r + 1. At stage r, pi updates its
estimate with a value picked in a snapshot of size > k. Moreover, there are at most
|I[r]| − k such snapshots and for each of them, only one value can be picked by the
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processors (line 07). Consequently, at most |I[r]| − k values can be proposed at stage
r + 1, from which we obtain |I[r + 1]| ≤ |I[r]| − k ≤ n− kr. End of the proof of O1

�Lemma 2

Lemma 3. (Agreement) ∀r, 1 ≤ r ≤ m : |{v : ∃pi that decides (r, v)}| ≤ k.

Proof. Let r be a stage number. The values decided by processors that return at stage
r are picked in a snapshot of size k or less (line 06). Since these snapshots contain
cumulatively at most k distinct values, at most k distinct values are decided at stage r.

�Lemma 3

5 (m, 1)-BG from m-BG-Binary

Let the number of initial values be n > m. We show how to use (n − 1)-BG-Binary
to reduce the number of initial values by at least 1 to n − 1. Obviously m-BG-Binary
implements j-BG-Binary for all j ≥ m.

Thus the scheme is to start with the n initial values, reduce it to n− 1 then to n− 2
and until m. At this point we have at most m initial values and we can wait free solve
(m, 1)-BG.

To reduce the number of initial values from n to n− 1, we go through n− 1 stages
T1, ..., Tn−1. In each stage we post initial value, snapshot, post snapshot, and then read
snapshots. The algorithm is described in figure 3.

If a processor sees posted snapshot of size 1 containing some vj but no snapshot of
size 2, then it returns vj . Otherwise it adopts the smallest value in some snapshot of size
2 or more and continues to the next stage.

If a processor finishes stage Tn−1 without returning, it invokes the (n−1)-BG-Binary
object. The observation to make is that in all stages there are posted snapshots of size 2.
Otherwise 2 values would have been left behind at some stage and the processor should
have terminated by the end of stage Tn−1.

Now come the voting step in which the processor goes to the n−1-BG-Binary object.
At committee j it will observe the snapshot posted at Tj . There is a snapshot of size
2 containing two values. We associate the smaller value with 0 and the larger with 1.
If the processor also sees a snapshot of size 1 posted, it votes for that value. Thus a
processor that quits without voting is guaranteed that the value it choses for Tj will be
voted for by all.

5.1 Proof of the Protocol

We first prove the observation stated in the algorithm description (Lemma 4). Wait-free
termination directly follows from the protocol text. We use Lemma 4 in the proofs of
validity (Lemma 5) and agreement (Lemma 6).

Lemma 4. Let pi be a processor that returns at line 18. When pi reads SS[1, 2],
SS[2, 2], . . ., SS[m, 2] at line 11, we have ∀1 ≤ r ≤ m : SS[r, 2] �= ⊥.
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in shared memory: WS [1, . . . , m] array of write-snapshot objects
SS[1, . . . , m][1, . . . , m + 1] array of mwmr registers, initially ⊥

function (m, 1)-BGFROMBGBINARY(vi)
(01) esti ← vi;
(02) for ri = 1 to m do
(03) Si ← WS [ri].WRITESNAPSHOT(esti);
(04) SSi[ri, |Si|] ← Si;
(05) for j = 1 to m do ss[j] ← SS[ri, j] enddo;
(06) if (ss[1] �= ⊥) ∧ (ss[2] = ⊥) then return(ri, ss[1])
(07) else esti ← min(ss[j]) s.t. (j ∈ {2, . . . , m}) ∧ (ss[j] �= ⊥)
(08) endif
(09) enddo

% If pi has not succeeded in T1, . . . , Tm, it uses m-BG Binary to decide %
(10) foreach r ∈ {1, . . . , m} do
(11) let vm (resp. vM ) be the smallest value (resp. greatest) value in SS[r, 2];
(12) case (vm ∈ SS[r, 1]) then Vi[r] ← 0
(13) (vM ∈ SS[r, 1]) then Vi[r] ← 1
(14) default then Vi[r] ← 0 or 1 arbitrarily
(15) endcase
(16) enddo
(17) (ci, di) ← m-BGBINARY(Vi);
(18) if di = 1 then return ci, max(SS[ci, 2]) else return ci, min(SS[ci, 2]) endif

Fig. 3. (m, 1)-BG from m-BG-Binary, n initial values, n = m + 1, code for pi

Proof. Let us assume for contradiction that the lemma is false. This means that it exists
a process pi that returns at line 18 and a stage number R, 1 ≤ R ≤ m such that pi does
not see a snapshot of size 2 posted at stage R. More precisely, when pi reads SS[R, 2]
in the second phase of the protocol (line 11), SS[R, 2] = ⊥. Let τ be the time at which
this occurs. As a processor can post in SS[R, 2] only a snapshot of size 2 obtained at
stage R (line 04), it follows that ∀τ ′ ≤ τ : SS[R, 2] = ⊥.

As pi proceeds to the second phase of the protocol, it tries to decide in each Tr,
1 ≤ r ≤ m. We show that that pi decides in the first phase of the protocol (at line 06):
a contradiction. The proof consider two cases according to the value of R.

– m = R. Let us observe that the first phase of the protocol is the (m, k)-BG proto-
col instantiated with k = 1 in which processors wake up with at most n = m + 1
values. Consequently, observation O1 stated and proved in Lemma 2 is still valid.
It then follows that at most (m + 1) − (m − 1) = 2 values can be proposed at
stage m.

As pi proceeds to the second phase of the algorithm, it obtains a snapshot at
stage m. Moreover, when pi tries to decide at stage r, SS[r, 2] = ⊥. Consequently,
pi obtains a snapshot of size 1 and does not see a snapshot of size 2, from which
we conclude that pi decides at line 06 in the first phase of the algorithm.

– m > R. Let us first remark that at most m − R values can be proposed at stage
R + 1 before time τ . The values proposed at stage R + 1 are taken among the
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smallest values in snapshots of size ≥ 2 posted at stage R. As at most (m + 1) −
(R − 1) values are proposed at stage R (Observation O1 in Lemma 2), at most
(m + 1) − (R − 1) distinct snapshots can be posted in that stage. Moreover, as
values proposed at stage R +1 are picked in snapshots of size > 1 and no snapshot
of size 2 is posted before time τ (SS[R, 2] = ⊥ before time τ ), it follows that at
most (m+1)− (R−1)−2 = m−R values can be proposed in stage R+1 before
time τ .

We can think of stages TR+1, . . . , Tm as a (m − R, 1)-BG protocol. It follows
from the remark above that, before time τ , the size of the set of input values to this
(m−R, 1)-BG protocol is at most m−R. As this protocol solves the (m−R, 1)-BG
task if the number of distinct input values is≤ m−R (section 3), a processor cannot
marches through TR+1, . . . , Tm before time τ without deciding. Hence, as pi tries
to decide in TR+1, . . . , Tm before time τ , pi decides in some Tr at line 06.

�Lemma 4

Lemma 5. (Validity) Let (�, v) be a pair decided by some processor. v is a proposed
value.

Proof. Let pi be a processor that decides (�, v). If pi decides in the first phase of the
protocol (at line 06), v is contained in a posted snapshot of size 1. If pi decides in the
second part of the protocol, it follows from line 18 and Lemma 4 that v is contained in
a posted snapshot of size 2. In both cases, v belongs to some snapshot posted in the first
phase of the protocol.

As already observed, the first part of the protocol is the (m, 1)-BG protocol. As the
proof of validity in the (m, 1)-BG protocol does not depend on the number of values
processors wake up with (Lemma 1), we can reuse it here. In particular, it is shown in
Lemma 1 that all posted snapshots are included in the set of values processors wake up
with, from which we conclude that v is a proposed value. �Lemma 5

Lemma 6. (Agreement) ∀�, 1 ≤ � ≤ m : pi returns (�, vi) and pj returns (�, vj)
⇒ vi = vj .

Proof. In the following, we say that a processor pi decides in slot � if it returns (�, v)
at line 06 or at line 18. We show that for any slot �, 1 ≤ � ≤ m, at most one value is
decided. Let D� be the set of processes that decide in slot �. Let us consider a slot �
such that D� �= ∅. We consider three cases:

– Each processor pi that belongs to D� returns at line 06. Due to the atomic snapshot
properties, at most one snapshot that contains only one value can be returned by
the object WS [�]. It then follows from lines 06-07 that processors ∈ D� decide the
same value.

– Each processor that belong to D� returns at line 18. This means that each proces-
sor pi ∈ D� gets back a pair (�, di) from the m-BGBINARY object. Due to the
agreement property of the object, ∃d ∈ {0, 1} such that ∀pi ∈ D�, di = d.
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Moreover, due to Lemma 4, when pi ∈ D� reads SS[�, 2] at lines 11 and 18,
SS[r, �] �= ⊥. It then follows from line 18 and the fact that ∃d such that ∀pi ∈ D� :
di = d that each processor that belongs to the set D� chooses the same value in
SS[�, 2] and agreement follows.

– Some processors that belong to D� return at line 06 and other processors at line
18. Let C be the set of processors that invoke the m-BGBINARY object (a proces-
sor in C does not necessarily decides in slot �). Among them, let pc be the first
processor that reads SS[�, 1]. This occurs at time τ . If pc sees a value v, every
processor in C proposes v for committee � (lines 12-13). Therefore, v is the only
value that can be decided in slot � through the m-BGBINARY object and agreement
follows.

Suppose that pc does not see a snapshot of size 1 (SS[�, 1] = ⊥) in slot �.
We claim that no process can decide at line 06 in slot �: a contradiction with the
case assumption. To prove the claim, let us observe that when pc reads SS[�, 1]
(lines 12-12), SS[�, 2] �= ⊥ (Lemma 4). Thus, a process that subsequently reads
SS[�, 1] �= ⊥ reads also SS[�, 2] �= ⊥ and cannot decide in slot � at line 06.

�Lemma 6

6 Conclusion

Simultaneous consensus was first introduced in [10,11] where it was shown using ex-
plicit topological arguments that 3 processors two committees is equivalent to (3, 2)-
set consensus. The approach of interpreting algorithms through the prism of simulta-
neous consensus was then followed in [8] where it proved beneficial in obtaining a
clear proof of robustness. Here, we close the circle. We utilize the observation that
the BG simulation [2,4] is also about simultaneous consensus, to adopt a completely
algorithmic approach to the question. Through this algorithmic approach that adopts
ideas from BGs, we show that simultaneous consensus in a clear way captures con-
sensus and set consensus. Moreover, it is a stronger paradigm than set-consensus. It
trivially implements set-consensus, but it took some work to show that set consensus
implements it. We expect this new view of set-consensus to prove beneficial in the
future.

Atomic-Snapshots Shared-Memory is a higher level construct than SWMR Shared-
Memory, and yet equivalent to it. Later Immediate-Snapshot Memories were proved to
be even a higher level construct than Atomic-Snapshots. There, when “higher level”
can be interpreted precisely as “less executions” it is a consequence of [2,13,16] that
Immediate-Snapshots is the end of the road. Is simultaneous consensus the end of the
road for set-consensus? Will there be a sense in which one may find even a tightest
characterization of set-consensus? While we leave this question open, we feel that at
the least it is now easier to motivate set-consensus through simultaneous consensus.
Simultaneous consensus comes across as a bit less of “an invention of bored theorists,”
than the question of “electing multiple values.” Multiple fronts is natural in life while
multiple-leaders is less so.
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Abstract. Data dissemination in a mobile computing environment typically uses
push based data delivery model. Processing queries under this scenario is chal-
lenging because we need to organize the broadcast data to efficiently process
queries of an average mobile client. In this paper, we adopt the learning tech-
nique from [2] in order to learn the patterns of queries of the average mobile user.
We then propose a method to create various summary databases from the main
database available at server side, on the basis of these query patterns.

1 Introduction

In this paper we view query processing as the fundamental element for data require-
ments in broadcast channel from an average client’s prospective. A client will be inter-
ested in some data items for which he/she would like to place a demand. So in trying
to learn the data demands of an average client, the approach should be to analyze the
pattern of queries originating from client devices. These patterns can be stored in a com-
pressed trie like data structure much like the ones used in location prediction of mobile
devices using subscriber mobility patterns [1, 2]. We, therefore, adopt the above tech-
nique for learning query patterns. We then form and analyse the Entity-Relationship
graph (E-R graph) related to these queries by extracting the database attributes from
them. Next we find a spanning subgraph of the E-R graph which can be used to construct
the summary database by selecting appropriate database attributes and corresponding
relationships from the main database at the server side. The server then intermixes sum-
mary data with an index before pushing it on broadcast channel which facilitates energy
efficient retrieval by the mobile hosts.

2 Current Prediction Techniques

Two techniques, namely, LeZi update [1] and active LeZi [2] both based on Lempel-Zvi
data compression algorithm [3] have been used in prediction of the location of a mobile
node by learning its mobility pattern. We model the query prediction as an instance for
the Active LeZi predictor with almost no overheads. The readers interested to know
more about active LeZi may refer to the original paper [2]. In the database scenario, we
keep track of queries received from various clients and record these in the trie.

Let the incoming queries be q1, q2, . . . , qk at some time t. Every query makes ref-
erences to a certain set of attributes from a database. We assume that the required set
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of attributes can be extracted from the query. Once this set is available, every query
will be identified with its attribute set and this distinct set of such attributes will be
relabeled as q1, q2, . . ., etc. This solves the issue of converting a query into a single
element as required by Active LeZi. We then apply the Active LeZi technique to the
input Q = {q1, q2, . . . , qk}, with qi , i ∈ {1, 2, . . . , k}, belonging to a domain of ele-
ments D. Note that here D is simply the powerset of all attributes in the given database.
By looking at the output probability values from the Active LeZi scheme, we can pick
the query with the highest probability and use this as our prediction for the next query
(attribute-wise).

Despite its ease of implementation and simplicity, Active LeZi have some drawbacks
when used as a query predictor which are revealed when we take a closer look at a query
sequence. There is no concept of aging in active LeZi. Aging captures spatio-temporal
locality. As the queries keep coming, they change trends. In other words, the query
patterns change with time and/or location. If aging is not included, such patterns can
never be captured.

3 Augmented Active LeZi

At the client side, there are two pieces of information that we plan to make use of,
namely the location of the user and time at which the query has been sent. The client
simply uses mobile device id or mobile cell id for the location. For the timestamp, a
standardized clock for that region can be used. Hence, without much overhead in terms
of uplink bandwidth, this extra information can be obtained from the client. We now
have to change our trie accordingly.

From the Active LeZi, we see that the nodes simply contain the frequency of that
particular pattern. We now change this node to include a pointer to a linked-list. Each
node of this linked-list would be a 3-tuple with the following components: (i) the cell
node id or the zone id, (ii) the date, and (iii) the time. No particular sorting within
the linked list is required. Hence, as a new query comes in, we simply increment the
frequency in the corresponding trie node and create a new node in the attached linked-
list with information from the client. The trie would now look like the one shown in
figure 1 (a).

Since aging is to be used for improving predictions, there is no need to run a check
on aging at the server unless there is a need to predict; and also, we only need to check
aging for those nodes of the trie that get affected by the input query. Consider a trie at
time t; and suppose that we are interested in finding the probability of the next query
being qi. Then simply check aging for all those nodes in the trie that participate in
computation of the cumulative probability value for qi. We must, however, remove the
aged entries before using the node for calculating the probability for qi.

In the Active LeZi, we make use of all orders to calculate the probability for a pre-
diction. We use the frequencies in the trie to get the final value. Using our linked list,
we can calculate the average value of the time at which that particular node is accessed.
Once we have the average value, we can compare it with the value of the current time
and based on the deviation between the two, we can either add or subtract a factor from
the total probability value. One can also choose to multiply the deviation value with
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Fig. 1. Trie resulting from Augmented Active LeZi and comparison of Augmented Active LeZi
with Active LeZi

the probability obtained from Active LeZi if the time factor is very significant for the
database usage. In general, we can say that the probability function in the Augmented
Active LeZi would be a function of the probability function used in the Active LeZi and
the deviation between the average and observed values.

We tested augmented active LeZi for a simulated input data and compared its perfor-
mance against active LeZi. Our test data was a set of 100 queries. From figure 1 (b), it is
clear that the augmented predictor, which uses the hour of arrival of query to improve its
prediction, outperforms the active LeZi by around 5% in our simulation. Since Active
LeZi itself registers a success rate in the range of 80% in our case, the apparently small
5% increase in accuracy of prediction is indeed very significant. Though this simluation
is in no way conclusive, it does show that there are cases where the Augmented Active
LeZi will outdo the Active LeZi, especially if the incoming pattern tends to change its
trends over time.

4 Constructing Summary Databases

4.1 Density of Prediction and Database Hierarchies

With the probability values at hand, we can now decide to use the highest-probability
query to construct our database or we could decide to include more than one query
into our summary database. We shall denote this number of queries by the parameter
density. Note that higher the density, the larger would be the size of our database, which
is not a very favourable requirement. But as the density goes up, so is the chance that the
incoming query shall be answered by using the information contained in the summary
database.

A prediction process is associated with an inherent chance of failure. In our case, a
failure is exhibited when the client’s query is not answered by the summary database.
If the failure has resulted because of the low density value, then we can create another
summary database which would now contain lower valued predictions which ccould
answer the incoming query.
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Fig. 2. E-R diagram corresponding to the example in section 4.2 and its tabular form

Assume that the predicted queries are sorted by decreasing cumulative probability
values as P = {p1, p2, . . ., pk} such that the set P contains all possible predictions
(including the ones with zero probability). Say density = 3. Then, our summary database
would answer queries p1, p2 and p3. Let us assume that the incoming query is not in
exact match with the predicted pattern and it corresponds to p4. What we can do to
avoid the loss of query is to create a second level of summary database which would
have the power to answer queries p4, p5 and p6. Note however that this level is at a
lower priority than the first summary database. To tackle this issue, we could publish
this level less number of times than compared to level 1. In fact, no matter how many
such levels we have, we can publish them with a frequency which would be in a reverse
ratio of their priorities.

4.2 Using E-R Modeling

We wish to ensure that we consider only those queries that are valid and reject those
which are not. We also wish to do this as early as possible before updating the trie
with the query. By using the E-R model corresponding to the database, we can model
this issue in a different manner. Consider the E-R model shown in figure 2 and the
corresponding tabular form of an arbitrary database which appears alongside.

Let the required attributes corresponding to an incoming query be the ones that are
shaded in figure 2, namely, a1, b1, b3 and c2. Call these attributes as the set S. To ensure
validity, all that is needed is to check whether there is a marked path between the re-
quired edges. A ’marked path’ is a path that includes only those edges that are marked.
Note that the E-R model is treated implicitly as a graph where the entities, relations and
attributes are nodes and the edges are the edges of the graph. The outline of a simple
algorithm to mark the edges is provided below.

i. For all selected attributes, mark the edge connecting them to their parent
entities.

ii. For an edge connecting a relation R to an entity E, mark it if the
attributes of E included in R belong to S.
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Fig. 3. Example

As an example consider the execution of above algorithm over the E-R graph shown
in figure 2. After step 1, edges 1, 6, 8 and 12 gets marked in figure 2. Regarding step 2,
we look at the attributes in the tabular form of R. Since R is connected to E, it must
have attributes of E in its tabular form. If all these attributes belong to S, then the edge
connecting R to E gets marked. So, after executing of step 2 over E-R graph of figure 2
edges 4, 5, 9 and 10 get marked. We, therefore, find that we have a marked path {1, 4,
5, 6, 8, 9, 10, 12} which touches all the attributes in S.

We can use the following steps to ensure validity of the query once the marking is
done.

i. Remove all unmarked edges.
ii. Check whether we have a connected component of the remaining graph that

connects all the nodes in S.
iii. If yes, return VALID; else return INVALID.

4.3 Construction Steps

After ensuring the validity of the query, our next task is to decode the queries back
into their attribute requirements for the database construction. We shall collect all these
attributes for each selected query into a set S. We now scan all the tables of the database
and mark all those attributes of the database which belong to S. The algorithm is provide
below.

initialize S:= null;
initialize D:= input database;
for (i ≤ 0, i < density, i++) do

for each attribute x required by p(i) do
S := S∪{x}

endfor
endfor
for each table T in database do

for each attribute y of table T do
if y belong to S mark y
endif

endfor
endfor
remove all unmarked components from D
for each table T in D do

for every table T′ in D such that (T∩T′ = null)
return D.
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At this point, just by looking at the marked entries of the database, we can see what
the desired output database would be like. It would be a collection of sub-tables of the
original database. That is, if we delete all the unmarked attributes, then the remainder
of the database would be our summary database.

Consider the following tabular schema in figure 3(a) for an input database. Here,
the x’s are attribute names (not necessarily distinct). Say our predictor marks attributes
x11, x14, x31 and x32. Our output would then be as shown in figure 3(b). Further, say
x31 and x14 are actually from the same domain. That is, they share the same attribute
name. We shall use the normal convention that if the attribute names are the same in
a database, then these attributes belong to the same domain. We shall now save space
by joining these two columns by using a join function call. We can simply modify the
existing variants of the JOIN call to serve our purpose.

We require our JOIN to join the two tables that share any common attribute. The first
common attribute found is selected and the JOIN is performed. Say, x31 is a subset of
x14. Then we would like to join T1 and T3 in such a way that no tuples are lost. We
can use null values for the empty components of the tuples. Also, if x31 and x14 are
disjoint, then we would simply have the output as one single table that would have as
many tuples as there are in T1 and T3 combined and each tuple would be a 3-tuple in
this case. One for x11, one for x14/x31 and one for x32. In most cases, we would be
saving considerable space by this method. However in cases where disjoint columns are
operated on using JOIN, no space saving is achieved.

The extended algorithm including the JOIN appears below.

remove all unmarked components from D;
for each table T in D do

for every table T′ in D such that (T∩T′=null) do
join T and T′; delete T′

endfor
endfor
return D;

The resulting database for the previous case would be: T1 x11 x14/x31 x32

5 Conclusions

In this paper, we developed an idea to connect query prediction with the active LeZi
predictor. We then proposed some augmentations to the active LeZi which has added
advantages of aging and localizing the temporal behaviour of queries. We then gave
a construction of summary databases for the mobile environment. Summary databases
can be used to minimize the amount of data transfers over the network. As indicated at
the beginning, the motivation behind this work was to reduce the size of data transmis-
sion on the broadcast channel. By reducing the size of data transmission we not only
achieve better utilization bandwidth but also a substantial reduction in time for data
transmission over wireless broadcast channel.
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Abstract. The discovery, more than a decade ago, of the relation between
Distributed-Computing (DC) and Algebraic-Topology (AT) raised the specter of
requiring checking task solvability to be intimately connected to expertise in
AT. Yet, in the area of Centralized Algorithms proving a problem to be NP or
PSPACE complete requires more algorithmic expertise than complexity one. In
analogy, we show that in DC the equivalent of polynomial-time reductions, is
read-write reductions. We define the notion of read-write reduction between dis-
tributed tasks, and show that all interesting known read-write impossible tasks
can be proven impossible via read-write reduction to a task called Symmetry-
Breaking (SB). Discovering a read-write reduction requires solely algorithmic
expertise.

1 Introduction

Since the introduction of topological arguments [2,20,21], they have been used among
other uses, to argue the insolvability of a given task in a given model. Do we need now
to run and study topology in order to make progress in this area of checking tasks for
solvability?

We propose task called Symmetry-Breaking whose role in proving another task to
be read-write insolvable is informally but usefully the analogue of the role of SAT in
proving NP-completeness. To prove a problem NP-complete one does not need to be an
expert in Turing Machine tricks. Once SAT was proven NP-complete from here on NP-
completeness is proved by reduction. Similarly, we exhibit that all natural tasks to-date
which are known to be insolvable wait-free in the shared-memory read-write model,
can be proven so by reduction from the corresponding size SB task.

We do not claim that this analogy to be formal. I.e. we do not claim that if a task A
is insolvable wait-free in the read-write model then there exits a reduction. In fact we
know that to be false: SB is not solvable even when one is given the use of a Torus task
[15] (or for that matter any orientable manifold), thus SB will not suffice to prove that
the Torus task is insolvable. Yet we do not know how to pose a Torus task for arbitrary
number of processors in a way that will not be “artificial.” Thus, we conjecture that
there exists a proper “natural” definition of “natural” families of tasks for which SB is
the weakest task.
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2 Definitions

A task is an input-output relation between sets of processors, each set called a partici-
pating set, and output tuples, each specifying an output value for each processor in the
participating set.

A task is solvable in certain model if there exists a protocol in the model, and a
notion of when a processor participates in the protocol, such that for a run in the model
with a participating set P , all processor output and halt so that the outputs constitute an
allowed output tuple in the task.

The tasks we consider will be families of tasks, each parametrized by n, denoting the
maximum size of the participating set. For each task we will consider two families: Non-
Comparison, and Comparison. In the former the largest participating set is drawn out
of {p0, , pn−1}. In the latter, the participating set is any set of processors of cardinality
less or equal to n. It is known that the ability to draw the participating processors from
a universe large enough is equivalent to the processor identifiers being used only via
comparison [12].

Although the task definition is just a mapping from participating sets to output, it
encompasses a processor that may wake up with different inputs by considering each
input to be associated with different processor identifier and considering the comparison
version of the task. Thus w.l.o.g. below we will refer to different inputs, albeit in that
case only the comparison version makes sense.

We will say that a task A read-write implements B if given any numbers of copies
of A and any number of read-write registers than we can wait-free solve B. We than
will say that A is potentially stronger than B. If the opposite is also true than we say
that A and B are equivalent. If we know that B is impossible to solve read-write wait-
free, than such an implementation proves that A is insolvable read-write wait-free by
reduction from B.

3 Task-Families

1. k-Set-Election: The task SE(k, n) says that for all participating sets of size at most
n each processor outputs an id of a processor from the participating set, and the
number of distinct ids that appear in an output tuple is less or equal to k.

2. k-Strong-Set-Election: The task SSE(k, n) is like Set-Election but in addition if
pi outputs pj then pj outputs pj i.e. itself.

3. k-Set-Consensus: In the task SC(k, n) each processor wakes up with an input tuple
of size k, where at position i there is a 0 or 1. It returns as an output an index
1 ≤ j ≤ k and a single bit, 0 or 1. All processors that return the same index
j return with it the same bit b. The non-triviality requires that b can be returned
together with the index j only if there exist a participating processor who has b in
the jth position of its input tuple.

4. k-Test-and-Set: In the task TAS(k, n), n > k participating processors output 0
or 1, and each output tuple always contains at least one 0, and at most k 0s. The
largest participating set is of cardinality n
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5. Symmetry-Breaking: In the task SB(n) processors output 0 or 1. The largest par-
ticipating set is of size n and the output tuples for this size correspond to all the
possible n length bit strings, excluding the all 0s and all 1s strings.

6. n-Adaptive-Renaming: In the task AR(f(k), m, n) processors return positive dis-
tinct integers in the range 1 o m. For k < n they return in the range 1 to f(k).

7. n-Renaming: In the task R(m, n), m ≥ n processors return positive distinct inte-
gers in the range 1 to m.

4 Reductions

Below we first outline the sequence of reductions from SB(n) that prove all the above
tasks to be read-arite wait-free insolvable given that SB(n). That SB(n) is insolvable
is a consequence of its equivalence to comparison AR(2n−2, n). The latter was proved
insolvable by direct topological arguments in [20].

In the subsection that follow the outline we elaborate on each item in the outline,
respectively. Most of the reductions are almost at the level of folklore. Some are sub-
stantial, and then we reference them. No new reduction is introduced here and thus the
contribution of the paper is just in organizing all these scattered related known items
into a single place.

4.1 Outline of Sequence of Reductions

1. SB(n) and AR(2n− 2, n) are trivially solvable in the non-comparison model.
2. Below we show comparison SB(n) and comparison AR(2n−2, n) to be equivalent

in the comparison model. The task AR(2n− 2, n) was proved to be insolvable in
the comparison model in [20].

3. If comparison SB(n) is read-write wait-free solvable then comparison SB(n + 1)
is [16]. Thus SB(n + 1) is weaker than SB(n), but the reduction is white-box
rather than black-box reduction. We do not know a black-box reduction for this
fact.

4. Non-comparison TAS(k, n) is equivalent to task TAS(k, n + 1) and thus to
TAS(k,∞). Below we show that non-comparison TAS(k, k + 1) implements
SB(k+1), and obviously comparison TAS(k, k+1) implements non-comparison
TAS(k, k + 1).

5. Non-comparison SE(k, k + 1) is equivalent to SSE(k, k + 1) which is equivalent
to non-comparison TAS(k, k + 1). Obviously the comparison versions implement
their corresponding non-comparison ones. And obviously SE(k, k+2) implements
SE(k, k + 1).

6. The non-comparison SC(k, n) is equivalent to SE(k, n).
7. The task AR(2k − 1, 2n− 2, n) is equivalent to TAS(n− 1, n).

4.2 Sketch of Reductions

1. Needs no further comment.
2. (a) Comparison SB(n) implements comparison AR(2n − 2, n): Processors

use SB(n) to break themselves into two disjoint groups each of which is
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non-empty when the cardinality of the participating set is n. One group G0

of cardinality n0 consists of the processors that output 0 in SB(n) and the
other group is G1 of cardinality n1. Both groups now use the comparison re-
naming algorithm AR(2k− 1, 2n− 1, n) in [?,8]. Only that G0 renames from
position 1 upwards, while group G1 renames from position 2n− 2 downward.
We observe that (2n0 − 1) + 2n1 − 1 ≤ 2(n0 + n1)− 2 ≤ 2n− 2, where the
first inequality is true iff both G0 and G1 are non-empty. It is easy to see that
when the participating set cardinality is less than N the space is enough.

(b) Comparison AR(2n − 2, n) implements comparison SB(n): Processors that
obtain values from AR(2n− 2, n) in the range 1 to n-1 output 0, while the rest
output 1.

3. This was put in to raise the question whether any task A that can be shown to im-
plement B provided A was read-write wait-free solvable, means that if B is not
solvable than B can be reduced to A. We do not know the answer to this ques-
tion but conjecture the answer to be positive. We challenge the reader to show that
comparison SB(n) implements comparison SB(n + 1).

4. Trivially non-comparison TAS(k, n + 1) implements non-comparison TAS
(k, n). To see the reverse put processors p0 to pn−1 through TAS1(k, n). At most
k of them will obtain a 0. They then proceed some to TAS2(k, n) and some to
TAS3(k, n). They proceed by renaming AR(2k− 1, 2n− 1, n). Those that obtain
values in 1 to n − 1 go to the corresponding ports in TAS2(k, n), and those that
obtain a value j higher than n− 1 go to port j − (n− 1) in TAS3(k, n). Processor
pn attaches to port n in TAS2(k, n). Processors that obtain values in TAS3(k, n)
return as final output the negation of their output from TAS3(k, n), while pro-
cessor with output from TAS2(k, n) retain their output. The idea of negation was
proposed to us by Rafail Ostrovasky [17].

To see that non-comparison TAS(k, k+1) implements comparison SB(n) take
two copies TAS1(k, k+1) and TAS2(k, k+1). The n processors AR(2k−1, 2n−
1, n) rename into port of TAS1(k, k + 1) and TAS2(k, k + 1) where port i in the
latter stand for the integer i + (k + 1). processors out of TAS2(k, k + 1) negate
their output.

5. (a) The task SE(k, k + 1) is equivalent to SSE(k, k + 1): Obviously SSE
(k, k + 1) implements SE(k, k + 1). The reverse implementation appears in
[2].

(b) The task SSE(k, k + 1) is equivalent to TAS(k, k + 1): See [2].
6. Non-comparison SC(k, n) is equivalent to SE(k, n): In this issue [9].
7. The task AR(2k − 1, 2n− 2, n) is equivalent to TAS(n− 1, n):

(a) The task AR(2k − 1, 2n− 2, n) implements TAS(n− 1, n): Processors that
get values in 1 to n− 1 output 0, the rest output 1.

(b) Processors do immediate snapshot [3]. Those that end up with snapshot of size
n apply to TAS(n− 1, n). They thus divide into three disjoint groups: Group
G<n of those that obtain a snapshot of size less than n, Group G0 of those that
obtained 0 in TAS(n − 1, n), and the rest are in G1. Processors in G<n and
G1 AR(2k − 1, 2n − 1, n) rename from 1 upward while those in G0 rename
from 2n− 2 downward [8,14,18].
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5 Conclusions

We have presented a sequence of reductions/implementations that show how all known
interesting insolvable task can be deemed so by reduction from the family SB. This
led to the speculation that any “interesting” task is at least as strong as SB. Indeed that
speculation led to a renewed push to understand the relation between SB and TAS
that has recently resulted in the conclusion that SB is strictly weaker than TAS. We
also leave some interesting open problems. If it can be (white-box) shown that the read-
write wait-free solvability of A, either by assumption of the existence of read-write code
as in the BG-simulation [2,5], or by considering the topological ramification of such
solvability, would imply the read-arite solvability of task B, does it necessarily implies
that B can be reduced to A (black-box)? It will be elegant and satisfying if the answer
is positive.

Finally, it will be of the utmost interest to capture rigorously what is informally
considered a “natural” task family and show that any task of interest at the least breaks
symmetry.

Acknowledgment. I am in debt to Sergio Rajsbaum who assigned me to give an invited
talk at DISC 2004 Godel celebration session. An assignment that resulted in [8], where
the idea of equating SB to SAT was first introduced.
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Abstract. The goal of this paper is to provide some feedback on a VoIP pilot 
project developed over the Federico II University high performance metropoli-
tan transport network, presenting an overview of the activities which have been 
taken since the pilot was started. The project was initiated in order to analyze 
the capabilities of VoIP technologies, figuring out their quality of service and 
interoperability requirements, the optimum call routing practices and to identify 
the challenges in building large voice over IP applications. As a result we real-
ized, managed and tested a rather complex VoIP infrastructure transporting all 
the internal voice traffic between the three main aggregation areas grouping our 
University's sites in Napoli, which smoothly moved from a research system into 
an operational state. 

1   Introduction 

In earlier days, the Internet was mainly a collection of connected computers hosting 
and exchanging text-based or binary files based on the TCP/IP protocol suite. As the 
proliferation of Internet technology increased, the revolution shifting toward the  
convergence of data and voice networks sharing common transport facilities, is inexo-
rably started and many network operators have to face the challenge of conveying 
real-time voice traffic together with traditional data flows, offering a viable and more 
efficient alternative to traditional switched circuit networks. But, in contrast with 
typical IP-based services, VoIP is characterized by stringent resources and Quality of 
Service (QoS) requirements, normally expressed in terms of available bandwidth and 
transfer delays, thus a proper design of network architecture, routing model and QoS 
controls (such as packet scheduling, bandwidth reservation mechanisms, traffic shap-
ing or policing) is strongly required to ensure the efficient transport of voice traffic. 
The goal of this paper is to provide some feedback on a VoIP pilot project developed 
over the Federico II University high performance metropolitan transport network. 
During the last year we built up, managed and tested a large VoIP application trans-
porting all the internal voice traffic between the three main aggregation areas, count-
ing about 3000 phone users each one, grouping our University's sites in the urban 
territory. The primary goal of the pilot was to identify problems emerging in such 
large installations. We evaluated the quality of service requirements of VoIP trans-
mission as well as examined the performance and interoperability features of the 



356 F. Palmieri 

 

different VoIP components in our network. Additionally, as a very main part of the 
investigations, the available QoS techniques, the call routing possibilities and fault-
tolerance options were tested during a sophisticated and complete assessment. This 
resulted in a reconfiguration of the whole infrastructure performed several times until 
the optimal configuration has been reached. Our initiative changed in the last months 
from a research point of view to an operating telephony network with higher avail-
ability demands. Certainly, the VoIP infrastructure cannot be used as a testbed only 
anymore. Therefore, we considered it a very successful practice to evaluate the real 
voice over IP capabilities and to identify the challenges in building large intercon-
nected VoIP installations working on high performance metro networks. 

2   Operating Scenario 

In this section we will give some useful details about the operating environment, such 
as the underlying transport network and the existing legacy telephony system, in 
which the VoIP pilot project has been developed. We also describe the architecture of 
the voice transport and IP telephony infrastructure that have been realized as the main 
building blocks of our evaluation and early technology deployment. 

2.1   The Transport Network 

The physical multi-ring fiber infrastructure, on which our network is based, is ap-
proximately 50 km long, consists of 156 9/125 G.652 single-mode fibers, connecting, 
in a multi-ring shape with differentiated ways, four ring-to-ring interchange and ser-
vice aggregation centers, strategically placed on the metro area, which realize the 
main transport and access distribution infrastructure, serving actually more than 20 
level-2 distribution sites providing access to end-users. The physical network layout is 
reported in the following figure 1. 

 

Fig. 1. Physical multi-ring layout and topology of Federico II fiber net 

The backbone is built on a fully meshed MPLS core realized between three high 
performance Cisco routers (a 12410 GSR and two 7606 OSRs), each acting as an 
access aggregation point (or POP) in the metropolitan area. We realized two distinct  
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independent rings between the core nodes using, for connecting each node to another 
both the primary and secondary branch on the ring. The links belonging to the pri-
mary ring are made on POS STM-16 (2.5 Gbps) interfaces and the links belonging to 
the secondary (or backup) ring and with the leaf access nodes are built on Gigabit 
Ethernet interfaces. All the connections between the routers are made with single 
mode optical fiber between long-range interfaces, STM-16 long reach (on the primary 
ring) and Gigabit Ethernet 1000baseLX/LH (on the secondary ring). The IS-IS proto-
col, extended with traffic engineering facilities, has been used as the IGP of choice for 
the propagation of link status and resource availability information in the whole 
MPLS domain. Multi-protocol BGP (with fully meshed sessions in the core and route 
reflectors at the edge) has been used to carry VPN information when the MPLS Layer 
2 or Layer 3 VPNs are used for cooperating LAN isolation or security. In particular 
several virtual point-to-point connection have been realized between the “Monte S. 
Angelo” and “Centro Storico POPs” to offer pseudo-wire bandwidth guaranteed ser-
vices, through Any Transport Over MPLS (ATOM) layer 2 tunneling and traffic engi-
neered label switched paths, to external organizations. 

2.2   The VoIP Pilot 

Until an year ago, our university’s telephony system was based on a classic private 
branch exchange (PABX) architecture, built on many Ericsson MD110 modules oper-
ating and manageable as a single integrated exchange, according to a classic hierar-
chical model based on three group switching points, located into the main area aggre-
gation sites. The three switching points collecting all the satellite PABXes in their 
areas were connected each other in a ring shape through classic 2 Mbps leased data 
lines. Furthermore each group switching exchange was independently connected to 
the PSTN. In this scenario, the evolutionary pilot project has been conceived with 
essentially three main objectives: 

− deploying VoIP between the existing PABX concentration areas to lower costs, 
by switching voice traffic on underutilized high speed MAN links.  

− introducing and evaluating native IP telephony technologies to analyze their 
performance and functionality in a significant test bench for further new medium 
to large-scale realizations. 

− figuring out the QoS requirements of VoIP, the interoperability with the available 
installations, the optimum routing properties of the transport network, and the in-
clusion of gateways between the different legacy and new technologies. 

As the first step the three Ericsson MD110 group switching points (Monte S.  
Angelo, .via Mezzocannone, Fuorigrotta) have been connected to the high perform-
ance fiber ring with the introduction of IP voice trunk interface modules into each 
concentration exchange. Several redundant modules on each exchange have been 
connected via 100baseTX copper links to the Cisco 7606 OSR metro POP through the 
mediation of some Cisco Catalyst 3560 switches, collecting the copper links and per-
forming fast to gigabit Ethernet conversion. This allowed the seamless migration of 
the legacy traffic between the PABX aggregations without any loss in terms of pro-
prietary inter-exchange functionalities implemented through non-standard signaling.  
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Next we deployed a native IP telephony system built on devices from different 
vendors and performed several functionality and interoperability tests on them. IP 
phones from Cisco Systems and Ericsson have been deployed at multiple locations in 
the network and an MCS 7825H Call Manager from Cisco Systems has been installed 
in the Monte S. Angelo site to control the telephony functions of the Cisco phones 
and provide call routing facilities for all the standard H.323 clients. All our tests were 
based on the standard H.323 signaling protocol, with the call manager working as the 
top-level H.323 gatekeeper, and a full interoperability between all the devices has 
been achieved. It has also been shown that the different phones can be interconnected 
very easily to the network using the standard H.323 signaling protocol, this demon-
strated that the process of integrating new devices can be considered as straightfor-
ward. Typically it just required the configuration of the IP address and the local num-
bering scheme to interconnect a new client. Also, there was no difference between 
using software based IP telephony applications such as Microsoft Netmeeting or 
Cisco IP Communicator and employing hardware-based IP phones. 

Last, the IP telephony systems has been connected to the standard telephony  
systems on each of the three aggregation sites to allow calls from inside the VoIP 
domain to phones outside the IP world and vice versa. For this purpose we used three 
Cisco Systems 3745 multiservice routers with the role of voice gateways which were 
connected on the three group switching sites to the legacy PABX network and to the 
public telephone network using multiple channelized E1 interfaces, providing two 
separate channels for ongoing calls. The complete layout of the VoIP and IP teleph-
ony system deployed in the context of the pilot project is depicted in fig.2 below. 

 

Fig. 2. The VoIP support infrastructure 

3   Technical and Implementation Issues 

We will now discuss some of the most important technological choices that have been 
adopted, after an extensive experimentation, to introduce adequate quality, robustness, 
and production-grade strength to our VoIP system. 
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3.1   Quality of Service Provisioning 

It’s unlikely that an  arbitrary data network, even if a high performance one, is ready 
to handle good-quality VoIP traffic without the implementation of a proper QoS 
schema. This requires the cooperation of all logical layers in the IP network - from 
application to physical media - and of all network elements, from end to end. Given 
an IP network system’s distributed nature, several highly interrelated optimizations 
tasks have to be performed simultaneously. Voice traffic is uniquely time-sensitive 
and it mixes very badly with the highly bursty Internet traffic. Even if huge bandwidth 
resources are available, VoIP traffic can’t be queued or buffered too long, and if data-
grams are lost, the conversation will be choppy or even incomprehensible. This led to 
a significant amount of effort aimed at enabling effective QoS support for voice traf-
fic in our network. Our architecture has been designed to support three service 
classes, enforced by proper queuing strategies, traffic classification, call-admission 
controls, congestion avoidance mechanisms, traffic-shaping and policing techniques 
implemented according to the Differentiated Services model: 

− Premium Voice/Multimedia – This service class is meant for voice calls that re-
quire excellent QoS to be used for very high quality voice or Voice/Video con-
ferences. Each customer is guaranteed a certain amount of bandwidth for pre-
mium voice calls and a percentage of the upstream bandwidth is reserved for 
them. The number of premium calls that can be supported would depend on the 
codec used by the customer. Admission control is strictly enforced for calls be-
longing to this category. Premium calls are not allowed to borrow unused band-
width that is reserved for other classes of service, since when the load offered by 
traffic belonging to other classes increases, each class must get the share of 
bandwidth reserved for it.  

− Regular Voice – This service class is meant for voice calls that do not get admit-
ted to the premium category. If we were to have only the premium category for 
voice calls, then some voice calls would get rejected if all the bandwidth reserved 
for the premium class were in use. Even if the bandwidth reserved for other 
classes of traffic were unused, we would be unable to take advantage of it, since 
premium traffic cannot borrow bandwidth from other classes. Such a strict frag-
mentation of resources leads to inefficient utilization. To address this issue, we 
introduce the concept of regular voice calls. Voice calls that cannot be admitted 
as premium can still be allowed to go through as regular calls. However, the 
regular calls are not given any strict QoS guarantees. Depending on the imple-
mentation, a portion of the upstream bandwidth may be reserved for them, or they 
may just share the bandwidth along with best-effort traffic. There is no admission 
control for the regular voice traffic. Under conditions of light load from best-
effort traffic, the regular calls will receive acceptable performance. In the case of 
classic Internet traffic, the typical customer runs applications such as web brows-
ing, email, file transfer, remote login and streaming multimedia, which offer low 
load on the transport link. Besides, the available bandwidth is usually quite high, 
so there is a reasonable chance of a regular call experiencing acceptable quality in 
a lightly loaded network. 

− Best Effort – This service category is for non real-time traffic. Applications such 
as web browsing, email, FTP, telnet etc. fall under this category.  
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We served Premium voice class according to a strict priority queuing policy,  
implemented trough the Low-Latency Queuing (LLQ) paradigm. This mechanism 
forwards delay sensitive packets ahead of packets in other queues giving to delay-
sensitive data, such as voice, preferential treatment over other traffic. This queuing 
strategy is policed to ensure that the other fair queues are not starved of bandwidth, by 
specifying the maximum amount of bandwidth available to the high priority traffic. 
When the interface is congested, the LLQ traffic is serviced until the load reaches the 
specified bandwidth value and all the excess traffic is  dropped to avoid starvation on 
the lower priority queues. The Regular voice traffic class is served via the Class-
Based Weighted Fair Queuing (CBWFQ) mechanism, by scheduling interactive traf-
fic to the front of the queue to reduce response time, and allocating a specific amount 
of a queue to each class while leaving the rest of the queue to be filled in round-robin 
fashion, fairly sharing the remaining bandwidth among high-bandwidth flows. This 
essentially facilitates prioritizing multiple classes in queuing and allows a fine-
grained control scheme providing, if useful, more differentiated traffic classes. In our 
architecture we also reserved a portion of bandwidth for Best Effort traffic in order to 
prevent starvation of these flows. Under the proper circumstances, these mechanisms, 
which are widely available in conventional packet-forwarding systems, can differenti-
ate and appropriately handle time-sensitive isochronous traffic. We tested and evalu-
ated the relative effectiveness of these mechanisms against other common QoS 
schemes in preserving the end-to-end subjective quality of voice streams in the pres-
ence of multiservice traffic and network congestion. Our tests revealed that QoS 
mechanisms that approximate per-stream assurances through classification, prioritiza-
tion and careful forwarding techniques tend to perform better than mechanisms that 
simply reserve bandwidth and try to ensure low latency for forwarding without classi-
fication, or with too generic traffic classifications. Although this isn’t a particularly 
surprising result, it is useful to compare the available technologies and examine some 
of the ancillary factors that heavily influence QoS provisioning in voice-grade  
transport services.  

3.2   Call Routing Arrangements 

Other terms of research in the project were the call routing facilities. In a very local 
VoIP installation this is a straightforward configuration step. Typically, all the local 
phones are hold in a database on the H.323 gatekeeper or SIP proxy. Long distance 
calls, or more precisely all the calls to non-IP phones, are routed to a single voice 
gateway which points to the POTS. The more flexibility is included into the VoIP 
installation the more complex is the resulting routing configuration. This applies even 
stronger to our VoIP network which interconnects multiple faculties, offices and re-
search laboratories belonging to our university located on a very large urban area. We 
figured out different possibilities to implement such a distributed system. First, we 
started with a central approach. All the sites arranged their calls to go to a single gate-
keeper and voice gateway located in the master site (in our case Monte S. Angelo). 
There we implemented a large routing table, which of course is always in a consistent 
state just because only one place exists where all modifications are applied. Secondly, 
to enable a much higher redundancy – for the routing core as well as for the availabil-
ity of the network connections – we have already installed a voice gateway on each 
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group switching site and we plan to move the routing decisions to a local gatekeeper 
(maybe another MCS 7825H Call Manager) placed in  each area, realizing a gate-
keeper hierarchy rooted on the “Monte S. Angelo” site. According to this schema we 
have three central core gateways containing the complete call routing information for 
their areas and referring to the upper layer gatekeeper for VoIP calls outside our IP 
telephony domain. Each core gateway statically route the VoIP calls associated to the 
other aggregation areas. This allows a high availability compared with a low com-
plexity. Nevertheless, at the moment a central gatekeeper is installed to obtain the call 
routing table. All the calls are routed via this system. In case of a failure the calls are 
rerouted using the legacy telephone network.  

3.3   Fault Tolerance During Backbone Outages 

In our multi-ring shaped fiber network all the backbone faults were handled with 
redundancy and dynamic routing protocols that automatically updated the network 
topology and computed new routes around the failure. When we started to transport 
VoIP traffic we noticed that the switchover time due to the IGP convergence was not 
fast enough to prevent voice service disruption. We solved the problem by imple-
menting for each site on the triangle-shaped VoIP infrastructure, a couple of explicit 
label switched paths on our MPLS backbone, namely the primary and backup paths, 
dedicated to the voice traffic, and implemented on them MPLS Fast Reroute protec-
tion to efficiently route traffic down the backup path in the event of an interface, node 
or link failure without any extra decision (IGP convergence) required. This setup 
significantly improved recovery times, reduced to less than 80 ms, which equates to 
noticeably higher network availability and performance. 

4   VoIP System Performance Analysis 

To complete our study about the VoIP capabilities and functional behavior in the pilot 
infrastructure a sophisticated and complete performance assessment has been per-
formed. The methodological and implementation details, together with the most sig-
nificant results are reported below. 

4.1   Factors Influencing Voice Quality 

The perceivable quality of voice transmission can be heavily influenced by several 
network dynamics originated by the link intrinsic properties, route and reachability 
fluctuations and congestion. These dynamics can be essentially characterized by three 
QoS metrics: delay, jitter and loss as described below. The end-to-end delay experi-
enced by voice as it travels from source to destination has a significant effect on voice 
quality. It is recommended by [1] that delay bounds for the various grades of per-
ceived performance in terms of human interaction can be defined as: Good (0ms-
150ms), Acceptable (150ms-300ms), Poor (> 300ms). However most users find it 
inconvenient to carry out a conversation if the end-to-end delay is greater than 150 
ms. Another factor influencing voice quality is the variation in delay (also called 
jitter). The source may send out voice packets in a uniform manner, but they may 
experience different delays across the network. Thus, the inter-arrival times of voice 
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packets at the destination are variable, rather than constant. This delay variation re-
sults in unevenness in the reconstructed speech it the voice packets are delivered to 
the user as soon as they arrive. Several studies [2] suggest the following jitter values 
to be reasonably reliable estimates to determine the grade of perceived performance: 
Good (0ms-20ms), Acceptable (20ms-50ms), Poor (> 50ms). The fraction of voice 
packets lost during transit also affects the voice quality. Retransmission of voice 
packets is not feasible for real-time applications like voice, since they have very tight 
delay-bounds. As mentioned earlier, a packet that arrives too late is also considered 
lost. Though popular experience suggests loss levels greater than 1% can severely 
affect audio quality, there have not been well defined loss bounds in terms of the 
various grades of voice application performance. Current practice suggests the follow-
ing loss values to be reasonably reliable estimates to determine the grade of perceived 
performance: Good (0%-0.5%), Acceptable (0.5%-1.5%), Poor (> 1:5%). 

4.2   Methodology and Metrics 

The real performance in a VoIP call is not measured by the classic network health 
parameters but on the perceptual speech quality. There are two popular methods to 
assess the audio quality in a typical VoIP call: Subjective and Objective quality as-
sessment. A subjective factor is necessarily part of evaluating VoIP because a listener 
must be able to understand the received transmission, and both talkers must be able to 
tolerate the amount of delay between speaking and being heard, lost or fractured syl-
lables, and echo that often impede the conversation. Subjective quality assessment 
involves letting a certain number of listeners to express their judgment about the 
speech quality, according to some standard guidelines and use it as a quality metric. 
Objective quality assessment does not rely on human judgment and involves auto-
mated procedures such as signal-to-noise ratio (SNR) measurements of original and 
reconstructed signals and other sophisticated algorithms to determine quality metrics. 
The problem with subjective quality assessment techniques is that human perception 
of quality is based on individual perception, which can vary significantly between a 
given set of individuals. The problem with objective quality assessment techniques is 
that they may not necessarily reflect the actual end-user experience. There have been 
studies [3] that show that when objective and subjective quality assessment are per-
formed simultaneously, the results are comparable. In our study, we employ both the 
subjective and objective quality assessment methods to determine end-user perception 
of speech quality for VoIP calls traversing our network. To obtain subjective quality 
assessment scores from the users, we used the slider methodology presented in [4] on 
a sample of 10 individuals. All the participants to the subjective assessment ranked 
the audio quality on a scale of 1 to 5 for the various types of calls between the three 
main areas, characterized as PABX to PABX, PABX to IP prone, IP phone to PABX 
and IP phone to IP phone using what is basically the Mean Opinion Score (MOS) 
ranking technique. To obtain objective quality assessment scores we utilized the 
NetIQ VoIP Assessor tool [5] that provides a sophisticated implementation of the  
E-model and uses configurable VoIP traffic flows built on sample calls generated 
through the well-known Chariot technology as an input for its analysis. The E-model 
is a well established computational model, formally defined in the ITU Standard  
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G.107 [6], that uses transmission parameters to predict the subjective quality. It uses a 
psycho-acoustic R-scale whose values range from 0 to 100 and quantifies what is 
essentially a subjective judgment: a user’s opinion of the perceived quality of voice 
transmission. After much study, the ITU determined which impairment factors pro-
duced the strongest user perceptions of lower quality. The E-model also includes 
factors for equipment and impairments and takes into account typical users’ percep-
tions of voice transmissions. In more detail, the E-model rating factor R is defined as 
a linear combination of the individual impairments and is given by: 

R = (R0 – IS) – Id – Ie + A (1) 

Where: 

− R0 groups the effect of noise, either background or circuit noise. 
− Is includes impairments simultaneous to the voice signal: due to quantization, too 

loud a connection, too loud side tone. 
− Id encompasses delayed impairments, included those caused by talker and listener 

echo or loss of interactivity. 
− Ie covers the impairments caused by the use of special equipment; for example, 

each low bit rate codec has an associated impairment value. This impairment 
value can also be used to take into account the influence of packet loss. 

− The term A is the expectation factor. It expresses the decrease in the rating R a 
user is willing to tolerate in favor of the “access advantage” over wire-bound te-
lephony. As an example, the expectation factor for mobile telephony is 10. 

 
The graphical relationship between the Rating Factor and the Mean Opinion Score, 

together with the correspondence table (taken from ITU G.107) between the MOS and 
user satisfaction are reported in fig. 3 below. 
 

 

Fig. 3. MOS, Rating factor and user satisfaction taxonomy 

Though the E-model fundamentally addresses objective quality assessment  
of voice, our collected data shows reasonable correlation of the subjective quality 
assessment scores for audio quality provided by the participants and the objective 
quality assessment scores provided by the VoIP assessor. This correlation between 
subjective results and objective measurements can yield significant insights  
into network performance. We collected these subjective rankings and objective  
 

MOS User Satisfaction 
4.34 Very satisfied 
4.03 Satisfied 
3.60 Some users dissatisfied 
3.10 Many users dissatisfied 

2.58 
Nearly all users dissatis-
fied 
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measurements, categorized them by the network configuration under which they were 
collected, sorted them according to the user who produced the data, and stored them 
for later use in comparing the relative overall performance of the various network 
parameters. All the assessment measurements have been taken on a live network in 
several days and times. The variables that affect the MOS rankings are the dynamic 
network changes caused by route fluctuations and congestion, and the quality 
dynamics have been characterized by the metrics delay, jitter and loss as previously 
specified. 

4.3   Assessment Setup and Configuration 

To evaluate the performance of our VoIP pilot we realized several assessment ses-
sions, each one hour long, consisting of 200 simultaneous simulated calls between the 
Monte S. Angelo (MSA) and Centro Storico (CS) sites, lasting for 5 seconds and then 
continuously restarting. The calls have been simulated between two Chariot perform-
ance endpoints, installed on Linux-based workstations and connected to the network 
trough Gigabit Ethernet interfaces, by using the most common codecs and divided in 
five 40-calls groups, as detailed in the following table. 

Table 1. The objective assessment configuration 

# EP1 EP2 Codec Calls 
1 CS MSA G.723.1-MPMLQ (6.3 kbps) 40 
2 CS MSA G.729 (8 kbps) 40 
3 MSA CS G.711u (64 kbps) 40 
4 MSA CS G.723.1-ACELP (5.3 kbps) 40 
5 MSA CS G.729 (8 kbps) 40 

We gathered information about the mean opinion score, packet loss, jitter, delay 
and the number of completed calls. The percentage of completed calls is our defini-
tion of reliability. The values were categorized as shown in the following table. 

Table 2. The performance categories 

Measurement Good Acceptable Poor 
MOS Above 4,03 4,03 to 3,60 Below 3,60 
Delay (ms) below 150 150 to 300 above 300 
Jitter (ms) below 20 20 to 50 above 50 
Lost Data (%) below 0,50 0,50 to 1,50 above 1,50 

4.4   Assessment Results 

First of all we noticed that in all our tests there were no unsuccessful calls, so we 
measured a reliability percentage of 100%. Nevertheless, the measured loss, delay and 
jitter values were always very low, demonstrating the presence of well provisioned 
links in the underlying network. The MOS was calculated for each simulated call 
according to the E-model methodology and the average results obtained with and 
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without QoS differentiation for voice traffic, together with impairment factor's contri-
bution to the call quality are graphically shown in the leftmost graph in fig. 4. 

  

Fig. 4. Call quality evaluation results, with and without QoS 

Here, observing each factor’s contribution, shown as a percentage of all call quality 
impairments, we can notice that, when working on an high performance network, with 
plenty of bandwidth, the codec characteristics are the major impairment factor, fol-
lowed by jitter and delay. This can be better observed from the rightmost graph that 
clearly shows how the lower speed codecs impair, also with their physiological delay, 
the quality of the audio signal much more than their high-speed counterparts such as 
those belonging to the G.711 family, essentially affected only from jitter. The MOS 
estimates calculated for all calls in the objective and subjective assessment, as re-
ported in the comparison table below, indicate in both cases an acceptable call quality 
without QoS and a good quality when traffic differentiation is implemented.  

Table 3. Objective and subjective analysis results 

# Call Group Obj. w/o QoS MOS QoS Subj. w/o QoS MOS QoS 
1 G.711u 4,23 4,38 4,35 4,50 
2 G.729 4,00 4,03 4,05 4,20 
3 G.729 4,00 4,03 4,02 4,20 
4 G.723.1 MPMLQ 3,79 3,82 3,48 4,02 
5 G.723.1 ACELP 3,61 3,64 3,31 3,84 

It is interesting to observe that the subjective MOS values reported by the 10 users 
sample nearly reflect the objective values calculated through the E-model implemen-
tation in the assessor, slightly improving the quality perception when QoS is provided 
and with some minor degree of satisfaction when the voice traffic is handled accord-
ing to the best effort policy, especially for the lower-speed codecs, such as those in 
the G.723.1 family. This demonstrates that users are less sensible in the perception of 
signal impairments when the average quality is high and on the other side more sensi-
ble in presence of a poor speech quality. 
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5   Conclusions 

This paper presented an overview of the activities and results which have been taken 
in the context of a large Voice over IP pilot project implemented on the Federico II 
metro ring network. Several technical issues have been discovered and discussed such 
as call routing, legacy telephony interoperability and QoS provisioning. Especially the 
requirements on the transmission quality were examined and it was shown that – even 
if some modifications on the current IP infrastructure are required – the telephony 
applications can well exist besides the data transmission without strongly effecting 
each other. Reliability is also an important issue; therefore, redundancy solutions were 
examined, especially in the case of routing redundancy. To conclude our work it must 
be said that we managed it to build up a really large testbed for VoIP applications 
which directly got into business use and will probably strike in a few time over the 
good old telephony system. 
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Abstract. Application streaming is a deployment method of the software 
management, which is efficient in terms of time and space. However, there are 
difficult issues on dealing with streaming that replaces downloading, 
installation and execution of application programs. Application on-demand 
(AoD) streaming replies upon a copy-on-reference distributed virtual block 
system and virtualization of file, registry and others on the operating system 
level. The AoD system should be implemented without modifying operating 
system kernel and application codes to be streamed. Also it should be 
guaranteed that its performance is comparable to that of running the software 
locally installed. This paper presents a modeling of AoD based on copy-on-
reference and pre-fetching based streaming to achieve concurrency between 
computation and communication. 

Keywords: streaming, installation, deployment, virtualization. 

1   Introduction 

At the early stage of Internet, the use was limited to the delivery of web contents. A 
newly developing area is to deliver, deploy and execute complex application software 
over the Internet and Intranet. One of the common challenges faced by system 
administrators is how to deploy applications to many users rapidly, securely, and 
safely, without interfering with users’ computers and keeping control of software 
delivered. There are a number of potential applications of the AoD streaming system: 
for system administrators to build a progressive deployment system with applications 
in a central software library, or to patch software across the enterprise while retaining 
central control. 

PC users still face two fundamental problems in accessing application software: 
one is cost of installation time, and the other cost of keeping them all on their local 
disks: On the phase of installation, the program codes, made up of a main executable 
file, auxiliary executable files, registry files and other files including DLLs, are stored 
in a system directory, e.g., a Microsoft Windows directory and a user directory. On 
phase of storing the software on the local disks, a large storage space in the client’s 
PC is required to store various software programs. It is undesirable to keep all these 
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applications on local hard-disks, though hard disks become huge and cheap. Trial 
software needs to be executed without full installation because once an application is 
fully installed on a local storage it may not be wiped out completely, especially if  
the application has some spy-wares or ad-wares. So, the installation prevents users 
from having mobility of application programs and motivates to adopt a virtual 
environment. 

This paper tackles the mobility problems using application virtualization and 
streaming to maximize performance of the system through copy-on-reference and 
partial pre-fetching. The streaming [1] means the transfer of the application’s bits to 
the target machine overlapped with its execution. Using the method, it is possible that 
an application starts execution before it has been completely downloaded. Unlike the 
linear sequences of data presented in audio and video streaming, the components of 
application programs may be executed in any order which varies with user inputs and 
other factors. 

This paper is organized as follows. Section 2 discusses related work. Section 3 
describes the architecture and its operations of our Z!Stream model. Section 4 
discusses performance of Z!Stream system. Section 5 presents conclusions. 

2   Related Work 

IBM’s PDS, recently published paper by Alpern [1], and other related work 
[2,3,4,5,6,7] are on execution environment and infrastructure designed specifically for 
deploying software on demand to a broken server machine at a server farm while 
enabling management from a central location. PDS intercepts a subset of system calls 
on the target machine to provide a partial virtualization at the operating system level. 
This enables an asset’s install-time environment to be reproduced virtually on the 
target machine. Application blocks, called shards, are fetched as they are needed (or 
they may be pre-fetched), enabling the asset to be progressively deployed by 
overlapping deployment with execution. A framework is provided to intercept 
interfaces above the operating system (e.g., Java class loading), and to enable 
optimizations requiring semantic awareness not present at the operating system level. 
However, PDS can not stream conventional Windows desktop application programs 
to client PCs which has more complicated registry systems and other operating 
system environment that Z!Stream can support. 

Zayas modified Accent at the kernel level to migrate processes using copy-on-
reference virtual memory [8] and it was improved by integrating pre-fetching on 
object-oriented systems by Song[9]. When a process migrates, its memory image is 
initially left on the source machine, only the process’s page tables, registers, and 
message channels need to be transferred immediately. As the process executes, it 
demands pages on its memory from the source. The copy-on-reference was adopted to 
Z!Stream to enhance the speed of streaming at the middleware level. However, copy-
on-reference on Z!Stream is not a pure demand paging but a combination of demand 
files and their page blocks that are mapped by an indexing table. So, it can be called a 
copy of a group of blocks on a single reference. 
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3   Z!Stream AoD Streaming Model 

The working scenario of Z!Stream AoD system is as follows: When a user goes to a 
host website and clicks on an application to run on his/her desktop, the user’s access is 
redirected to the Control Server which designates Container Server. By the request of 
LaunchPad on the user’s PC, the Container Server sends the blocks of the executable 
file that are necessary to load the application to the memory segment of the client PC.  

Z!Stream intercepts messages related to a subset of system calls on the target PC to 
implement virtualization on the operating system level. While applications are 
running, various messages are generated to operating system for file accessing, I/O 
events and communications. These system calls need to be hooked, analyzed, filtered 
and further processed to replace local file requests from the applications to remote file 
block requests on the server machine in real-time and on-demand basis, i.e. copy-on-
reference. During the operation of distributed virtual blocking, application processes 
can be suspended temporarily until the required blocks are delivered from the server 
or can be executed concurrently with the pre-fetched blocks. 

To increase the speed of program initiation, copies of initial file blocks should be 
minimized; however, pre-fetching a group of blocks can improve the overall 
performance while interactive applications are running, if memory pollution is 
appropriately managed. Z!Stream allows the process to start executing if it has 
streamed about 5% of a whole executable code on a client machine, which is almost 
immediately after a click. It is expected that 20:80 rule is well applicable to the 
application program running, that is, less than 20% of executable codes encompass 
80% of functionalities that users need. Fig. 1 shows a concept of the copy-on-
reference with minimal pre-fetching based streaming protocol.  

 

Fig. 1. Copy-on-referenced streaming protocol shows that the application process begins 
execution on the client computer and overlaps block downloading and execution 

Virtualization of Windows files, registry and other operating system environments 
is another key functionality that realizes the AoD by eliminating the need of fully 
installing an application before the use. Thus, virtualization environment of an 
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application program should be executed without any direct accessing Windows 
operating system. It makes those applications float on top of the real file and registry 
systems, and applications can be streamed, run and wiped out cleanly after use. The 
protocol in Fig. 1 shows overlapping of streaming of blocks of executable code and 
processing of computation. The degree of overlapping can be minimized by not pre-
fetching, or maximized by heuristically managed rich pre-fetching pages related to a 
functional menu. There are some tradeoffs between not pre-fetching and rich pre-
fetching in terms of performance and memory pollution. Details of management of 
pre-fetching are out of the scope of this paper. 

4   Performance Evaluation  

The Z!Stream system is fully implemented and optimized both on Microsoft 
Windows 2000, IIS and SQL Server, and on RedHat Linux, Apache, and MySQL. 
Launch Manager integrates with ActiveX components.  

The main subsystems of Z!Stream actually affecting performance are the Container 
Server and the LaunchPad.  Due to its distributed nature, it is difficult to predict the 
application-specific performance of the Z!Stream, but it is reasonable to conclude that 
the maximum number of streams simultaneously open, start-up time and execution 
overhead delays are good measure of overall system performance. 

The performance would vary with the hardware and software specifications of the 
server, specifically, the amount of installed RAM, the power of the server's CPU, and 
the underlying operating systems on the client and servers.  However, the result of 
tests shows that the number of sessions simultaneously connected is about 1000 per a 
server, i.e. 5 applications per user and 200 concurrent users are supported by a single 
Container Server.  If several Container Servers are in use, the Z!Stream system is 
capable of handling load balancing among them without the need for a hardware-
based load balancing function such as a Layer 4 Switch. Therefore, the throughput of 
the streaming server is proportionally increasing with the number of servers. 

The performance was measured in the following platform: In the server side, Intel 
Pentium-IV Xeon 3GHz, 1GB Main Memory, 100MB Ethernet, and GNTOO Linux 
2005.1 are used. In the client side, Pentium-III 650MHz, 128MB Main memory, 
100MB Ethernet, and Windows-XP Professional are used. The execution time 
overhead on Z!Stream is compared with that on the local installed ones. Z!Stream has 
pre-fetching mechanism, but in order to measure basic performance this feature was 
not used for the tests. We will publish another paper with the pre-fetching in the future. 

Start-up time (the time delay to pop up the main window of the application after 
clicking) and execution time overhead (the time delay to execute corresponding 
functions of the selected menu) are measured with two tests. We ran MS-Office 2003 
(Word, Excel, PPT) and Adobe’s Photoshop 7.0 both under Z!Stream and natively. In 
the first test, we measured the response time without the cashed blocks (the time to 
start up application program after a click at the first time without pre-cached files at 
all) to start up Office and Photoshop natively (local installed case has even a local 
cache on Windows XP). In the second test, we measured the same parameter with 
cached blocks as a normal operating mode, i.e. after the second trial. We measured 
performance using the standard benchmark for 20 clients and the data are shown in 
 



 Z!Stream: An Application Streaming System 371 

Table 1. We found that this test ran slightly slower under Z!Stream than the native. 
The startup time averaged under Z!Stream is quite slower as opposed to the native 
mode. However, this delay is still tolerable if the full installation-time of the 
application is considered and the applications are running on a network.  

In the third test, we tested with 200 concurrent users to the server with Winzip. 
Under this condition, the usage rates of CPU were 19.0% user and 23.5% system as 
shown in Fig.2. The response time is shown in blue and the number of virtual users in 
red. This figure shows the response time by increasing one concurrent user every 
second up to 200, using Compuware’s QAload. After 100 users concurrently 
connected in 100 seconds, the average response time becomes 4 seconds; over 150 
seconds, the average response time becomes 10 seconds. 

Table 1. Measured Performance Data (time units: second) 

 

 

Fig. 2. Response time of 200 concurrent users on Z!Stream 
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5   Conclusions  

As audio and video continuous media serviced on the Internet are generally based on 
a streaming technique, the contents industry has dramatically grown up. The same 
notion of streaming can be applied to shrink-wrap application software. However 
internal use of streaming is quite different in terms of processing: the former is in 
sequential accessing, and the latter in any order accessing. To support any order 
accessing in application streaming, Z!Stream adopts quite different technologies 
including virtualization, pre-fetching, and copy-on-reference streaming protocols. 

Our evaluation with the Z!Stream shows that AoD streaming is quite an appealing 
technique of software deployment for users using rich client PCs by eliminating 
tedious installation and downloading. Application mobility with relatively reasonable 
performance has been achieved with the virtualization and streaming. We have 
experienced that average 30% of executable codes of a program seem enough for 
most of basic works. Z!Stream can support conventional shrink-wrap applications to 
be deployed, just like a web-based applications on the Internet. 
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Abstract. Packet classification is the problem of identifying which one of a set 
of rules maintained in a database is best matched by an incoming packet at a 
router and taking the action specified by the rule. This is a uniform enabler for 
many new network services like firewalls, quality of service and virtual private 
networks. These services require dynamic management of rules. While many 
algorithms recently proposed can perform packet classification at very high 
speeds, rule update times for these are not very fast. This paper presents an 
efficient classifier management algorithm, which effectively reduces the rule 
update time for the well known Grid-of-Tries classifier. To this end, we have 
devised a novel structure called Supervised Grid-of-Tries, which employs 
additional tracking pointers embedded into the trie to facilitate efficient rule 
updates. 

Keywords: Packet classification, routing, grid-of-tries, supervised grid-of-tries. 

1   Introduction 

Packet classification is the underlying mechanism facilitating network services like 
quality of service, virtual private networks (VPN) and firewalls.  

Several approaches to packet classification have been proposed. Traditional trie-
based approaches to packet classification include the Hierarchical Trie, Set Pruning 
Trie and Grid-of-Tries with filter update complexities of O(dw), O(nd) and O(nw) 
respectively, where d denotes the number of dimensions, n the number of nodes and w 
the width of each dimension. This does not scale up well on large filter sets. Here, we 
present a structure that performs updates efficiently, even for large filter sets. 

The paper is organized as follows. Section 2 describes the preliminaries. Section 3 
portrays our proposed approach. Experimental results are displayed in Section 4. In 
Section 5, guidelines to choose between the schemes discussed in Section 3 are 
suggested. Concluding remarks are in Section 6. 

2   Preliminaries 

Here, the term “ancestor trie” refers to any trie which is under a first dimension node 
that is an ancestor of the first dimension node under which the current trie is present. 
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The term “lowest ancestor trie” refers to the most immediate ancestor trie. In addition, 
we employ “links” to mean switch pointers and/or storedFilters. 

Supervision Tree of Tries: A multi way tree representing the dependency hierarchy 
amongst the tries in the second dimension. 

Supervision Tree of Nodes: A multi way tree representing the dependency 
hierarchy amongst the nodes in the second dimension. 
 

Let A be a first dimension node (Fig. 1a). Let S = {B1, B2, ..., Bn} be the set of nodes 
in A's sub tree reachable along paths p1, p2, ..., pn respectively, such that 

1. Bi has a trie under it for 1  i  n 
2. No node in path from A to Bi has a trie under it for 1  i  n 
3. pi < pi+1 (lexicographically) for 1  i  n - 1 
4. Bi  A for 1  i  n 

Then, S is the set of first dimension (1d) st children of A and there exists 

1. A 1d supervised trie child list begin (1d-st-cl(b)) link from A to B1.  
2. A 1d supervised trie child list end (1d-st-cl(e)) link from A to Bn .  
3. A 1d supervised sibling next (1d-st-s(n)) link from Bi to B i+1 for 1  i  n – 1 
4. A 1d supervised sibling previous link from B i+1 to Bi for 1  i  n – 1. 

(a)

(b)  

Fig. 1. (a) st First dimension child and sibling pointers. (b) st Second dimension child and 
sibling pointers. 

Let A be a second dimension node (Fig. 1b) reached from the root of its trie along 
edges labelled q. Let this trie be under node X in the first dimension. Let S' = { Y1, Y2, 
..., Yn } be the set of nodes in X's sub tree reached along paths p1, p2, ..., pn 
respectively such that 
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1. Yi has a trie under it that has a node reachable along edges labelled q for 1  i  n 
2. No node from A to Yi has a trie under it which has a node reachable along edges 

labelled q for 1  i  n 
3. pi < pi+1 (lexicographically) for 1  i  n - 1 
4. Yi  A for 1  i  n 

Let S = {B1, B2, ..., Bn} be the set of nodes such that Bi is reached from the root of the 
trie under Yi along edges labelled q for 1  i  n. Then, S is the set of second 
dimension (2d) st children of A and there exists 

1. A 2d supervised trie child list begin (2d-st-cl(b)) link from A to B1.  
2. A 2d supervised trie child list end  (2d-st-cl(e)) link from A to Bn. 
3. A 2d supervised sibling next (2d-st-s(n)) link from Bi to Bi+1 for 1  i  n–1. 
4. A 2d supervised sibling previous (2d-st-s(p)) link from Bi+1 to Bi for 1   i   n–1 

In the next section, we endeavor to present schemes resulting in efficient filter update 
for the Grid-of-Tries. 

3   Proposed Approach 

When inserting a rule into the Grid-of-Tries, there may be a need to set links from 
tries further below to the newly inserted trie or to have switch pointers or storedFilters 
emanating from the inserted trie itself to a trie above it. Unless we have a systematic 
method to track which tries need to be updated as a result of inserting or deleting a 
rule, it is tricky to perform incremental updates. We attempt to save on rule update 
time by modifying the existing Grid-of-Tries instead of complete reconstruction. 
During rule update, the Grid-of-Tries is modified in the first and second dimensions 
based on the rule. All other tries require amendment only if their lowest ancestor also 
does. Thus, there is a dependency hierarchy present among the tries and nodes. This 
hierarchy can be structured in the form of a supervision tree. 

3.1   One Dimension Supervised (1ds-SGOT) 

1ds-SGOT implements only the supervision tree of tries. In this algorithm, the first 
dimension nodes which have tries under them act as representatives of those tries. In 
order to insert a rule, we first traverse the first dimension. If a new node was created, 
we backtrack and update the supervision tree of tries. Next, the second dimension trie 
is traversed. If any new nodes were created in the second dimension, we set links 
from the current trie to the ancestor tries and to the current trie from tries in its st sub 
tree as necessary.  

The worst case time complexity of this algorithm is O(nw). However, occurrence 
of the worst case requires that several rare conditions be satisfied. Also, once the 
worst case has occurred, it cannot occur again until the rule that caused the worst case 
is removed. Memory requirements double for the first dimension in comparison to the 
Grid-Of-Tries algorithm due to the four additional pointers (st) that have to be 
maintained in addition to the existing four in each node. 
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3.2   Two Dimension Supervised (2ds-SGOT) 

Performance can be further improved in certain environments at the expense of 
memory. The 2ds-SGOT algorithm implements the supervision trees of nodes in 
addition to the supervision tree of tries. 

The first dimension is handled as in 1ds-SGOT. In the second dimension, if any 
new nodes are created, we set the st sibling and st child node pointers as appropriate. 
We then set switch pointers and storedFilters to corresponding nodes in the ancestor 
tries and to the current nodes from nodes in the sub tree of this node's supervision tree 
of nodes. 

In 2ds-SGOT, repeated access of nodes in the second dimension trie of the rule 
(that took place in 1ds-SGOT) is avoided. All operations on a node are finished in a 
single visit. Also, nodes that do not require an update are skipped. Hence we stand to 
gain a reduction in worst case time, while the worst case complexity and conditions 
remain unchanged.  In order to support the above features, extra processing is 
required through the maintenance of st pointers in the second dimension nodes. 
Memory requirements for the second dimension are approximately twice that of 1ds-
SGOT whereas the memory consumption of the first dimension is the same. Rule 
deletion can be performed along the same lines as insertion. With some modifications, 
the same approach can be used to perform supervised rule updates on extended  
grid of tries. 

4   Experimental Results 

The performance of 1ds-SGOT is significantly dependent on the number of tries 
visited for updating. However, this is not the case with 2ds-SGOT since, as stated 
previously, it avoids the access of nodes which are certain to not require updates. 
Besides, the number of times these nodes are visited is one as compared to the 
multiple times they are visited in 1ds-SGOT. 

We now proceed to analyze and compare the performance of our proposed 
algorithms against each other and the Grid-of-Tries method in different environments. 
The filter sets we utilize for our analysis are drawn from [4]. 

Our empirical results confirm that the time consumed by the conventional method 
for a rule update increases linearly with the number of rules (as the structure is 
completely reconstructed from the beginning with every new rule added) in the trie 
whereas it remains nearly constant for 1ds-SGOT.  

2ds-SGOT performs best in firewalls, which are most specific (and hence have the 
most number of tries), which is in conformance with the above deductions. Also, as 
expected, 1ds-SGOT performs better than 2ds-SGOT in the least specific environment 
of access control lists.  

Table 2 shows the average update time for our algorithms on the various filter  
sets [6]. It is clear from the table that, as the specificity increases, the 2ds-SGOT 
algorithm performs better than the 1ds-SGOT algorithm. 
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Fig. 2. Rule insertion times of the algorithms for sample filter set FW1 

Table 2. Performance Comparison. Filter sets taken from [4]. 

Filter set 1ds-SGOT (10-6 s) 2ds-SGOT (10-6 s) 
ACL1 41 61 
ACL1_100 48 133 
ACL1_1K 47 76 
ACL1_5K 53 68 
ACL1_10K 63 98 
IPC1 69 51 
IPC1_100 47 129 
IPC1_1K 57 100 
IPC1_5K 88 67 
IPC1_10K 155 74 
FW1 45 33 
FW1_100 28 39 
FW1_1K 109 38 
FW1_5K 445 80 
FW1_10K 1054 120 

5   Selection of Optimal Scheme 

We now discuss metrics that help in selecting the optimal scheme.  

Specificity: We infer from the experimental results that as the specificity of the 
filter sets increases, the relative performance of 2ds-SGOT improves over 1ds-SGOT 
due to the increased number of tries. Thus it would be more advantageous to use 2ds-
SGOT in environments like firewalls. Conversely, 1ds-SGOT should be preferred in 
environments like access control lists. 

GOT 
1ds-SGOT 
2ds-SGOT

Time (10-6s) 

Rules 
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Scalability: With the impending transition to IPv6, the relative performance benefit 
for 2ds-SGOT over 1ds-SGOT would be amplified due to the significant increase in 
node accesses for rule updates. With increase in the number of rules, 2ds-SGOT 
performs better than 1ds-SGOT. 

Reliability: In situations where the memory consumption of 2ds-SGOT is about to 
exceed the available memory, there can be a seamless transition to 1ds-SGOT which 
will enable the router to support as many rules as can 1ds-SGOT while at the same 
time providing the performance of 2ds-SGOT until no longer possible. 

6   Conclusion 

We have devised a novel method for efficient dynamic filter update for the Grid-of-
Tries classifier. This is achieved by maintaining a supervision trees to track those 
parts of the trie which require updates. Through our experimentation, it is shown that 
our two techniques have nearly constant filter update times, whereas the conventional 
method has an update time which increases linearly with the number of filters.  
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Abstract. IBGP configurations based on the route reflection may violate the 
properties of complete visibility, thus leading to forwarding loops and sub-optimal 
paths.  On the other hand, a router should not maintain too much BGP sessions 
because of performance reason. This paper presents an IBGP topology construc-
tion algorithm, called BGPSep_S, by taking into consideration the vertexes  
degrees, the vertexes separators and the shortest paths between vertexes in the un-
derlying IGP graph. We prove that BGPSep_S guarantees complete visibility in 
normal situations. And the performance of BGPSep_S is evaluated on several 
real-world backbone topologies. Experimental results show that the maximum de-
grees of the IBGP topologies generated by BGPSep_S for these IGP topologies 
can be reduced by about 27%-68%, compared with full mesh and BGPSep. 

1   Introduction 

Border Gateway Protocol (BGP) [1] is the widely used interdomain routing protocol. 
BGP can be divided into two parts: External BGP (EBGP) and Internal BGP (IBGP). 
Full mesh IBGP configuration is often used for small ASes because it can guarantees 
correctness properties of complete visibility, loop-free forwarding. However, in large 
ASes, BGP route reflection [2] is often used in the IBGP topology design because of 
scalability reason.  

However, IBGP configurations based on route reflection may lead to route oscilla-
tions, forwarding loops and sub-optimal paths [3]. These problems are hard to diag-
nose and debug, and networks with these problems are hard to manage. 

M.Vutukuru et al. [3] present and analyze an algorithm, BGPSep, to construct an 
IBGP session configuration that is both correct and more scalable than a full mesh. 
They claim that to their knowledge, BGPSep is the first constructive algorithm to 
generate IBGP configurations with useful correctness guarantees, while scaling better 
than a full mesh. However, although the number of IBGP sessions is smaller than in a 
full-mesh configuration, BGPSep does not reduce the number of IBGP sessions of its 
top level route reflectors. That is, the maximum node degree of the IBGP topology 
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remains the same as in a full-mesh configuration.  A router should not maintain too 
much BGP sessions, because concurrent frequent updates on multiple peers may 
cause problems. So it is very meaningful to reduce the number of IBGP sessions a 
router needs to maintain. 

This paper presents an IBGP topology construction algorithm, called BGPSep_S, 
which can generate an IBGP topology with much smaller maximum degree, com-
pared with that generated by BGPSep or a full mesh configuration. 

2   Complete Visibility and IBGP Configuration 

To understand the idea and the characteristics of our algorithm, this section discusses 
the relationships between IBGP configurations, complete visibility, forwarding loops 
and sub-optimal paths.  

We first describe some related notations, definitions and lemmas. 
Consider the IGP subgraph G  induced by the BGP routers of a network in an AS. 

Let V  denote the set of BGP routers. Let d  denote any destination. For every 
router A let d ( )Egress A  denote the best egress router that A  would have picked had 

it seen the best routes from every EBGP router in the AS. 
We use the terms of signaling chain, signaling chain of monotone increase, signal-

ing chain of monotone decrease, concatenation in Reference [4]. Still we need to 
define the following terms. 

Definition 1. Given a signaling chain : , , , ..., ,0 1 2 r r+1S A(= R ) R R  R B (= R ) and an IGP 

path P  from A  to B , if for i = 0...r +1 , iR P∈ , then we say S overlays P , or P  is 

overlayed by S . 

Definition 2. For a signaling chain : , , , ..., ,0 1 2 r r+1S A(= R ) R R  R B (= R ) , if there ex-

ists a shortest IGP path P  from A  to B  such that S overlays P , then we say S  is a 
shortest signaling chain between A  and B . 

Then we can get the following theorem by using the Claim 1 of Reference [4]. 

Theorem 1. An IBGP configuration guarantees that the property of complete visibil-
ity will be satisfied in the face of arbitrary IGP changes if, and only if, for any IGP 
path from a BGP router to another EBGP router, there exists a signaling chain that 
overlays this path. 

3   The BGPSep_S Algorithm 

One of our goals is finding an IBGP configuration that guarantees the complete visi-
bility in the face of no IGP changes, thus avoiding forwarding loops and sub-optimal 
paths. According to the discussion of the previous section, we need to find an IBGP 
configuration such that there is a shortest signaling path from a router to any of its 
possible egresses. 
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In an IGP graph, for a vertex u whose degree is one, suppose that its adjacent 
vertex v has complete visibility. Then following the route reflection rules and the 
BGP route selection rules, vertex u  will have complete visibility if we let u be the 
client of v . 

In addition, if in the IGP graph we can find a graph separator, a set of vertexes 
whose removal partitions a graph into some connected components, then any shortest 
path beginning in a component and ending in a different component must pass 
through one or more routers in the separator. If we construct an IBGP topology by full 
meshing the routers in the separator, constructing a full mesh configuration within 
each connected component and setting up other necessary IBGP sessions such that 
there exist a shortest signaling between any router in a component and any other 
router in the separator, then there will be exist a shortest signaling between any two 
vertexes. 

If we take away one or more vertexes from the components and add them into the 
set of vertexes in the graph separator, then we get a superset of the graph separator, 
which is still a graph separator. Obviously, the max degrees of the IBGP topologies 
based on different separators may be different. We hope that we can find an optimal 
separator such that the max degree of the generated IBGP topology is minimal. How-
ever, it is a very difficult task to find such an optimal separator for a large IGP graph 
in practice. Instead, after we get a separator we use a heuristic method to find a super-
set of the separator. We first find a shortest path from any router in the components to 
any other router in the separator. Then we add the vertexes in this path into the super-
set except the initial vertex. 

3.1   The Algorithm Description 

Our algorithm, BGPSep_S, is shown in Algorithm 1. 
BGPSep_S takes the IGP graph ( , )G V E= formed by the BGP routers and pro-

duces the set I of IBGP sessions that must be established between the routers. 
Every element in I denotes an IBGP session and has the form ( , , )u v t , where u and 

v are the routers between which the IBGP session is established and t  is the type of 
the IBGP session. If t  = “client”, then the IBGP session between u  and v  is a 
client-route reflector session (with u being the client of route reflector v ). If 
t = “peer”, then the IBGP session between u  and v  is a normal non-client IBGP 
session. The algorithm uses a procedure Graph-Separator, which is a graph parti-
tioning algorithm that takes a graph G and returns a graph separator S. Also the 
algorithm uses another procedure Shortest-Path to find a shortest path between two 
vertexes. 

Algorithm 1. BGPSep_S 
Input: IGP Graph G , set V of BGP routers 
Output: Set I  of IBGP sessions 
/* Step 1: removing the pendant vertexes gradually*/ 
I = ∅ ; 
pending =true; 

'G G= ; 
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while pending == true do 
'G G= ; 

pending = false; 

foreach .u G V∈  do 
if ( ) 1Gd u ==  then /* ( )Gd u  is the degree of u  in G */ 

( )Gv adj u= ; /* v  is the adjacent vertex of u  */ 

{( , , )}I I u v client= ∪ ; /* let u  be the client of v  */ 

' ' { }G G u= − ; 

pending = true; 

end 
end 

end 
/* Step 2: Choose a graph separator S G'.V⊆  . */ 

S =Graph-Separator( 'G ); 

1,..., mG G ← components of G'.V S− ; 

/* Step 3:  find a superset S +  of S . */ 

S + = S ; 
foreach iu G∈ ,                                              v S∈ do  

if u S +∉  then 
P =Shortest-Path( ,u v ); 

    foreach w P∈  do 
if w u≠  then 

          S + = { }S w+ ∪ ; 
end 

end 
end 

end 
/* Step 4: Fully mesh the routers in S + */ 

foreach ,u v S +∈ , u v≠  do  
{( , , )}I I u v peer= ∪ ;  

end 
/* Step 5: Let every router in G'.V S +−   be a route  

reflector client of some routers in S +   */ 

foreach u G'.V S +∈ − ,  v S +∈ do 
  : , , , ..., ,0 1 2 r r+1P u(= R ) R R  R v (= R ) ← Shortest-Path( ,u v ); 

1i = ; 

while iR S +∉  do   

i + + ;       
end 

{( , , )}iI I u R client= ∪  
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end 
/* Step 6: full mesh routers in iG S +−   */ 

foreach , iu v G S +∈ −  do 

{( , , )}I I u v peer= ∪  

end 
return I ; 

3.2   Complete Visibility 

We can prove that in normal conditions (i.e., the IGP graph is the same as the original 
graph when the BGPSep_S is running), the configurations generated by BGPSep_S 
will guarantees the properties of complete visibility. Because of page limitations, we 
just give the proof skeleton as follows. 

We denote subG  the subgraph 'G  that is generated after the Step 1 of the 
BGPSep_S algorithm is finished. We can get the following two lemmas. 

Lemma 1. In the IBGP configuration produced by BGPSep_S for the IGP graph 

subG , for any destination d , there exists a shortest signaling chain between every 
router .subA G V∈  and the egress router d ( ) .subEgress A G V∈ . 

Lemma 2. In the IBGP configuration produced by BGPSep_S, for any destination d , 
there exists a shortest signaling chain between every router A V∈  and the egress 
router d ( )Egress A . 

Then following from Claim 1 in [4] and Lemma 2, we can know that the IBGP con-
figuration output by BGPSep_S satisfies the property of complete visibility. 

4   Implementation and Evaluation 

We implemented the BGPSep_S algorithm in Matlab. The program reads the IGP 
graph from a file and writes the IBGP sessions to a file. In our implementation, the 
procedure Graph-Separator comes from the BGPSep implementation1. 

The performance of BGPSep_S is evaluated on the backbone topologies of 6 
ISPs annotated with inferred link costs from the Rocketfuel project [5]. We com-
pare the maximum degree of the IBGP topologies produced by the BGPSep_S algo-
rithm with those produced by BGPSep or full mesh for these topologies.  Also we 
assume conservatively that all the vertexes in the topology are external BGP 
routers, like [3]. 

The results are shown in Figure 1. We observe that the IBGP configuration pro-
duced by BGPSep_S results in a 27%-68% reduction in the maximum degree of the 
generated IBGP topologies. 
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Laboratory for providing the source code of their BGPSep algorithm. 
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Fig. 1. The maximum degrees of the generated IBGP topologies: Rocketfuel ISP topologies 

5   Conclusion 

This paper discusses the relationship between the complete visibility and IBGP con-
figurations and presents an IBGP topology construction algorithm, called BGPSep_S, 
by taking into consideration the vertexes degrees, the vertexes separators and the 
shortest paths between vertexes in the underlying IGP graph. We prove that 
BGPSep_S guarantees complete visibility in the face of no IGP changes. And the 
performance of BGPSep_S is evaluated on several real-world backbone topologies. 
Experimental results indicate that BGPSep_S can generate an IBGP topology with 
much smaller maximum degree, compared with that generated by BGPSep or a full 
mesh configuration.  
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Abstract. Adaptive REM(AREM) is proposed to support real time
traffic from non real time traffic in routers. In AREM, we classify the
traffics into real time flows and non real time flows and the marking prob-
ability of non real time traffic is increased proportional to the amount of
protected real time traffic until the marking probability reaches its max-
imum limit. Our simulation result shows that AREM provides improved
overall performance to real time traffic in a sense of low loss rate and
bounded delay.

1 Introduction

With rapid growth of the Internet, the amount of real time traffic for multimedia
applications such as internet phone or internet broadcasting has been increased.
The requirements of real time traffic in the Internet are low loss rate and low
end-to-end delay. Routers in the network have to reflect these requirements to
support real time traffic.

Active Queue Management(AQM) such as Random Early Detection(RED)
and its variances[1][2][3] is usually used to control congestion in a router. In-
terestingly, because end-to-end delay is primarily determined by the buffering,
queuing and routing delay of routers, the same resources are related to end-to-end
delay and congestion control. It means that AQM can be used both controlling
congestion and supporting real time traffic in a router. But AQM only has con-
sidered the adaptiveness of traffic flow which is suitable for best effort flows, and
they do not consider other characteristics of traffic such as delay and low packet
loss rate for real time traffic.

Among AQM schemes, Random Exponential Marking(REM)[4] has a good
feature to bound the queuing delay desired by adjusting the target queue length.
But loss rate cannot be assured because REM treats all traffic to the same. And
default parameters are not suitable for real time traffic because stabilized feature
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of REM takes a long time to reach steady state and has a large queue length
before stabilized.

In this paper, we introduce Adaptive REM(AREM) for supporting real time
traffic. AREM treats real time traffic differently from non real time traffic in
dropping packets and uses optimized parameters to bound the queue length
even before steady state reached. For calculating marking probability, we make
a parameter varying pre-defined range. The amount of protecting real time traffic
influences the variance of the parameter.

2 Adaptive REM for Congestion Control and Realtime
Traffic Support

2.1 Random Exponential Marking(REM)

REM decouples the congestion measurement and performance metrics. The
mean queue length in REM can be stabilized around the pre-defined target
while the marking probability increases as the amount of traffic increases, so the
queueing delay is not affected[4].

In REM, the degree of congestion based on mismatches is represented by
’price’. Eq. (1) shows how the price pl(t) can be calculated by mismatches for
the queue l and the period t.

pl(t + 1) = [pl(t) + γ(αl(bl(t)− b∗l ) + xl(t)− cl(t))]+ (1)

where γ > 0 and α > 0 are small constant and [z]+ = max{z, 0}. And bl(t) is
amount of buffer in period of t, b∗l is target queue length, xl(t) is input rate and
cl(t) is available link capacity.

In eq. (1), xl(t) − cl(t) means the mismatch of input rate and bl(t) − b∗l is the
mismatch of queue length. α is weight factor between queue length mismatch and
input rate mismatch. And γ is weighting factor of current price and previous price.

The marking probability is defined with exponential equation as eq. (2).

ml(t) = 1− φ−pl(t) (2)

2.2 Adaptive REM

Although REM has a possibility for supporting real time traffic, it still has some
problems. Firstly, there is no discrimination for real time traffic because the
main purpose of REM is congestion control in routers like other AQM. Secondly,
there is big fluctuation of queue size with default parameters before it reaches
the equilibrium state and the period of exceeding queue size than target queue
size precedes steady state. In the un-stabilized period, real time traffic suffers
from large queuing delay due to large queue length.

To support real time traffic with REM, we must protect real time traffic from
non real time traffic. We can achieve this by artificially manipulating marking
probability whenever we enqueue non-conforming real time packet. Following
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non real time packets are applied higher marking probability than usual one. The
increased marking probability prevents the queue from increasing by enqueuing
non-conforming real time packets.

In eq. (1), enqueuing real time packets increase bl(t), so queue length mismatch
also increases. But the next price increase are limited by α and γ, so the next
marking probability growth in eq. (2) is minimal. This causes steadily growth
of queue size. To remedy this problem, we must change the marking probability
artificially by changing φ in eq. (2). The φ was a constant value in REM.

To make φ change dynamically, we introduce new parameters, φmin, φmax

and Δ. φmin and φmax are the minimum value and the maximum value of φ
respectively. And Δ is an increasing or decreasing unit of φ. When a packet for
the real time traffic is arrived, we increase φ by Δ until it is not over the φmax

after the packet is enqueued. And for the non real time traffic, we decrease φ by
Δ while it is not below the φmin.

To solve the second problem, we must adjust the REM’s parameters to make
un-stabilized period shorten. But because of REM’s basic characteristic of sta-
bilized feature, it is impossible to eliminate un-stabilized period entirely.

We make a strong restriction about exceeding target queue length to minimize
un-stabilized period. If we applied the restriction based on target queue length,
current queue length may have exceeded already target queue length. New pa-
rameter pq is introduced to estimate threshold value for applying the restriction.
If the current buffer size exceeds b∗× pq, we apply the restriction to prevent the
queue from excessive growing by increasing φ value aggressively to φmax. pq is
a constant value between 0 and 1.

3 Simulation Studies

We investigate the performance of AREM for supporting real time traffic using
ns-2[5] network simulator. We use two types of network, single link network and
multilink network.

3.1 Single Link Network

We compare three types of schemes for single link network: S1, S2 and S3.
S1 is original REM. S1 cannot aware whether the arriving packet is real time
traffic and it applies same fixed φ for all incoming packets. S2 is REM with only
protecting real time traffic. S2 has the ability to distinguish real time traffic,
but S2 uses fixed φ like S1. S2 just enqueues every real time packet without
dropping. And S3 is proposed AREM scheme.

Single link network topology is shown in Fig. 1. Link delay of all link is 10ms
and link capacity is 2 Mbps except link between routers. And link between
routers is 1 Mbps. There are total n + m sources which are serving CBR service
with 70 kbps. These are all UDP services, and only n sources consider as real time
traffic reserved. Common parameters for S1, S2 and S3 are α = 0.1, γ = 0.001
and b∗ = 25. And S1 and S2 have same fixed φ as 1.005. For S3, we assign the
parameters with φmin = 1.005, φmax = 1.05, Δ = 0.001 and pq = 0.7.
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Fig. 2. Bandwidth of real time and non
real time traffic with three schemes
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Fig. 3. Queue Length of three schemes
at router R1

We simulate with n=10 and m=10. All of non real time traffic started at 30
seconds, and real time traffic is starting at 60 seconds and one by one every 30
seconds.

Fig. 2 shows the bandwidth of three types of schemes respectively. With S1
in Fig. 2 (a), there is no difference between real time traffic and non real time
traffic. So every traffic converges the fair shared bandwidth of the link capacity,
50 kbps. S2 in Fig. 2 (b) can distinguish the real time traffic from others. The
real time traffic has fully serviced with its service rate 70 kbps and other traffic
served with remain capacity. S3 in Fig. 2 (c) looks like all most same as S2’s
bandwidth allocation.
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However, the queue length variation in Fig. 3 shows the difference of S2 and
S3. S1 has big oscillation in queue length. S2 has same big oscillation and it goes
up more than S1. This phenomenon is expected because the enqueued packet,
which should be dropped, causes the queue length growth in short time. So
the smoothed marking probability in REM cannot cope with rapid queue size
growth. With S3, there is no such oscillation and almost all queue length is below
the target queue length 25.

3.2 Multilink Network

Multilink network is used to verify the AREM’s performance in various network
traffic combined and traffic flowing through multiple AREM routers. Multilink
network topology is shown in Fig. 4. There are three groups of flows, S to D,
Sx to Dx and Sy to Dy. We can send three type of traffic for each group. In
our simulation, the real time traffic flows from S to D. Sx to Dx and Sy to
Dy are non real time traffic flows. Five real time traffic source and thirty UDP
sources(CBR, fifteen each) are used. And all CBR traffic services with 70 kbps.
Link delay of all link is 10ms and link capacity except link between routers is
2 Mbps. And link between routers is 1 Mbps. All parameters are the same as
single link network topology with S3 scheme.

Fig. 5 shows the end-to-end delay from S1 to D1. The graph shows good exam-
ple for end-to-end delay is bounded. In multilink network, Fig. 4, total link delay
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Fig. 4. Multilink(parking lot) network
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from S to D is 40 ms. When a packet length is 1000 bytes and maximum queue
size is 25 at link bandwidth 1 Mbps, the maximum queueing delay at an AREM
router is 20ms. Therefore, theoretical maximum end-to-end delay is 80 ms. Note
that last router R3 does not cause queueing delay. Fig. 5 shows the end-to-end
delay of each packet arrived at Di, which matches with the theoretical limit.

4 Conclusion

We have proposed AREM protocol for supporting real time traffic and shown
that AREM does protect real time traffic with bounded queue length by modi-
fying REM scheme. We have modified REM parameters to adapted to be more
suitable to real time traffic. It turned out that parameter must be dynamically
changed to reflect current router states. We achieve this by modifying marking
probability equation and discriminating non real time traffic. In addition, ex-
cessive queue length problem in the un-stabilized period in REM is lessened by
aggressive marking probability increase.

AREM displays suitable performance parameters such as the bandwidth us-
age, the queue length and the end-to-end delay for real time traffic. AREM is
specially suitable for less strict QoS classes such as Controlled-Load service in In-
tegrated Service[6] or Assured Forward(AF) service in Differentiated Service[7].
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Abstract. This paper presents a new precomputation algorithm for Multi 
Protocol Label Switching (MPLS) traffic engineering routing. The prior MPLS 
routing algorithms try to minimize the interference between different source-
destination pairs by circumventing the critical links. But the process of 
identifying critical links is very computationally expensive. The main 
contribution of this paper is a new precomputation approach of route selection 
considering the interference. The proposed algorithm reduces online computing 
complexity through efficient precomputation. From the simulation results, the 
proposed algorithm outperforms prior algorithms in terms of efficiency and 
complexity. 

1   Introduction and Related Works 

Nowadays, the most frequently used routing algorithm in Internet is the Shortest-
Path-First (SPF) algorithm. This algorithm may potentially cause some links being 
bottleneck and lead to poor resource utilization. So based on SPF, many algorithms 
which consider load balancing have been proposed, but MIRA [1] is the first 
algorithm which utilizes the knowledge of SD pairs and considers the interference 
phenomena. The problem of minimum interference routing is to find a path that 
maximizes the maxflow between all other SD pairs. This problem is shown to be NP 
hard. So M. Kodialam et al. give a heuristic algorithm - MIRA. The core notion of 
MIRA is “critical link”. MIRA tries to avoid routing LSPs on such critical links of 
other SD pairs. So it performs better than former algorithms.  

But MIRA also has some shortcomings. One shortcoming is that some links which 
are believed as non-critical by MIRA are shown to be indeed very important. S.Suri et 
al. illustrated this point by some special topologies [2]. Bin Wang et al. propose 
NewMIRA algorithm which utilizes maxflow value of SD pair and sub-flow value on 
the link to estimate its importance [3]. In [4], the authors provide an algorithm which 
divides the link criticality into multiple classes.  
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The other shortcoming of MIRA is that the complexity of maxflow computation is 
very high. This limits MIRA’s application in practical networks. W.S.S. et al. propose 
a new notion of interference [5] which uses the number of possible paths per link to 
denote link’s criticality. W.S.S.’s approach reduces the complexity. In [6], the authors 
use the notion of criticality threshold to precompute more effectively.  

This paper propose a new pre-computation approach for routing bandwidth 
guaranteed label switch path, which tries to consider influence resulted by all critical 
or “non-critical” links. Our approach reduces online computation complexity through 
efficient pre-computation. Extensive simulations were carried out to evaluate the 
performance of the proposed algorithm. The result shows that our approach performs 
better than former algorithms. 

The rest of this paper is structured as follows. Section 1 reviews the main idea of  
MIRA and some related works. In Section 2 we propose a new pre-computation algori-
thm for routing bandwidth guaranteed flows, and describe it in detail. In Section 3,  
the efficiency of our new algorithm is evaluated and finally, Section 4 concludes our work. 

2   Proposed Algorithm 

2.1   System Model 

Given a network represented by a directed graph (V,E) where V is a set of nodes and 
E is a set of links. The number of nodes is n and the number of links is m. The LSP 
setup requests are between specific source nodes and destination nodes. The SD pairs 
are {S0,D0},{S1,D1},…,{Sp,Dp},  where p is the number of SD pairs. We denote all these 
SD pairs by a set P. Each LSP set-up request arrives at ingress node. The requests 
arrive online, one by one, and there is no prior knowledge for future demands. Each 
ingress router knows the whole network’s topology and state information of the links. 
The initial capacity of link l is denoted as R(l), while the current available bandwidth 
is r(l). The LSP request ri is defined by a triple (si,di,bi), where (si,di) P, and bi is the 
amount of bandwidth required by the LSP. The objective is to find a feasible path (if 
exists) for LSP request ri, otherwise the request will be rejected. In this paper, we 
focus on the routing of bandwidth guaranteed paths. No rerouting or request splitting 
is allowed. 

2.2   Proposed Algorithm’s Details 

In this section, we will present our approach’s details. We consider not only the 
critical links, but also “non-critical” links. The sum of sub-flows belong to different 
SD pairs traveling through the link will be used to estimate its interference degree. 
The residual bandwidth and hop counts are also considered. We will define a novel 
link weight function here:  
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Where sdα  represents the relative importance of SD pair (s,d). And ( )sdf l  is the 

amount of sub-flow traveling through the link l when the maximum flow between 
(s,d) is achieved. The item C is a control constant. 

In the link weight function, link’s residual bandwidth r(l) denotes the link’s ability 
to hold future LSP requests. If the residual bandwidth is bigger, the link weight will 
be smaller and the algorithm will try to route LSP through such links. And if 

( )sd sdf lα  is bigger and 
( , ) \( , )

( )ab ab
a b P s d

f lα
∈

is smaller, we believe that routing request 

through link l will cause less impact on other SD pairs. So the algorithm will trend to 
route LSP on such links. Otherwise the algorithm will trend to avoid such links. 

If ( ) 0sdf l = , it shows that there is no flow traveling link l when the maximum flow 

is achieved. Because the way to achieve maximum flow is not distinct, it doesn’t 

mean the request can’t travel through link l. So we use  ( )r l  as a substitute for ( )sdf l .  

Item C is a dynamic control constant. If constant C is chosen very big, the 
algorithm behaviors like SPF. If C is chosen relatively small, the algorithm trends to 
minimize the interference and balance the load. 

But calculating this link weight still needs p maxflow computations. This is 
expensive for online routing. In order to reduce the online complexity, our algorithm 
adopts two phases - precomputation phase and online routing phase. Through 
effective precomputation, our approach could reduce online complexity successfully. 

In the pre-computation period ( 0,1, 2, ...)kt k = , we compute maximum flow for 

each SD pair and record the sub-flow at that time ( , )sd kf l t . These values will be used 

by online phase to predict the degree of link congestion. The pre-computation phase 
runs periodically, or anytime the topology and the SD pairs changed. 

In the online phase, given an LSP request (s,d,b) to be routed, we try to estimate the 
impact of routing current request on the link to other SD pair by a link weight 
function as below. 
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The algorithm’s detailed pseudo code is listed below. 

The Proposed Algorithm 
INPUT: A residual graph G = (V, E), a set P of all the source-destination pairs and LSP 
request r (s, d, b), which is a request for b bandwidth units between pair (s, d). 
OUTPUT: A path from s to d with b bandwidth units. 
PRECOMPUTATION PHASE: 

At the pre-computation time point ( 0,1, 2, ...)
k

t k = , ( , )a b P ∀ ∈  

1: Compute the maximum network flows,  

2: l E ∀ ∈ , record the amount of flow passing through the link- ( , )ab kf l t . 

ONLINE PHASE: 
1: Compute the weight w(l) for all l E according to equation (2) . 
2: Eliminate all the links whose residual bandwidth less than b. 
3:  Run Dijkstra algorithm using w(l) as the weights in the reduced network. 
4: Create an LSP from s to d with b bandwidth units and update the links’ available 

bandwidth. 

2.3   Complexity Analysis 

In precomputation phase, computing maxflow for each SD pair using the highest label 
preflow-push algorithm needs ( )2O n m . There are p SD pairs, so the computation 

need totally ( )2O pn m . This is on the same level as MIRA and NewMIRA’s  

(( ) )2O p 1 n m− .In online phase, Step 1 and step 2 both need O(m). Step 3 

needs ( )2O n . So the online computation complexity is only ( )2O n .  
If the network state changes frequently, the algorithm will have to execute pre-

computation more frequently and the total run time of algorithm will increase. But in 
the worst case, its complexity is no higher than MIRA and NewMIRA. 

3   Performance Studies 

The network topology and SD pairs used in the simulation are shown in figure 1. This 
topology was first used by M.S. Kodialam et al. in [1].  

 

Fig. 1. The KL topology [1] 
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Lighter links have capacity of 1200 bandwidth units, while the darker ones have 
4800 units. Links are bi-directional. Requests were randomly generated using the 
uniform distribution of bandwidth demand in the interval [1, 4]. The LSPs are long 
lives. 8,000 requests were randomly generated among the five SD pairs. Our 
algorithm runs at the intervals k=128. In this scenario, we assume the accurate 
resource availability information is available when selecting the route. And the 
constant C in the weight function is set to zero. 

Figure 2 presents the number of rejected requests. From the figure we can see that 
both our proposed algorithm and NewMIRA rejected fewer requests than SPF and 
WSP all the time. And our algorithm rejected fewer requests than NewMIRA after 
5000 requests, when the pre-computation period is 128.  
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Fig. 2. Total rejected requests in KL topology 

Figure 3 shows the amount of accepted bandwidth till up to total 8000 requests.  
After 7000 requests, the network is almost saturated. From the figure we can see  
that our proposed algorithm also accepts more bandwidth than NewMIRA when the 
precomputation period is 128. These two algorithms perform better than SPF and WSP. 
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Fig. 3. Total accepted bandwidth in KL topology 
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From table 1, we can found that the total computation time of our proposed 
algorithm is much less than the NewMIRA algorithm, although a little higher than 
CSPF algorithm.  When the precomputation period increases, the computation time 
will also decrease. But if the network status and traffic requests surge frequently, 
longer precomputation period (i.e. 512, 1024) will leads to worse performance. So 
there is a compromise to be considered when adjusting the precomputation period. 

Table 1. Total computation time till 8000 requests in KL topology 

Algorithm CSPF WSP  NewMIRA Proposed(128) 
Run time (sec) 0.80 0.80  4.68 1.02 

4   Conclusion 

In this paper, we proposed a novel precomputation algorithm for traffic engineering 
routing. Our proposed algorithm considers both the critical and non-critical links. 
Through effective precomputation, our approach reduces online complexity greatly. 
Simulation results show that the proposed algorithm performs better than former 
algorithms. We will try to test the proposed algorithm’s performance in more practical 
scenarios, and investigate that how the change frequency of topology affects the 
algorithm’s performance. We will also try to consider re-routing and multi-path 
routing with MPLS traffic engineering in the future. 
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Abstract. Clustering for mobile ad-hoc networks (MANETs) has at-
tracted the interest of many researchers as it offers enhanced scalability
and performance improvement. The main challenge of the clustering algo-
rithms is the formation of stable clusters despite the topological changes
due to the host mobility. In this paper, we present a novel clustering
algorithm, which first predicts the future host mobility and then uses
this information to build a stable clustering structure over hosts that
will probably exhibit low mobility in the future. In this way, long life-
time for the clustering structure is guaranteed, thereby eliminating the
need for frequent reclustering. For predicting the future host mobility, we
use provably good information theoretic techniques, which allow on-line
learning of a reliable probabilistic model for future mobility.

1 Introduction

Clustering [1] is a promising approach for enhancing the scalability of mobile
ad hoc networks (MANETs) in the face of frequent topology changes mainly
due to the host mobility. Clustering not only makes a large MANET to appear
smaller, but more importantly, it makes a highly dynamic topology to appear
less dynamic [2]. In clustering, a representative of each cluster is elected as a
cluster head (CH) and a mobile host (MH), which serves as intermediate for
inter-cluster communication, is called gateway. Remaining members are called
ordinary MHs. CHs hold routing and topology information while the boundaries
of a cluster are defined by the transmission area of its CH.

The feasibility of a clustering method is determined by the stability of the
cluster structure that it creates, despite network topology changes. Otherwise,
frequent reclustering is required thereby creating a large volume of control mes-
sages which in turn consume considerable bandwidth and drain MHs’ energy
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quickly. As the main cause for topology changes in MANET is the host mobility,
an efficient clustering method should seriously take the movements of MHs into
account in order to form clustering structures resistant to the host mobility.

Many researchers [2, 3, 4, 5, 6, 7, 8] have acknowledged the importance of host
mobility estimation for building clustering schemes more stable and less reac-
tive to topological changes of ad-hoc networks. Authors in [2] propose the (a, t)
clustering scheme, where MHs form clusters according to a path availability
criterion. The network is partitioned into clusters of MHs, that are mutually
reachable along cluster internal paths which are expected to be available for a
period of time t with a probability of at least a. The parameters of this model are
predefined. In addition, it is assumed that the movement of each MH is random
and entirely independent of the movements of other MHs. However, this ran-
dom walk model cannot always capture some host mobility patterns occurring
in practice in MANETs.

MOBIC in [3] elects as CHs the MHs which exhibit the lowest mobility in
their neighborhood. Each MH compares the receiving signal strength from its
neighbors over the time and uses the variance in these values as an indication
of how fast this MH is moving in relation to the neighboring MHs. MOBIC
uses only the current mobility to determine the most suitable MHs for CHs.
As an extension of MOBIC, MobDHop [4] also uses the variability in receiving
signal strength as a hint of neighborhood mobility and builds variable-diameter
clusters. It uses more samples of receiving signal than MOBIC to predict the
future mobility but again the prediction model is rather simple since it is based
on the assumption that the future mobility patterns of MHs will be exactly the
same as those of the recent past.

DMAC in [5] and GDMAC in [6] proposed by Basagni are generic weight-based
clustering schemes, where MHs with the highest weight among neighboring ones
are elected as CHs. Basagni suggested to use the inverse of the speed of MHs as
a weight in its scheme. However, he does not give any method for determining
the speed of MHs. WCA in [7] is also a weight-based clustering technique which
extends the work in [5,6]. The weight in this scheme is determined by considering
various factors that affect the suitability of a MH as a CH. Among these factors
is host mobility. Specifically, each MH measures its average speed by sampling
its position coordinates at regular time intervals. This method of measurement
requires the use of a GPS device on each MH, which is not always feasible.
Furthermore, this method fails to capture the correlation that may exist among
the movements of neighboring MHs as in the case of group movement.

Information theory based techniques for host mobility prediction have been
first employed in [10], where the authors focused on the problem of mobile track-
ing and localization on cellular networks. Later, Sivavakeesar et. al [8] used the
basic technique of [10] in their cluster formation algorithm for MANETs. A basic
assumption in their work is that a geographical area is divided into circular-
shaped regions named virtual clusters and each MH knows the virtual cluster
where it is currently in. So, the ad-hoc network in their technique is very much
like a cellular one and the ideas in [10] can be easily applied.
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In this paper, we propose a novel mobility-aware technique for cluster forma-
tion and maintenance. The main idea in our technique is to predict the future
mobility of MHs so as to select CHs that will exhibit the lowest future mobility
in comparison to the other MHs. As a measure of host mobility rate, we use the
probability of a MH having the same MHs in its neighborhood for sufficiently
long time. A high probability value for a MH indicates a relatively immobile
host or the existence of a group of MHs around this particular MH that exhibits
the same mobility pattern. Whatever the case is, this MH is apparently a good
candidate for a CH, because in all probability, it will serve the same neighbors
for a long time. For predicting the future mobility of a MH, we make the realis-
tic assumption for most MANETs that the movements of MHs are not random
but demonstrate a regular pattern, which can be predicted provided that enough
“historic” information has been gathered for the movements of each MH. For the
organization of the historic record and the prediction of future mobility based
on this record, we borrow context modelling [11] based prediction techniques
from the field of data compression. Note also that we do not make any use of a
fixed geographical partition in contrast to all previous works [10,8] and thus the
notion of cells is irrelevant to our technique.

Besides the stability of the clustering structure, an important objective in
cluster creation is to keep the number of elected CHs relatively low so that
the virtual backbone built over these MHs will be of correspondingly small size
and hence routing update protocols could be efficiently ran on this backbone.
The well-known highest connectivity (degree) algorithm [1] promises the elec-
tion of relatively few CHs. In this paper, we propose a new clustering algorithm
named MobHiD, which combines the highest degree technique with our mobility
prediction scheme and ensures a relatively small as well as stable virtual back-
bone despite host mobility. The performance of our technique was verified via
simulation experiments, which compared our algorithm with other competitive
techniques of the literature.

Note that our mobility prediction technique is of independent interest and
may be combined with other clustering algorithms to enhance the stability of
the derived clustering structure in the presence of frequent topology changes.

The paper is organized as follows. In Sect. 2, we discuss our mobility prediction
method. In Sect. 3, we present our MobHiD clustering algorithm which uses the
mobility prediction method. Section 4 addresses the details of the distributed
implementation of MobHiD and then Sect. 5 discusses the simulation results
about the performance of our clustering technique. Finally, Sect. 6 concludes
the paper by summarizing the main contribution of our work.

2 Our Mobility Prediction Method

A MH is considered a good candidate for CH if its neighborhood is relatively sta-
ble in comparison to the neighborhoods of other candidate hosts. Let neighi,t =
(i0, i1, i2, . . . , int−1) be the nt neighboring MHs of MH i at time step t. Somehow,
we have to estimate the probability of the stability of this neighborhood, i.e.,
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the probability P (neighi,t) that this neighborhood will remain the same in the
following time steps. By making the simplified assumption that the presence of a
MH among the neighbors of MH i in the future is independent of the presence of
any other host, we can equivalently write the probability P (neighi,t) as follows:

P (neighi,t) = P (i0)P (i1) · · ·P (int−1)

where P (ij) is the probability of MH ij being among the neighbors of MH i in
the following time steps.

To estimate the above probability for each MH, we need a way to predict the
movements of MHs after any given moment. This prediction should not involve
complex calculations for this computation should be carried out on MHs with
limited battery power and rudimentary processing capability. To this end, we
can use prediction techniques, that have been successfully employed in the field
of data compression. If we consider each neighborhood of a MH as a symbol
of an alphabet, we can use this kind of techniques to predict the next sym-
bol/neighborhood. Compression and decompression algorithms for images and
video are routinely included in the software of new mobile phones and devices as
their implementation does not have a prohibitive cost. Most successful compres-
sion methods use context-modelling techniques, which estimate the appearance
probability of the next symbol in the text given that a substring (context) has
already been seen. A digital-trie structure is typically used for organizing the
contexts we meet as we are parsing the text. For updating this structure, we
use an heuristic similar to that used in the LZ78 algorithm [12]. Specifically, a
dictionary of common substrings found in the text is organized using a digital
trie structure. Updating proceeds as follows:

1. Initially the dictionary is empty.
2. Examine the remaining input stream and search for the longest prefix which

has appeared in the dictionary.
3. Add the prefix followed by the next symbol in the input stream to the dic-

tionary.
4. Go to Step 2.

In our method, for a MH i, each symbol is the tuple of MHs that are neighbors
of MH i at any given moment and the input stream is the sequence of neighbors
of MH i over time. An example of our technique is illustrated in Fig. 1. Specif-
ically, we see how a sequence of neighborhoods of MH 0 is parsed and inserted
into the digital trie structure. The dashed lines on the left delimit the parsed
subsequences of the neighborhood sequence. The cost of updating is minimal.
Since, each new subsequence added to the dictionary consists of an already seen
neighborhood subsequence followed by an extra neighborhood, the insertion of
the new context in the dictionary requires only the addition of one leave at the
end of the trie path corresponding to the longest prefix of step 2. Clearly, each
trie node is associated with a neighborhood subsequence found during the pars-
ing of the input neighborhood sequence and also has a counter, which shows how
many times we have met the corresponding subsequence during this process.



A Mobility Aware Technique for Clustering on Mobile Ad-Hoc Networks 401

For instance, the trie node labelled {(1, 2, 3, 4), 6} shows that the sequence of
neighborhoods (1, 2, 3), (1, 2, 3, 4) has been met 6 times in total during parsing.
Note also this sequence includes all the node labels along the path from the root
to the node {(1, 2, 3, 4), 6}. Also in step 2 above, as we follow down the path
from the root to the leaves, we increase by one the counters of all the nodes we
visit. After a while, this node counter accumulation builds reliable conditional
probability estimates. Specifically, given that we have met a particular neigh-
borhood subsequence and so we are at a particular node in the trie, the counter
of each of the children of this node is a measure of the conditional probability of
what neighborhood appears next in the input neighborhood sequence. Clearly,
the skewer the probability distribution of the next possible neighborhoods, the
better the prediction of what really follows.

Now, we are mainly interested in estimating the probability of a MH j ap-
pearing in the neighborhood of MH i given a particular sequence of recent neigh-
borhoods, say neighi,t−r, neighi,t−r+1, · · · , neighi,t. First, we count the number
of appearances of MH j in all the nodes of the subtrie which has as a root the
node corresponding to the neighborhood sequence neighi,t−r, neighi,t−r+1, · · · ,
neighi,t. Then, we find the total number of neighborhoods that they have ap-
peared after this particular sequence of neighborhoods by summing the counts
of the nodes of the subtrie. Finally we get the appearance probability of MH
j by dividing the first number with the second one. For example, given that
the last two neighborhoods of MH 0 are the (1, 2, 3), (1, 2, 3, 4) (and so the cur-
rent neighborhood is the (1, 2, 3, 4)) we can easily see that the probability of
MH 1 and 4 still being a neighbor of MH 0 from then on is 3+1

2+3+1+1+1 (= 4
8 ) and

2+1+1
2+3+1+1+1 (= 4

8 ) respectively while the same probability for MHs 2 and 3 is 1. So,
the probability that MH 0 will keep having the current neighborhood (1, 2, 3, 4)
in the following time steps is the product of the appearance probabilities of each
MH, that is 42

82

An interesting question about our technique is how much predictable the
neighborhoods formed at each step really are. The formation of a particular
neighborhood around a MH is not the result of the behavior of only this MH
but it is the cumulative effect of the behaviors of a number of MHs at the same
time. So the probability of the next neighborhood at a particular trie node may
not be as biased as we would wish. Another difficulty is that each symbol in the
trie now is a tuple of the ids that are neighbors of MH i. This could result in a
large number of trie nodes and in addition many of the counts in the trie nodes
may not have accumulate enough to be considered as statistically significant.

In order to alleviate these problems, we modify the basic scheme. We introduce
the slack variable k and also allow each trie node to store a number of neigh-
borhoods, where each neighborhood in this set differs in at most k MHs from
all other neighborhoods in this set. Formally, neighborhoods neighi and neighj

are stored in the same node only if |neighi − neighj| + |neighj − neighi| ≤ k
where − is the set difference operator. Now, as we go down the trie, the new
neighborhood encountered at each step is checked against each of the possible
children of the current trie node. We insert the new neighborhood to the first
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Fig. 1. An example of trie construction

child for which the condition above is not violated after that insertion. If none
of the children satisfies the condition above, we create a new trie node as a child
of the current trie node. This newly created trie node will contain only the new
neighborhood. An important detail of this scheme is that we separately count
the number of appearances of each individual neighborhood inside each trie node
so that the neighborhood appearance probabilities can be accurately computed.
With this modified scheme, we drastically reduce the number of trie nodes. This
in turn allows the build-up of statistically significant counter values, which can
be reliably used for the estimation of the appearance probability of MHs in the
neighborhood of a particular MH.

3 Mobility Aware Highest Degree (MobHiD) Technique

The distributed implementation of our technique should create a stable clustering
structure with minimal control overhead. As the CHs and gateways will form the
virtual backbone through which messages will be routed on the ad-hoc network,
the size of this backbone should be kept as small as possible so that the delay
of message routing is correspondingly small. Also, we opt for one-hop clusters
where each MH is one-hop away from its CH. In this way, the routing decisions
inside each cluster are straightforward and there is no need for involved routing
update protocols within each cluster.

The highest degree (HD) clustering algorithm [1] is a clustering scheme that
creates a relatively small number of one-hop clusters and thus a small-size rout-
ing backbone. In this technique, each MH having the highest degree among all
its neighbors is elected as CH. The degree of each MH is the number of one-hop
adjacent MHs. The main weakness of the technique is the frequent CH changes
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due to host mobility. However, by combining the HD technique with our mo-
bility prediction scheme, we substantially eliminate the instable behavior of the
technique. More precisely, we define the weight wi for each MH i as follows:

wi = a1 · P (neighi) · di + a2 · avg di (1)

where P (neighi) has been defined in the previous section and is the probability
that the current neighborhood neighi of MH i will remain the same in the future.
Also, di is the degree of MH i, i.e., the number of neighbors in neighi, and avg di

is the average degree of the future neighborhoods of the MH i, which can be easily
computed from the information contained in the subtrie having root the current
neighborhood neighi. Finally, the coefficients a1 and a2 are used to give more
weight to the first or the second term in the sum expression above.

A large value of weight wi practically means that the MH i is surrounded
by many neighbors that will remain in the vicinity for a long time with high
probability. In addition, due to the second term in the weight expression, it
is very likely that MH i will continue to be surrounded by a large number of
neighbors in the future too. So, by electing as CHs hosts that have the largest
weight value in their neighborhood, we can obtain a small-size virtual backbone,
which will remain stable despite host mobility.

4 Distributed Implementation

In the proposed mobility prediction method, each MH i should compute its
weight wi according to the weight formula (1). Therefore, each MH should know
its neighbors and how its neighborhood changes over time. This implies a periodic
exchange of HELLO messages, namely messages HELLO(clusterhead?,wi) so
that each MH i can inform its neighbors about its presence, whether it is a
clusterhead or not and about its weight. The information carried by the two
fields of the HELLO message proves useful when a MH wishes to affiliate another
cluster or during reclustering.

Cluster Formation. With regard to the cluster formation, the distributed im-
plementation should tolerate possible topology changes while cluster creation
is in progress. Our method for cluster formation adopts some ideas of the dis-
tributed implementation of the DMAC clustering algorithm [5]. However, in our
scheme the host weights are determined from the weight formula (1). Note that
on the system startup, MHs have not yet gathered statistics in their trie struc-
ture and hence the initial CH election is carried out essentially according to the
HD technique, i.e., in formula (1) we set wi = di.

Cluster formation is done as follows: Each MH u that has the highest weight
among its neighbors broadcasts the message CLUSTERHEAD(u) to its neigh-
bors, thus declaring its decision of being CH. If the MH u does not possess the
largest weight in its neighborhood, first it waits for the decision of all the MHs
that have larger weight than its weight and then it decides its own role (CH or
ordinary MH). More precisely, there are two cases. First, if MH u has received
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at least one CLUSTERHEAD message, it joins the cluster of the MH, say MH
v, which has the highest probability of still being neighbor in the future in com-
parison to other MHs that sent CLUSTERHEAD messages. This information
can be easily obtained from the trie structure of u. Then, MH u broadcasts the
message JOIN(u,v) to communicate its decision to its neighbors. However, if MH
u received only JOIN messages from all neighboring MHs with larger weights,
this simply means that all these MHs have deferred to other CHs. Now, MH u
is free to become a CH and thus it broadcasts the CLUSTERHEAD message to
its neighbors.

Cluster Maintenance. Our method for cluster maintenance eliminates the prob-
lem of frequent CH changes, by allowing a MH to become a CH or to affiliate with
a new cluster without starting a reclustering process. In addition, our method
does not suffer from chain reaction effect [13] where local changes in clusterhead
roles may propagate over the network. Indeed, in case of reclustering, the size
of the affected area is effectively controlled by our method. In the following, we
give a high-level description of the Cluster Maintenance.

First, if an ordinary MH u cannot connect to its CH anymore, it tries to
find another neighboring CH v and then affiliates to the corresponding cluster
by sending the message JOIN(u,v) to v. If more than one CHs exist in the
neighborhood of u, it connects to the CH having the highest probability of still
being neighbor in the future in comparison to other neighboring CHs. In the
case that there is no CH in its vicinity, then u becomes a CH.

Reclustering may be initiated only by a CH. Specifically, reclustering is trig-
gered, only when a CH realizes that the number of CHs having gathered in its
neighborhood is above a particular threshold L. Due to the periodic exchange of
HELLO messages, each CH can easily and rapidly check if the condition above
for reclustering actually holds.

As said before, a difficult issue about reclustering is the extent of the area
that will be affected by this reclustering. It is possible for a single local change
in topology to trigger global reclustering with considerable control overhead. To
avoid global reclustering in our scheme, we restrict reclustering locally around
the CH that triggers the new reclustering. We introduce the parameter cl extent,
which determines the clusters around the triggering CH that will participate in
the reclustering. Specifically, when a CH triggers a reclustering, it broadcasts the
message RECLUSTER(cl extent) to its neighbors. Then these neighbors receive
the message, change their state from INACTIVE to ACTIVE and relay the
message to their neighbors. When a CH receives the message, it first decreases
by one the value of cl extent and then sends the message. The last CH that
reduces the value of cl extent to 0 sends the message to its neighbors and the
receiving MHs stop flooding the message any longer. After having received the
RECLUSTER message, the MHs start executing the clustering algorithm. MHs
which still remain in the state INACTIVE ignore any message CLUSTERHEAD
or JOIN that arrives from neighboring MHs. However, all the MHs that will
participate in a reclustering are not activated at the same time because the
RECLUSTER message does not reach all relevant MHs instantly. So each MH
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(a) transmission range=100m (b) transmission range=200m

Fig. 2. Average number of CHs versus total number of MHs

waits for a while before starting the clustering algorithm so as to ensure that
all relevant MHs have been activated. Specifically, if the MH has been activated
by the receipt of the message RECLUSTER(cl extent), then the MH needs to
wait for (3 · cl extent+1) ·T seconds at most, where T is an upper bound of the
message transfer delay over a single link. Indeed, that much time is needed at
most for the RECLUSTER message to traverse the remaining cl extent one-hop
clusters.

If a MH receives a new message RECLUSTER(cl extent′) while waiting for
starting the clustering algorithm, it extends its wait for another (3 · cl extent′ +
1) · T seconds in order to accommodate the new reclustering request. After this
waiting period expires, the MH starts executing the clustering maintenance algo-
rithm. Now, each MH that does not have the largest weight among its neighbors
should wait for a message, either CLUSTERHEAD or JOIN, from each active
neighbor with larger weight than its weight in order to take a decision, i.e.,
whether it becomes a CH or not. However, due to host mobility, a MH may not
be sure about which of its neighbors are actually active and hence whether it
should wait for them before reaching a decision. For this reason, each active MH
investigates the state of each neighboring MH with larger weight by sending the
message INVITE. On receipt of such message, each active MH sends the message
ACCEPT as an answer. Otherwise, when the MH is in the state INACTIVE, it
replies with the message DECLINE. So, a MH that receives one of these replies
from another MH knows whether it should wait for the decision of this particular
MH or not.

An invitation could also come from a MH executing a different instance of
reclustering. So, if more than one reclustering processes are concurrently in
progress, the exchange of INVITE/ACCEPT messages enables the fusion of
these processes into one. Now, the total affected network area is the union of the
affected areas of the initial concurrent processes.
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(a) transmission range=200m (b) transmission range=300m

Fig. 3. Average CH duration versus maximum MH speed

A possible concern about the restricted reclustering is what happens on the
boundary of the affected area. It may be the case that a number of CHs nearby
the boundary have been elected and thus a CH outside the affected area may
trigger again a reclustering. This chain reaction effect can be avoided by properly
setting the L parameter which determines the number of CHs that can be ad-
jacent to a CH before triggering reclustering. Note also that if the transmission
range of each host is R, all the CHs that have been elected in the just finished
reclustering are now at distance greater than R. Now, it can be proved [14] that
in an area of radius R, there can exist at most 5 MHs whose mutual distance is
greater than R and none of them occupies the center of the area. So at most 5
CHs inside the affected area can be neighbors with a CH which is outside the
affected area. By setting L > 5 and assuming that only this specific recluster-
ing event happens over the whole network, we can ensure that CHs outside the
affected area do not unnecessarily trigger the reclustering process again.

5 Simulation Results

The performance of the MobHiD algorithm was tested through a series of simu-
lations on the ns2 simulator. For comparison, we also simulated four other one-
hop clustering algorithms, namely the Lowest ID (LI) [1], Highest Degree (HD),
GDMAC as well as MOBIC. The simulation area was a terrain of 1000× 1000
m2. The hosts were moving according to the random waypoint model [9] with
zero pause time. The speed of each host was selected randomly between 0 and a
maximum value. The maximum value was set a value between 1 and 80km/hr.

Moreover, a number of parameters relevant to each technique were fixed be-
fore the experiments. First, for the MobHiD we set the a1, a2 coefficients to 0.7
and 0.3 respectively. We also set k = 3, L = 6 and cl extent = 3. As a context for
determining the conditional host appearance probabilities in our mobility pre-
diction technique, we used a maximum of 10 successive neighborhoods. Finally,
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we set the broadcast interval of HELLO messages to 1 sec. For GDMAC, by
following the suggestion in [6], we set the weight of each host equal to 81−speed
where speed is the host velocity. We also used k = 6 where k is the maximum
number of neighboring clusters before triggering reclustering. We also set the pa-
rameter h equal to 30. This parameter in the algorithm leverages the frequency
of reaffiliations. Finally for the MOBIC algorithm, we set the Clusterhead Con-
tention Interval (CCI) parameter to 4 sec. The CCI determines how long two
CHs can be neighbors before one of them gives up its role as a CH.

In the first set of simulations (Fig. 2), we studied the number of the formed
CHs versus the total number of hosts for two values of transmission range. For
the same parameter setting, we ran the simulation 50 times. The maximum speed
of each host in these simulation runs was set to 70km/hr. Also, each simulation
ran for 20 minutes and in each simulation we were sampling the number of CHs
every 30 sec. Then we took the average of these samples for each simulation run.
The values in Fig. 2 are the average of these values over the 50 simulation runs.

The LI technique, the MOBIC as well as GDMAC algorithm produce a higher
number of CHs in comparison to MobHiD and HD algorithm. This is because the
first three algorithms are not optimized for minimizing the number of resulting
CHs in contrast to the last two techniques. Note also that MobHiD is close to
the performance of HD. It is also clear that the number of CHs is much lower
when the transmission range is relatively high. Indeed, in the second case the
mobile hosts are more densely connected and thus more hosts gather in each
cluster. This in turn results in much lower number of clusters and hence CHs.

In the second set of results (Fig. 3), we compared the techniques with respect
to the duration of the elected CHs when the maximum speed of hosts increases.
By doing so, we assessed the stability of the derived clustering structure with
increasing host mobility. For these experiments, we used 50 hosts and ran each
simulation with the same parameters 50 times. Each simulation ran for 10 min-
utes. The CH duration for a single simulation run was the average over all the
CHs. Then we got the average of these values over the 50 simulation runs.

From the experimental results, we can see that MobHiD performs much bet-
ter than the other techniques in the face of host mobility. Based on a more
reliable prediction model, our technique ensures more stable clustering structure
in comparison to other mobility-aware techniques. The HD and LI techniques
do not consider the mobility of hosts in the CH election and hence their poor
performance when the maximum speed of hosts is increasing. Again with larger
transmission range, the host connectivity graph is more densely connected and
the adjacency relations of hosts change less frequently despite the increased host
mobility. So now, each CH serves for a longer period before giving up its role.

6 Conclusions

In this paper, we presented a mobility-aware clustering scheme which uses well
known information theoretic techniques for reliably predicting the future mobil-
ity of MHs. The right prediction combined with the highest degree clustering
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technique yields a small number of clusters that are highly resistant to the topo-
logical changes of the ad-hoc network due to host mobility. For measuring the
mobility, we do not use special purpose hardware such as GPS but the mobility
of each MH is inferred from how different the neighborhood of the MH is over
time. In this way, we take into account the strong correlation that usually exists
among the movements of neighboring MHs, thereby achieving accurate predic-
tion of future host mobility. Our results have been verified through simulation
experiments, which showed the high performance of our technique in practice.
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Abstract. 802.11 WLANs are characterized by high bit error rate and
frequent changes in network topology. The key feature that distinguishes
WLANs from wired networks is the multi-rate transmission capability,
which helps to accommodate a wide range of channel conditions. This
has a significant impact on higher layers such as routing and transport
levels. While many WLAN products provide rate control at the hard-
ware level to adapt to the channel conditions, some chipsets like Atheros
do not have support for automatic rate control. We first present a de-
sign and implementation of an FER-based automatic rate control state
machine, which utilizes the statistics available at the device driver to
find the optimal rate. The results show that the proposed rate switching
mechanism adapts quite fast to the channel conditions.

The hop count metric used by current routing protocols has proven
itself for single rate networks. But it fails to take into account other im-
portant factors in a multi-rate network environment. We propose trans-
mission time as a better path quality metric to guide routing decisions.
It incorporates the effects of contention for the channel, the air time to
send the data and the asymmetry of links.

In this paper, we present a new design for a multi-rate mechanism as
well as a new routing metric that is responsive to the rate. We address
the issues involved in using transmission time as a metric and presents a
comparison of the performance of different metrics for dynamic routing.

1 Introduction

The 802.11 physical layer is capable of operating at different rates. The rationale
behind multi-rate support is the need to provide network coverage. Long distance
transmissions are not possible at high data rates. Using lower data rates always
is not a good idea either, since it leads to decreased throughput. It has been
observed that the presence of even a single slow host in the system can degrade
the overall throughput of the system to a level below the lowest rate. Keeping the
data transmission rate fixed is thus not desirable. This motivates the need for a
highly adaptive rate switching mechanism. Multi-rate support has a significant
impact on higher layers such as routing and transport levels. In this paper, we
present a new design for a multi-rate mechanism as well as a new routing metric
that is responsive to the rate.
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Many WLAN products provide rate control support as part of their chipset.
But certain chipsets (for eg., Atheros) do not allow automatic selection of trans-
mission rate. An alternative is to do it at the device driver level using the statis-
tics available. We discuss the design and implementation of an FER based ap-
proach, which could be used at the device driver for finding the optimal rate.
We report on the performance of the proposed state machine using simulations
and real world experiments. It is seen that the performance is quite close to that
of manual configuration.

802.11 networks can operate in two different modes - infra-structure and ad-
hoc mode. In an infra-structure mode, all the communication between the nodes
go through a central entity called the access point. Hence routing has few im-
plications in an infra-structure based network. Ad-Hoc networks are multi-hop
wireless networks consisting of a collection of peer nodes communicating with
each other without support from a fixed infrastructure. Packets might take a
multi-hop path to reach the destination in such a network due to the lack of
access points. Highly dynamic routing protocols are required to adapt the wire-
less system to the frequent changes in channel conditions and topology. These
protocols exchange messages to decide the shortest path between the source and
destination based on some metric.

The hop count metric used by current routing protocols proves to be good for
single rate networks. But it fails to take into account other important factors in a
multi-rate network environment. For example, the rate information provided by
the lower layers can be used to drive the routing decisions. Consider the scenario
in Figure 1. The hop count based metric routing protocols use the path A-B-C
that consists of two slow links. But choosing the path A-D-B-E-C can boost the
system throughput because the transmission time required is less at higher data
rates.

1Mbps

11Mbps 11Mbps

1Mbps

11Mbps11Mbps

C

D

A B

E

Fig. 1. Need for multi-rate aware routing

The two main performance measures that are substantially affected by the
routing algorithm are throughput (Quantity of service) and average packet delay
(Quality of service)[3]. Choosing high rate paths guarantee quantity of service.
The issue is to provide a bound on the delay. Since high data rate links are
shorter, it might be required to traverse more number of hops to reach the des-
tination. The extra backoffs required and the congestion at intermediate nodes
can add to the end-to-end delay experienced by the packet. The metric used for
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routing should strike a balance between throughput and delay. Another critical
issue to be taken into account for routing in a wireless network is the asymmetry
of links. The link characteristics in the forward direction may not be the same as
that in the reverse direction. 802.11 MAC expects an ACK for each packet and
hence the reverse path quality also has an impact on the successful transmission
of a packet. It is desirable to come up with a metric that takes into consideration
the transmission characteristics of link to aid the computation of optimal routes.

We propose transmission time as a better path quality metric. Transmission
time is the amount of time between when a packet is sent and the time when
the corresponding ACK is received. It incorporates the effects of the following
factors: link rate, contention for the channel and asymmetry of links. We present
a performance comparison of the various metrics that could be used for dynamic
routing using real world experiments run on two testbeds (with 3-nodes and
5-nodes).

It is evident that the link rate characteristics of the system can be used to
drive the different layers of the TCP/IP stack. Our work focuses on making
the L2 and L3 layers of the protocol stack multi-rate aware. First, an analysis
is presented for the design of the automatic rate switching mechanism and its
performance is studied using simulations and experiments. The rate switching
mechanism keeps track of the link status to its neighbors and this information
is exported to the IP layer to guide the flows through optimal routes. We use
two test-beds to study the effectiveness of using link quality as the metric for
routing in wireless networks.

The rest of this paper is organized as follows. Section 2 gives the design
for the proposed rate switching mechanism and discusses the result. The design
and implementation details of the transmission time metric and the performance
comparison of the different metrics are presented in Section 3. Section 4 discusses
conclusions and future work.

2 Rate Switching Mechanism

2.1 Design

The IEEE 802.11 standard[1] does not specify the algorithm for switching the
data rate. It is up to the vendors to design and implement such algorithms.
Different approaches that can be used for rate switching include FER, SNR and
throughput based methods. The SNR based method is not practically used, as
the timely and reliable delivery of the SNR information, which is available at
the receiver, cannot be guaranteed. It is also observed that the SNR information
reported by most of the cards is not accurate. A better alternative is to go for
FER based methods using the information available at the transmitter. This
allows the design to be applicable even in systems where the interface does not
provide SNR information.

Statistics available at the device driver. The driver reports either a frame
error or successful transmission of the packet. In latter case, the number of ACK
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failures (retries) is reported. Rate switching is done based on the information
provided by the driver. An unsuccessful transmission implies that even after
7 MAC-level retries (as specified in the 802.11 standard[1]), the packet is not
delivered at the receiver end and hence the rate is to be brought down to a lower
value. Another situation when rate is to be lowered is when transmissions are
possible at higher rates but with more retries. We present the following analysis
to study the effectiveness of down scaling the rate when packets are transmitted
after retries. The transmission time for a packet requiring n number of retries
(excluding contention for channel) is calculated as:

effSBAS = (S+SIFS+ACK) + n*(S+AckTimeOut)
effSRTS = (RTS+CTS+S+ACK+3*SIFS) + n*(RTS+AckTimeOut) where
effSBAS = effective system time for sending a packet with BAS
effSRTS = effective system time for sending a packet with RTS/CTS
S = Time taken to send a data packet
n = number of retries; varied from 0 to 6.

Throughput is given by pktsize/effS where pktsize is the packet size in bits.

T
hr

ou
gh

pu
t

Retries

Retries vs Throughput

1Mbps
2Mbps

5.5Mbps
11Mbps

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 0  2  3  4  5  6

Retries vs Throughput

Retries

T
hr

ou
gh

pu
t

1Mbps
2Mbps

5.5Mbps
11Mbps

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  1  2  3  4  5  6

Fig. 2. Retries vs Throughput (BAS, Pktsize=512 and 1024)

Figures 2 and 3 show the throughput for Basic Access Scheme (BAS) and
RTS/CTS Scheme (RCS). As can be observed from the graphs, even if multiple
retries are required at 5.5Mbps or 2Mbps, throughput cannot be enhanced much
by switching to lower rates. The results indicate that if the number of retries
required at 11Mbps is greater than a threshold, say RETRY THRES, it is ben-
eficial to down scale the rate to 5.5Mbps. From, figure 2, we can find that the
RETRY THRES value is 0. From figure 3, the retry value at which the switching
needs to be done is 1 for 512B pktsize and 2 for 1024B. We take the “optimal”
value of RETRY THRES to be 2, considering the different scenarios.

State Machine. The state machine (Fig 4) uses frame error for predicting the
optimal rate for 802.11b networks. The various states are as follows:

1: STATE 110. When transmission is at the highest possible rate (11Mbps),
the station is in STATE 110 state. If the number of retries required for a suc-
cessful transmission is greater than RETRY THRES, the rate should be lowered.



Design and Analysis of Rate Aware Ad Hoc 802.11 Networks 413

Retries vs Throughput

1Mbps
2Mbps

5.5Mbps
11Mbps

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

T
hr

ou
gh

pu
t

Retries

 0  1  2  3  4  5  6

1Mbps
2Mbps

5.5Mbps
11Mbps

 0

 1

 2

 3

 4

 5

 6

 7

T
hr

ou
gh

pu
t

Retries

Retries vs Throughput

 0  1  2  3  4  5  6

Fig. 3. Retries vs Throughput (RCS, Pktsize=512 and 1024)

Fig. 4. (a) Rate Switching state diagram (b) Receiver Power vs BER

Let succ with retrygtthres represent the number of consecutive successful trans-
missions requiring more than RETRY THRES retries. If succ with retrygtthres
is greater than a particular threshold, say SUCC RETRYGTTHRES THRES,
we move on to the FALLBACK 55 state. A packet loss indicates that it has
undergone 7 retries and it is a safe measure to decrease the rate. Let error
be the count of the number of consecutive packet losses. If error is greater
than ERR THRESHOLD, the rate is reduced to 5.5Mbps and system goes to
STATE 55.

2: FALLBACK 55. This is to check if transmission is possible at 5.5Mbps
with no retries. A successful transmission in a single attempt takes the sys-
tem to STATE 55. Otherwise, there is no advantage in down scaling the rate
to 5.5Mbps. As in STATE 110, we monitor the number of successful trans-
missions requiring retry (succ with retry). When succ with retry is greater than
the threshold, SUCC RETRY THRES, the system goes back to STATE 110. A
packet loss causes the system to move to STATE 55 as in STATE 110.

3: STATE 55. Transmission rate is 5.5Mbps at this state. If the number of
consecutive packet losses is greater than ERR THRESHOLD, it decrements the
rate to 2Mbps and goes to STATE 2. A count of the number of successful trans-
missions(succ) is maintained and when it reaches SUCC THRES, rate is incre-
mented to 11Mbps.
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4: STATE 20. This state stands for transmission at 2Mbps. The same transi-
tions as in STATE 55 are used for incrementing and decrementing the rate.

5: STATE 10. Transmission at 1Mbps.

The state machine is maintained for each neighbor. Initially, the system is
in STATE 110. As the nodes start communicating with each other, the system
adapts to the optimal rate. In addition, an inactivity timer is maintained as
part of the state machine, which resets the state to STATE 110 if there is no
communication between the nodes for a reasonably long period.

2.2 Simulation

To study the effectiveness of the proposed state machine, simulations have been
run using CMU Monarch group’s wireless extension to ns2. But ns2 does not pro-
vide multi-rate functionality. Multi-rate support has been added to ns2 and the
state machine has been implemented. We implemented the Modulation classes
in ns2 so as to add multi-rate capability. The probability of bit error, Pe for
each of the modulation schemes is calculated using an analysis similar to [6]
for an 802.11 system in an indoor environment. The analysis computes Pe as-
suming multi-path Rayleigh channel. The probability of bit error for the various
modulation schemes can be observed from Figure 4.

Once Pe of the system is determined, the packet error rate (PER) can be
determined as PER = 1 − (1 − Pe)n where n is packet size in bits. If PER is
within acceptable limits (Pa), the packet is passed on to the higher layers.

The automatic rate control state machine has been added to ns2. A link table
is maintained at each node which keeps track of the current state of the state
machine and the transmission rate to all its neighbors.

Simulation. We have simulated the automatic rate control mechanism using
the modified ns2 simulator. A two node set up is used and the distance between
the two nodes are varied so that communication is possible at 11Mbps, 5.5Mbps,
2Mbps and 1Mbps. The experiments has been run with manual configuration
(explicitly setting the rate) and with automatic rate control. Table 1 lists the
various parameters used for the simulation.

Figure 5 shows the TCP throughput for the various transmission rates. It can
be seen that the throughput for the proposed rate control mechanism is quite
close to the manual configuration. The decrease in throughput is due to packet
losses resulting from the attempts to increment the transmission rate. When
transmissions are possible at 11Mbps but with multiple retries, automatic rate
control outperforms manual configuration, the reason being that while manual
configuration sends data always at 11Mbps, rate control mechanism switches to
5.5Mbps whenever required. At 11Mbps, throughput remains the same for both
the schemes. The UDP throughput also shows similar behavior.

2.3 Implementation

To understand how the system adapts to the optimal rate under real-world sit-
uations, the rate control mechanism has been implemented in the device driver.
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Table 1. Simulation Parameters for Automatic Rate Control

Parameter Value Parameter Value

Number of Hops 2 Packet Size 1024

Routing Protocol DSDV SUCC THRES 50

Propagation Model Shadowing ERR THRESHOLD 1

Traffic (TCP) FTP SUCC RETRYGTTHRES THRES 2

Traffic (UDP) CBR SUCC RETRY THRES 2

Fig. 5. Rate vs TCP and UDP Throughput (Simulation), and TCP Actual

A link table is maintained at each node, which keeps track of the current state
of the state machine and the transmission rate to each of its neighbors. The
same set of experiments as that of simulation has been done to analyze the
performance. The experimental setup consists of one laptop equipped with a
D-Link 650+ card and a desktop machine with a SparkLAN card. The dis-
tance between the machines has been varied so that transmission is done at
1Mbps, 2Mbps, 5.5Mbps and 11Mbps. Iperf traffic has been used to generate
traffic and to collect the statistics. Figure 5 also plots the actual TCP through-
put against the transmission rate. The results correlate with the simulation
results.

3 Metrics for Ad-Hoc Routing

In an ad-hoc wireless network, each node acts as a router, forwarding packets for
other nodes. Static routing may not be adequate for such networks because of
the frequent changes in topology and channel conditions. The most widely used
dynamic routing protocols include DSDV, DSR and AODV.

Current dynamic routing protocols like DSDV use minimum hop count as
the metric for computing optimal path. We added transmission time and rate
metrics into the Grid Ad-hoc networking project’s DSDV implementation. Grid
is a system for routing in wireless ad hoc mobile networks. It is implemented as
part of the Click modular router and is written in C++. The Grid code is a set
of Click elements that can be put together in various ways to run DSDV, DSR
or geographic forwarding. It can be run at user level or kernel level in Linux. In
addition to hop count metric, Click supports ETX[4].
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To use the rate and Xtime metric, the following changes have been made to
the original DSDV protocol. Suppose node X receives an advertisement from Y
for destination D, which has a better metric m, an entry is made for destination
D with next hop as Y. But instead of incrementing m by one as done for hop
count metric, the cost of reaching Y is added to m. The cost of reaching Y is
obtained from the link table maintained by each node. The link cost is calculated
from the transmission rate to the next hop in the case of rate metric and from
the transmission time in case of Xtime metric.

3.1 Computation of Link Cost

Rate metric. Cost assigned to each link is proportional to its link rate in the
case of rate metric. It is computed as metric = 1/r ∗ 10 where r represents the
current link rate. The multiplication is done so as to round off the link cost to
an integer value. Weights of 1, 2, 5 and 10 are assigned to link rates of 11, 5.5,
2 and 1 Mbps.

Xtime metric. The average transmission time taken by each packet is com-
puted by measuring the time taken to get the ACK, after the packet is sent.
This can be used as a measure of the link quality, since it takes into consid-
eration the contention for the channel, the air time taken to send the packet
and receive the ACK. Hence both the forward and reverse channel charac-
teristics are taken into account for routing. The transmission time for each
packet Pxtime is measured and the current transmission time per bit is given
by current xtime = Pxtime/packetsize. Since the transmission time fluctuates,
smoothening of the link cost is needed. This is done by computing new link cost
as link costnew = w ∗ link costold + (1 − w) ∗ current xtime. Higher weightage
is given to the past history by choosing a higher value for the smoothing fac-
tor w. Experiments have been done to determine the right value of w and a
value of 0.85 seems to be good. When there is no communication between the
nodes, link cost is initialized to a value proportional to the current link rate, r:
link costinitial = 1/r ∗ 10. As the nodes start communicating, the actual trans-
mission time is learnt.

3.2 Implementation in Click

The Linux kernel module of the Click modular router has been used for the
implementation. At kernel level, the Click module runs a separate kernel thread.
Click code sits between the kernel’s network stack and the device drivers. Click
presents a pseudo-device to the kernel for sending and receiving packets to the
kernel. Running Click in kernel provides more flexibility and eases the task
of exporting the link cost information provided by the device drivers to the
router.

The link table maintained at each node has an entry for the link cost. The
link cost is computed from the current transmission rate or the transmission
time and is stored in this field. An inactivity timer is associated with each link,
which resets its cost to its initial value, if there is no data transfer through the
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Fig. 6. (a) Click Design (b) Scenario 1

link for a reasonably long period. The timeout for the experiments has been set
to 15 seconds. The metric used for DSDV routing is implemented as a different
class in the Click modular router. Click has support for hop count and ETX
metric. We added the Ratemetric class so as to support rate and Xtime metrics.
The class is the same for both the metrics; only information about the link cost,
which is used to compute the metric is different. The interactions between the
different layers is shown in Figure 6.

The Grid implementation of DSDV has support for two options namely,
USE OLD SEQUENCE NUMBER and USE GOOD NEW ROUTE. The first
optionessentiallypreventstheuseof thecurrentupdateuntil it isready foradvertise-
ment. The second option is a modification of USE OLD SEQUENCE NUMBER.
It suggests the use of the new update, even if it is not ready for advertisement, as
long as it has a better metric. These options were enabled for the experiments so
as to prevent the use of a route with bad metric. Usually, new sequence numbers
along one-hop path is heard first. There might exist a better multi-hop path, but if
the above mentioned options are not used, packets are routed along the bad metric
path. With those options enabled, it can be ensured that DSDV uses the previous
best route until WST has expired and the best route for the new sequence number
has been heard. In case the new update has a better route than previous one, new
route is used without waiting for the expiry of WST.

3.3 Experiments

Experiments have been run for different scenarios to gain an insight into the
performance characteristics of different routing metrics. The four metrics com-
pared include minimum hop count (used by standard DSDV), ETX, rate and
Xtime metric. We have used five machines running Click modular router. Two of
the machines have been equipped with SparkLAN cards and three with D-Link
520+ cards. The TCP throughput and round trip delay for the packets have
been measured for the following scenarios.

Scenario 1. A three node setup as shown in Figure 6 has been used for running
the experiments. The TCP throughput and RTT has been measured with one
connection (A to C) and three connections (A to B, B to C, A to C) (Fig 7). It
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Fig. 7. TCP throughput: Scenario 1 (1 and 3 connections)

Fig. 8. Round Trip Time (Scenario 1 and 2)

can be observed that when the number of connections is one, the performance
of rate and Xtime metrics is almost the same and is much higher than that of
hop count and ETX metric. This is because, hop count metric does not take
into consideration, the link rate of the path through which packet is routed.
ETX uses the delivery ratio to compute the path. The reason for the decreased
throughput for ETX metric can be the overhead due to link level probes and
the use of single sized packets(134 bytes) for finding optimal path. Also, ETX
metric is not designed for networks with links that run at a variety of bit rates.
Experiments have been repeated with the same setup for three connections, A
to B, B to C and A to C. The idea has been to load the high link rate path
and Xtime metric is found to perform a bit better than rate metric. As in the
previous case, hop count and ETX throughput is smaller.

The round trip time for the packets were measured using ping test for different
packet sizes. It is seen that packets routed using rate and Xtime metric has less
delay compared to the other metrics (Figure 8).

Scenario 2. A 5-node wireless testbed as shown in Figure 1 has been used for
the next round of experiments. With one connection (A to C), it can be observed
that rate metric throughput is less, because of the extra backoffs required for
traversing more number of hops (Figure 9). In this case, the optimal path from
A to C would be to follow the slow links from A to B and B to C. ETX metric
and hop count metric performs well in such a case. Xtime metric performance
is similar to that of ETX and hop count metric except when the packet size is



Design and Analysis of Rate Aware Ad Hoc 802.11 Networks 419

Fig. 9. TCP throughput: Scenario 2 (1 and 5 connections)

512 bytes. This deviation can be attributed to the route oscillations. The round
trip delay for scenario 2 shows similar behavior as that of the three node setup
(Figure 8).

We repeated the experiments with 5 connections (A to D, D to B, B to E,
E to C and A to C). The four one-hop connections along the high throughput
path (A-D, D-B, B-E, E-C) helps to build up the throughput in the case of
rate metric. Throughput is less for hop count metric, since all traffic for the
connection A-C goes only through the slow links and the slow hosts capture the
channel for long period (Figure 9).

In addition to the above experiments, they were repeated with multiple flows
from A to C; the behaviour/throughput was found to be about the same with
respect to all the metrics considered. Due to lack of space, we omit discussion of
these results here.

4 Related Work

[7] classifies the current approaches for rate switching into three main categories -
throughput based, FER based and SNR based methods. ARF algorithm[12] used
in Agere Systems uses the number of ACK misses as a parameter for rate control.
[5] proposes the use of a combination of FER based method and Received Signal
Strength (RSS). But RSS cannot be used for rate control at a node since the
propagation characteristics of the forward link may not be equivalent to the
reverse link.

Dynamic routing protocols proposed for use in wireless networks include
DSR[9], DSDV[10], AODV and so on. Currently, research community has turned
their attention towards utilizing the link characteristics as routing metric. The
major works in the field of multi-rate aware routing protocols are MAS and
MTM. [11] proposes the use of a thin layer, MAS (Multi-rate Aware Sub layer)
in between IP and the link layer. Routing overhead is more in this case as both
the IP and MAS layer flood the system with periodic broadcast messages. An-
other related work is MTM (Medium Time Metric) [2], which is independent of
the routing protocol used. The metric takes into account the transmission rate
as well as an estimate of the back off delay (310 us). But this estimate can be
deceiving when the path is congested or under bad channel conditions. ETX[4]
uses the delivery ratio to find optimal path. But the probe messages add more
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traffic into the system. The use of a single packet size for probing can lead to
inaccurate metrics for other packet sizes.

5 Conclusions

This paper introduces the design and implementation of an FER-based auto-
matic rate control mechanism, which uses the statistics available at the device
driver. The results drawn from simulation studies and real world experiments
show that its performance is comparable to the manual configuration. We pro-
pose transmission time as a metric to guide routing decisions. It accounts for the
contention for the channel, air time to send the packet and the asymmetry of
the links. Measurements done on two wireless testbeds show that transmission
time metric performs consistently well across the different scenarios considered.
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Abstract. Configuring IP addresses is an important issue in ad-hoc
networks without a centralized agent server. The previous configuration
methods result in wasted IP addresses, and are unsuitable for assigning
addresses in small-scale mobile Ad-Hoc networks (MANET). To address
this problem, we propose a tightly packed IP address (TPIA) configu-
ration protocol, which eliminates the IP address leaks characteristic of
current addressing methods (Internet Protocol version 4, or IPv4).

1 Introduction

Mobile computing and wireless technology are increasingly popular topics in the
network communications field. An Ad-Hoc wireless network is a diverse network,
but it has little to no supporting infrastructure. Wireless data is transmitted via
radio frequencies within a radius scope, which mobile nodes (MNs) identify by
parameters, and the majority of routing protocols use the IP address as a unique
identifier [1]∼[3].

IP allocation is an important parameter, and is strongly associated with the
routing protocol in the network layer. Currently, to get ad-hoc networks to com-
municate with external networks, such as the Internet, Mobile Nodes(MNs) are
used connected using the IP stack. Consequently, IP address assignment is tightly
coupled to the network layer for both routing protocol issues and accessing the
Internet.

In the wireless network, the conventional method of IP assignment uses DHCP
(Dynamic Host Configuration Protocol [4]). This method is based on a centralized
agent server, which maintains the configuration information of all nodes in the
network. However, this approach is not suited to ad-hoc networks, which are free to
move randomly and organize themselves arbitrarily, and IP address assignment in
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MANET remains unresolved. Therefore, IP address allocation must automatically
configure without a centralized agent server in ad-hoc networks.

Previous studies [5]∼[7] of automatic IP address configurations have several
drawbacks. Among them, these methods lead to IP address leak, an issue that is
important to resolve the practical application of IP addresses to current systems.

The wasted IP addresses are an undesirable byproduct of using IPv4 methods.
To address this problem, we propose using tightly packed IP address (TPIA) con-
figuration protocol. The TPIA protocol can assign an IP address without wasting
IP space to join nodes in MANET. This paper is structured as follows. Section 2
introduces related work on automatic IP address assignment in ad-hoc networks.
Section 3 describes the TPIA configuration protocol. Section 4 presents the al-
gorithm for our strategy based on realized implementation. Section 5 compares
the performance of TPIA with other methods. Lastly, Section 6 provides some
concluding remarks.

2 Related Work

There are two fundamental ways to move nodes in MANET. In the first, an
MN newly joins or abruptly departs within the freestanding MANET, and an
unused IP address is allocated to the joining MN. This method is more difficult
and complicated, due to a lack of a centralized controller for IP addresses. In
the second case, if two split MANET configurations can be united, two separate
nodes could be assigned the same address, leading to duplicate addresses and
routing problems during communication.

Methods to address these problems have been proposed [5]∼[7], but have
several drawbacks to practical use.

In [5][6], the address pool 169.254/16 comprises two address sets, a temporary
set and a legal set. The system assigns a candidate IP address from the temporary
address pool to a newly joined node, which then performs duplicate address
detection (DAD) for all participating MNs. If there is conflict with DAD, the
process may be repeated a finite number of times until the system correctly
chooses an unused IP address. One problem with this strategy is that splitting the
addresses into two sets decreases the number of available IP addresses, wasting
address blocks with temporary addresses. In addition, an MN is needed during
the DAD time to receive an IP address. The DAD time in MANET incurs the
communication overhead to receive an IP address.

In [7], the authors proposed an address allocation solution (the Prophet) with-
out a centralized agent server for large-scale MANET. The method forecasts the
IP address of the joining node using the assignment function, f(n). This strat-
egy has several advantages. For one, it does not require the DAD procedure to
identify address conflicts, reducing overhead communication using f(n).

However, the system requires much address space; if address space includes
eight (small) spaces, the Prophet method can produce only four addresses, and
the rest is leaked, creating wasted IP addresses.
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In addition, the MANET has difficulty searching for a suitable assignment
function f(n) during network configuration. We can solve these problems with
a TPIA configuration protocol, which will be suitable for small-scale MANET
and prevent address leaks.

3 Tightly Packed IP Address Configuration (TPIA)
Protocol

This section explains the TPIA protocol, which reduces IP address waste and
overhead communication. We assume the following.

– We consider the current version of Internet Protocol (IPv4).
– The MANET commonly uses the 169.254/16 IP address zone [5],[6], for

which Netid can be used. When we configure a MANET, the IP address
should be assigned the continuous addresses, whose IP address zone is a
pure address block without conflicts in the Hostid.

– An initialized MN recognizes the number of newly joined nodes, and defines
the size of the address zone.
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Fig. 1. The Example Model for Assignment of IP address

Consider the two conditions in MANET: MN is an existing node with an
IP address (MNA, including the initialized node) or a newly participating node
without an IP address (MNJ). In Figure 1, MNA is shown as a gray circle, and
MNJ is represented by a dashed circle. MNJ sends the request message to MNA

to acquire an IP address.
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For IP address allocation, the TPIA protocol uses the α, state and level called
Address Information (AI), represented as follows:

AI = [ α, zone, state, level]

where α is the starting IP address, and the zone represents the scope of the
continues IP addresses starting from the α. In initialized mode, state and level
are set to zero.

3.1 Initialization Protocol

When an MN enters the IP network, it searches the initialized node for the
IP address using a broadcast message. If the MANET has not yet assigned a
node (initialized node), the MN starts the initialization procedure by assign-
ing the IP address set to itself, and gathering continuous IP addresses without
conflict.

Here, the initialization procedure searches for the configured node to IP as-
signment. If the configured node cannot search, the MN is connected with an
infra-network to obtain the IP address zone at the starting session.

Therefore, if an initialized node (e.g., node A in Fig. 1) exists in this MANET,
it is able to make assignments for other nodes (new joining nodes) within a single
hop distance.

Figure 1 illustrates the IP address assignment model. As mentioned above, if
node A is configured successfully, and has the continues IP addresses without
conflict, an MN (MNA) can receive the IP request message from other MNs (e.g.,
MNJ), such as node B. The IP address request message sends the initial node
to node A. If node A receives the message from node B, it changes the state and
level to the IP assignment for node B (newly joining node).

Notice that MNA (gray circle) changes the state and level, but the IP address
of MNA is not changed. The state and level are properties of the assignment,
and MNA sends the AI message with a changed state and level to a new joining
node.

3.2 New Node Joining Protocol

When a new node requests the IP address, MNA modifies the state and level as
follows:

level = level + 1 (1)

state = state ∗ 2 + 1 (2)

To assign the MNJ IP address, the state and level of MNA is modified, but the
IP address is not changed. Also, MNA computes the state of MNJ , represented
as follows.

state = (2) + 1 (3)

MNA then sends MNJ the AI message, which consists of the starting IP
address, IP address zone, state (as calculated in expression (3)), and level (as
calculated in expression (1)) of MNJ .



Tightly Packed IP Address Configuration (TPIA) Protocol 425

According to these equations, the node B(MNJ) receives the AI message.
MNJ can then calculate the receiving message from the level and state of the AI
message, and obtains the IP address as follows:

IPaddress = (3)/2 + α (4)

where α is the starting IP address set by the initialized node. As addressed in
expressions (1)∼(4), a considerable MN can assign the IP address in MANET.
If the MANET is large scale, we have algorithms to make it inefficient, but the
majority of the MANET is small scale, so our system is adaptable to small-scale
MANET.

3.3 Example of Protocol

When a node needs an IP address in MANET, the node searches for the initial-
ized node. If one does not yet exist, the searching node becomes the initialized
node.

In Figure 1, the initialized node A receives the starting IP address, α, and
the zone. If the beginning IP address is 26 and the zone are 7, the effective area
spans from 26 to 32. If a new joining node wants an IP address, node A prepares
the AI information, as follows.

Node A’s AI = [26, 7, 0, 0]

This AI information is a condition of node A. The new joining node B needs
the AI information for node B. According to expressions (1) and (2), node A
modifies the state and level. Therefore, if the state of node A is changed to 1, the
level also becomes l. Here, the IP address for node A is not changed; it maintains
the starting address value of 26. Then, node A establishes the state of node B
using expression (3). Therefore, the AI information of the new joining node B is
expressed as follows:

Node B’s AI= [26, 7 , 2, 1]

Then, node A sends the AI information to node B. If received, node B then
calculates the IP address using expression (4). In our example, the IP address
for node B becomes 27.

If an ad-hoc node D joins the IP network, node B modifies its level to 2
and its state to 5, using expressions (1) and (2). Again, the IP address of node
B does not change. Then, node B establishes the state and level of the newly
participating node (node D), using expression (3), and sends the AI information
to node D (MNJ ). The reply message is contained in the level (2) and state (6)
of node D in each case.

Node D’s AI = [26, 7, 6, 2]

If begins at 26, the IP address of joining node D is 29, using expression (4),
which becomes node D’s Hostid address. In the TPIA protocol, all nodes can
allocate IP addresses without leaking addresses, and the DAD procedure is not
needed.



426 J.-O. Hwang, S.-G. Min, and Y.I. Choi

4 The Algorithm

The following algorithm contains the pseudo-code of our system.
In Figure 2, the procedure of joining nodes is related to the number of requests,

and the maxretry value is set to the maximum retry for the procedure.

Procedure MNJ ( )

set const maxretry 3 ;

           bool configured false ;

           bool init_IPzone[ ]

           retry

           state

           getIP

begin( ) 

             while (retry <maxretry) {

broadcast request to other MN ;

if (receive the AI message from MNA) ;

state state_J 

level level_J 

get_IP  (state/2)  + 

     configured true ;

else wait reply message ;

}

Fig. 2. The procedure of joining node

The Boolean operation “true” is applied, and it assigns the IP address to
a request MN. The MNJ sends the IP address request message to MNA on
broadcast, and MNJ begins the reply timer. If MNA receives this message, it
modifies the state and level for the IP address of the joining node, as above
Figure 2.

If MNA is the first initialized node, it configures the pure IP address for the
number of joining nodes at the starting session in advance, like the comments in
this pseudo-code.

In next page at Figure 3, the MNA modifies the state and level using ex-
pressions (1) and (2), and then computes the state and level for a given IP
address using expressions (1) and (3). In this process, expressed as “procedure
modify ls” the MNA sends the AI message to the requested MNJ .

In Figure 3, the MNJ receives the reply message with the modified state
and level, applies expression (4), and then obtains the new IP address. In this
way, IP addresses will be assigned to all participating nodes without wasting IP
addresses.



Tightly Packed IP Address Configuration (TPIA) Protocol 427

Procedure MNA( )
set init_IPzone [ n]  n ; // variable address space ;

state 
level 
IP 

       begin 
            if receive a request message from joining node then {
                      execute the procedure modify_ls ( l  , s ) ;

              begin 
{

         My_level  level + 1 ;
My_state   2 *  state + 1 ;

                      }
                      save the new level, state to storage ;

                                     end 
                      execute the procedure  compute_IP (  l  , s ) ;
                                    begin

                     compute of MNJ ( l , s) ; {
level_J  My_level ;
state_J My_state + 1 ;

       }
end

                               make the AI { init_IPzone , l , s  } ;
                               send the AI to requested node ;

          }
                else
                        wait for response ;
       end  

Fig. 3. The procedure of Joining node

5 The Comparison of Performance

Table 1 compares our strategy with AAA[5],[6] and Prophet[7]. The first three
rows are feature briefs of the three allocation solutions, and the performance
evaluation focuses on unused IP addresses.

In our solution, conflicting IP addresses are not produced because MNA com-
putes IP addresses for MNJ in advance, using expressions (1)∼(4). The computed
IP addresses reduce overhead communication, and do not require the DAD pro-
cedure to detect IP address conflicts within the network.

Moreover, the unused IP addresses in our system represent a high level of
efficiency. The IP address zone was tightly packed with MNs, and the wasted IP
address zone was eliminated. In AAA[5],[6], the level of unused IP addresses is
too high, due to this scheme’s technique of splitting addresses into temporary
and legal sets.

Therefore, if networks consist of eight nodes, this scheme uses the eight ad-
dresses in the address zone of 256, and the remaining addresses (248) are unused.
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Table 1. Characteristics and performance comparison

Evaluation AAA[5][6] Prophet[7] Our solution

Address

conflict
Frequently Yes No No

Unused

IP address
High High Not exist

Additional IP Change

configuration the Netid
Troublesome Simpler

Communication

Overhead
O((n+1) x k O(2l / n) O(2l / n)

If all MNs (128 nodes) participate in the network, the unused IP zone is as much
as 50% (temporary address pool).

The Prophet scheme[7] generates leak addresses (up to 37.5%) with the assign-
ment function f(n). For this reason, if many MNs participate in the MANET,
a very broad address zone is needed. By contrast, if MNs are tightly packed, as
they are in our solution, unused IP addresses cannot exist in the address space.

The maintenance of IP addresses induces the AODV routing protocol [3] to
identify unused IP addresses. In Table 1, communication overhead is represented
by O during the allocation time of the IP address, where n is the number of MNs,
k is the retry time, and the number of links is 1.

Our strategy is the quickest regarding communication overhead. The
Prophet[7] and our scheme have the same efficiency, but the former generates a
leak address zone. Our TPIA protocol resolves this issue and reduces communi-
cation overhead.

6 Conclusion

How to assign IP addresses in IPv4-based Ad-Hoc networks remains unresolved.
We presented a very simple solution for automatic IP address assignment of
participating nodes that does not waste IP addresses and reduces communication
overhead compared to the AAA[5],[6] and Prophet [7] methods.

Therefore, the TPIA protocol offers an efficient way to resolve the problem of
leak IP addresses for wireless mobile Ad-Hoc networks.

We have also some conspicuous security issues, network merging and splitting
that are relevant to MANET protocols. These will be the focus of our future
work.

References

1. C.Perkins and P.Bhagwat, “Routing over Multihop Wireless Network of Mobile
Computers”, in SIGCOM 1994.

2. D.B.Johnson and D.A.Maltz, “Dynamic Source Routing in Ad-Hoc Wireless Net-
work”, Mobile Computing 1996, Kluwer Academic Publishers.



Tightly Packed IP Address Configuration (TPIA) Protocol 429

3. C.Perkins, E.Belding-Royer, and S.Das,“Ad hoc On-Demand Distance Vec-
tor(AODV) Routing”, RFC 3626, October2003.

4. R.Droms, “Dynamic Host Configuration Protocol”, Network Working Group RFC
2131, March 1997.

5. C.E Perkins and Elizabeth M., “IP Address Autoconfiguration for Ad Hoc Net-
works”, draft-ietf-manet-autoconf-01.txt, November 2001.

6. Yuan Sun, Elizabeth M.Belding-Royer and C.E Perkins, “Internet Connectivity for
Ad hoc Mobile Networks”, International Journal of Wireless Information Networks,
Special Issue on MOBILE AD HOC NETWORKS(MANETs); Standards, Research
Applications 2002.

7. Hongbo Zhou, Lionel M. NI,“Prophet Address Allocation for Large Scale MANETs”,
IEEE INFOCOM 2003.



TransMAN: A Group Communication System

for MANETs
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Abstract. In mobile ad-hoc networks frequent topology changes and
node failures increase the difficulty of providing reliability guarantees to
applications. In traditional wired networks, group communication sys-
tems have been shown to be a useful middleware abstraction for providing
strong reliability guarantees. A group communication system provides all
its members with a consistent membership view while providing reliable
and ordered communication between them. Existing group communica-
tion systems for MANETs do not provide consistent membership views.
In this paper we describe TransMAN, a group communication system
for mobile ad hoc networks that provide consistent membership views
and a reliable broadcast communication between members. TransMAN
relies on a reliable broadcast facility and uses implicit acknowledgements
to maintain a graph capturing message relationships. This graph is used
to implement important group communication properties such as non-
blocking membership changes and virtually synchronous communication.
We describe the various protocols that constitute TransMAN and provide
an evaluation of our system using a real-world implementation. Exper-
iments show that message delivery latency and the time required for
group view changes are not adversely affected by network topology.

1 Introduction

Mobile ad-hoc networks (MANETs) are formed by nodes interacting with a
short-range, wireless communication medium. Node mobility and the unrelia-
bility of the wireless channel pose a challenge while building applications that
require reliable network communications, such as mobile multiplayer games or
collaborative work applications. A group communication system (GCS) provides
these guarantees in traditional wired networks. A complete GCS which provides
deterministic reliable communication guarantees while addressing the challenges
of MANETs is required.

To handle the dynamic nature of MANETs a GCS should support mergers
and partitions of groups frequently caused by node mobility or poor wireless con-
nectivity. A GCS should also not be adversely affected by transient connections
in the network. Virtual synchrony [1] has been identified as a useful property to
ease application development while using a group communication service that
supports partitions [6]. Virtual synchrony enforces nodes that remain connected
to deliver the same set of messages. Supporting virtual synchrony in MANETs
will help ease the programmability of distributed applications for these networks.

S. Chaudhuri et al. (Eds.): ICDCN 2006, LNCS 4308, pp. 430–441, 2006.
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Traditional techniques to support virtually synchronous communication [1],
require applications to block during membership changes. With frequent net-
work changes anticipated in MANETs, such an approach will result in applica-
tions blocking too often. Current solutions for group communication systems in
MANETs are largely probabilistic [7] and do not provide consistent membership
information; or assume a synchronous network [10]; or assume a location ser-
vice [11]. There is a need for a group communication system for MANETs that
can be used to develop reliable distributed applications.

In this paper we present a group communication service that provides totally
ordered message delivery and supports group partitions and mergers along with
virtual synchrony, without blocking client applications during changes in group
membership. This is achieved by allowing multiple membership views to be pro-
posed concurrently. Member nodes decide on a stable membership view through
an agreement protocol, and the system handles transient connections and false
suspicions with reduced extraneous message transmissions. We illustrate this
with results from a real-world implementation of TransMAN.

TransMAN works best for applications that require a steady stream of many to
many messages, such as multiplayer games and collaborative work applications.
This is because TransMAN utilises these application messages to gather implicit
acknowledgements, stabilise broadcast messages, detect failures and reach agree-
ment on membership views. TransMAN utilises a reliable broadcast protocol to
propagate the application messages to all nodes in the network. A number of
mechanisms have been cited recently [14] that reduce redundant broadcasts in
MANETs, and the use of any of these mechanisms will allow an efficient imple-
mentation of a group communication service. In this paper we use the counter
based scheme [14] to reduce redundant broadcasts.

2 System Model and Architecture

We model a MANET as an asynchronous network where messages can get de-
layed and lost. The clocks on mobile nodes are assumed to drift with no bounded
delays. Each mobile node communicates with other nodes using radio transmis-
sions. A node communicates with nodes in its neighbourhood, and the nodes in
its neighbourhood can change due to node mobility. We use the IEEE 802.11b
MAC and assume it does not run into the fairness problem, an infinite set of
nodes can participate in the MANET, the network can partition and various
network partitions can merge, and finally nodes crash fail.

Figure 1 shows the TransMAN architecture diagram. The bottom layer im-
plements a reliable broadcast protocol that is designed to suit the needs of our
system. The protocol is described in [13].

Messages are received by the reliable broadcast layer and delivered to the
higher layers only if certain conditions are satisfied. These conditions are de-
scribed in [13]. Messages delivered by the broadcast layer are buffered in the
message stability layer, where messages are kept until they are known to be de-
livered to all other nodes in the network. The membership agreement and the
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failure detection layers are notified when a message is being delivered. The fail-
ure detection layer uses the lack of regular notifications to suspect a failed node,
while the membership agreement layer utilises these notifications to determine
changes in the group membership. The membership layer also uses suspicion

Fig. 1. TransMAN architecture

information from the failure detection
layer.

The stream of application messages
delivered by the broadcast layer at a
node are utilised to determine failure sus-
picions and finally determine member-
ship information without requiring spe-
cial control messages or acknowledge-
ments. Transient network connections
are handled by initialising a new mem-
bership agreement which is either in-
stalled or later deleted if some other view
is installed.

3 Message Dependencies

The membership service described in this paper builds on the message dependen-
cies concept used to implement the reliable broadcast [13]used as a bottom layer
in the TransMAN architecture. A message pi has two kinds of dependencies. One
the message sent by p before sending pi, i.e., pi−1, and second is the message last
delivered by p before sending pi. The dependencies are defined transitively and
therefore are used for implicitly acknowledging messages, and also to determine
messages stability. To provide these, the reliable broadcast protocol maintains a
graph of messages, and these features allow the TransMAN membership service
to be provided.

4 Failure Detection

Maintaining membership in an asynchronous network, even with a single parti-
tion, faces well known impossibility result [2] for implementing a group commu-
nication with consistent membership views. TransMAN targets a partitionable
group membership service, avoiding this impossibility. Hence, we do not need a
failure detector [2] to bypass this impossibility. However the membership service
needs a way to start suspecting a node as failed so that it can initiate the view
change protocol. For this purpose we include a failure detector in TransMAN.

To implement the failure detector, we utilise the notion that there is a stream
of messages broadcast by each node in the group. Given that each node has a
membership view and thus knows the size of the group, it has the necessary
information to detect a member node as failed. A node detects another as failed
if it does not receive a message from that node while receiving a dynamically
determined number of messages from all remaining nodes.
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Therefore, a node p detects a node q as failed if p does not receive a message
from q while it receives w messages from all other nodes taken together. Such
failures are termed “failure to broadcast”. Further, a node p suspects another
node q as failed if p broadcasts w messages, from pn to pn+w, and receives no
message qi such that OPD(p, pn, qi) is true. That is to say, p has not received
any message from q that acknowledges the reception of any of the last w mes-
sage broadcast by p. Such failures are termed “failure to receive”. We call the
parameter w the wait length.

5 Membership Service

Before describing the membership service protocol we note the terminology used

– Group view, G = {pi, qj , rk, . . .} defined as a list of nodes and the sequence
number of the message that was last delivered by each of these nodes.

– Current view, is the set of nodes that are members of the group at present.
– Tentative view, apart from including nodes from the current view also in-

cludes nodes that are not yet members but the broadcast layer has been
receiving and delivering messages from these nodes. Further, each node uses
the list of suspected members available from the failure detector to exclude
any suspected nodes from the tentative view. Thus, the tentative view at a
node captures the view that the node expects to install next.

– A group view G is said to “precede” G′, written as G < G′, if G has at least
one node with a last delivered sequence number lower than the one in G′.
Thus, view {pi, qj , rk} precedes the view {pi+1, qj , rk}.

– Each node maintains a list of tentative views stored in tviews, that are
awaiting agreement.

Changes in network connectivity initiate the membership agreement protocol.
If such a change persists then the agreement is likely to terminate. If the change is
transient, the agreement protocol doesn’t terminate and is subsequently deleted
in the future. This allows any applications using TransMAN to continue deliv-
ering messages uninterrupted by transient network conditions.

Schiper et al. [12] showed that a virtually synchronous membership service in
an asynchronous environment can be reduced to solving agreement for the next
proposed view. We follow a similar approach, where multiple proposed views are
resolved, instead of one.

The membership service described is a best effort service. The service contin-
uously strives to install group views reflecting the state of the MANET. If the
network faces a high amount of churn, the nodes will work towards installing a
group view. As the amount of churn reduces the nodes install a consistent group
view reflecting the current state of the network.

5.1 Message Delivery During View Changes

We now describe how reliable message delivery and stabilisation are affected
during group partition, merges and false suspicions of nodes. We examine three
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different network and node events, namely a merge between a number of groups,
member failures and the false suspicion of a members —

1. Merge: The reliable broadcast protocol utilised by TransMAN allows delivery
of messages from nodes that are not part of the current view. This supports
FIFO delivery of messages across the merging groups.

2. Failure: If nodes fail or the network partitions, then messages are not sta-
bilised as the failed or partitioned group members are unable to acknowledge
the delivered messages. On the other hand, the reliability layer continues to
deliver messages, which allows FIFO delivery of messages amongst nodes in
each partition.

3. False Suspicion: In the case of false suspicions, a group view agreement
is initiated but all messages are delivered and stabilised as governed by
the reliable broadcast and stability protocols. This is possible because all
members of the group continue to broadcast messages even if a node is
falsely suspected. These members will eventually implicitly acknowledge all
messages received from the falsely suspected node.

5.2 Membership Agreement Protocol

There are two phases involved in the execution of the membership agreement
protocol. The first phase determines a group view that can be the next group
view, and the second phase runs an agreement for this group view.

First Phase: View Determination. The first phase of the membership agree-
ment is initialised when a node realizes the need for a view change. This can
be caused by either 1. a node receiving a message from a non-member, 2. or
a node suspecting a member. To initiate the first phase a node broadcasts a
message containing its tentative view. We call this message the init-view-change
message.

When a node receives an init-view-change message, it compares the tenta-
tive view that is included in the received init-view-change message to the one
it maintains. Depending on the comparison between the two tentative views
and the state of the membership agreement at the node, the node responds by
either sending a new init-view-change message or it updates the state of the
membership agreement.

A node sends a new init-view-change message in response to the received one
if the received tentative view has some information that the receiving node’s
tentative view does not have. This new information is either a higher sequence
number of the message last delivered by a node or the presence of a new node.

We denote with T the tentative view maintained at the receiving node and
with Trcvd the tentative view received. If T < Trcvd or T ⊂ Trcvd, the receiving
node updates T to Trcvd and sends a new init-view-change message. Updating
the view T to Trcvd means updating the last delivered sequence numbers or
including the new nodes in Trcvd.

If T > Trcvd and T �⊂ Trcvd then the receiving node neither sends a new
init-view-change message nor updates it tentative view.
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If T ⊃ Trcvd then the Trcvd is notifying the failure suspicion of a node at
the sender. In this case the receiving node neither sends a new init-view-change
message nor updates it tentative view. Instead the receiving node waits until it
suspects the failed node and then sends a new init-view-change. This avoids the
situation where false suspicions result in an initiation of extraneous membership
agreements.

If the received tentative view is equal (both in nodes and their sequence
numbers) to the one a node is maintaining, the node treats the received init-
view-change message as a view-acknowledgement for the node’s tentative view.
The node maintains a list of these view-acknowledgements received for each
membership agreement, as shown in Table 1.

Table 1. Example membership agreement at node p

view-acks OPD values

p q r
px OPD(p, px, mld[p]) OPD(p, px, mld[q]) OPD(p, px, mld[r])
qy OPD(p, qy, mld[p]) OPD(p, qy , mld[q]) OPD(p, qy, mld[r])

pi, qj , rk

rz OPD(p, rz, mld[p]) OPD(p, rz, mld[q]) OPD(p, rz, mld[r])

The first phase for a membership agreement at a node is completed when the
node has delivered view-acknowledgements from all the nodes in the tentative
view. If during the first phase any node detects a new node or a failed node, it
sends an init-view-change with a new suggested view, resulting in the first phase
being run again.

Second Phase: Agreement Termination. In the second phase, an agreement
for the tentative view is initialised and the tentative view is pushed into tviews.
The completion of this agreement for the tentative view finishes the second
phase. At the end of the second phase all nodes will agree on the same view as
the next view and then install the same view.

A membership agreement for a group with view G ≡ {pi, qj , rk} terminates
at node p when p determines that all other nodes in G have delivered the view-
acknowledgements sent by all the nodes in G. These view-acknowledgements were
collected in the first phase of the protocol. Table 1 shows an example membership
agreement run at node p, for a view pi, qj , rk. The agreement shown will be
complete at p when all OPD values shown in the table evaluate to true at p.

Requiring all nodes in a group view G to determine that all other nodes have
delivered the same set of view-acknowledgements guarantees that all nodes have
agreed on the same suggested view, and will eventually install the same view.
This membership agreement protocol does not tolerate any failures. Instead, if
any node fails, the membership service initiates a new agreement protocol.

Maintaining a list of tentative views for agreement in tviews, enables nodes to
respond to multiple network events, i.e., node insertions or node failures, without
the delay incurred by sequential processing of each such event. This is desirable



436 K. Singh, A. Nedos, and S. Clarke

in a dynamic environment such as MANETs. If an agreement for a tentative
view does not terminate, the protocol ensures that it is deleted when a later1

agreement terminates. This removes the transiently connected node from being
considered as the next suggested new view.

The second phase for an agreement can finish in two ways. When an agreement
protocol terminates or when an agreement later in the agreement list terminates.
In the latter case, the membership protocol deletes all agreements in the agree-
ment list which are ahead of the terminated agreement in the list of membership
agreements. If during the second phase, a new suggested view is encountered and
it finishes the first phase, it is also pushed into tviews. Next we show how this
is useful in handling the frequent changes in a MANET and for implementing
virtual synchrony.

Agreement State Machine. The state transition diagram in Figure 2 shows
the states for the membership protocol. The STABLE state implies a view is
installed, no changes in the view are suggested and no agreements are in the
second phase. On receiving a message from a member node the state remains
STABLE and the message is delivered and stabilised as per the reliable broadcast
and stabilisation protocols.

Fig. 2. State transition diagram for membership protocol

If a node receives a message from a new node, or it suspects a node in its view
or it receives an init-view-change message it initiates the view change protocol.
In the state transition diagram, these events are encapsulated by the NEW-
VIEW SUGGESTED transition. On this transition, the protocol moves from
the STABLE to the TRANSITIONING state.

The TRANSITIONING state has two sub-states, PENDING and NO PEND-
ING, which correspond to the presence of an agreement in the first phase or not.

1 Later is defined in terms of the < relationship.



TransMAN: A Group Communication System for MANETs 437

The protocol is in the PENDING state if there is at least one agreement in the
first phase. The protocol moves to NO PENDING when the agreement for the
tentative view moves to the second phase. At this point there is no agreement in
the first phase, thus the state is called NO PENDING. If in the NO PENDING
state a NEW VIEW SUGGESTED event occurs, the protocol moves back to
the PENDING state.

5.3 Virtual Synchrony and Transitional Sets

The algorithm described in the previous sections delivers safe and totally ordered
messages to the application. At the same time messages are delivered such that
the set of nodes that survive a view change deliver the same set of messages.

Suppose a new view G is proposed, such that it is a merger of two parti-
tions G′ and G′′. The membership agreement ensures that all nodes in the pro-
posed view G have delivered at least all messages that are prerequisites of the
view-acknowledgements (from the relibale broadcast protocol). This requires that
nodes in G′ and G′′ deliver the same set of messages between them, before they
install G. Once the proposed view is installed, all nodes deliver the same set
of messages. Thus all nodes that survive a view change deliver the same set of
messages.

The approach to delivering and stabilising messages along with the current
group view being sent with every init-view-change message allows a node to
determine if the principle of virtual synchrony holds. This is achieved by calcu-
lating the transitional set [9] at every view install. The transitional set is easy
to determine as described in [3] using the current view sent by each node with
the init-view-change message.

The alternative to transitional sets, agreement on successors, is avoided as
the latter requires installing a temporary view if overlapping groups merge. In
a wireless medium without collision detection or fairness, nodes are often in-
correctly suspected which leads to a higher number of potential merges with
overlapping groups. This encourages us to support the transitional set approach
to implement virtual synchrony.

6 Performance

In this section we present a performance study for an implementation of Trans-
MAN. We evaluate the performance of TransMAN by measuring message latency
and total number of transmissions between the time a message is transmitted
and its delivery at all members. We measure these for both FIFO and totally
ordered delivery. We also measure the system response to view changes when
one node is added to or removed from the membership.

We study the average latency for message delivery while changing the net-
work topology and group size. To isolate the evaluation from time based system
parameters(such as heartbeat and optimiser buffer time), we also observe the
system performance in terms of message transmissions.
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6.1 Experimental Setup

Measurements are made by running the implementation of TransMAN on net-
works formed of up to 6 laptops using IEEE 802.11b. Each laptop runs Linux
2.4.27 on a Pentium III 1GHz processor with 256MB memory. The system im-
plementation is developed in the Ruby programming language.

The broadcast layer at each node transmits a sequence of messages separated
by randomly chosen time periods between the range of 500ms to 1500ms. Each
regular broadcast message is 200 Bytes in size. The counter based optimiser
in the broadcast layer buffers each message before transmitting it for a time
period. This time period is chosen randomly to be between 50ms and 200ms.
The maximum counter value is set to three, as [14] shows three to be the optimal
value for reducing redundant broadcasts. If during the buffered period, a message
is received for a third time, its transmission is cancelled.

Two network topologies are chosen, linear and clustered. For the linear case
we set up a network of n nodes such that there are n − 1 hops between the
furthest two nodes. To achieve this topology, we remove external antennas from
the Cisco (aironet 350) IEEE 802.11b cards. Once the external antennas are
removed each node has a transmission range of about 2 feet. This allows us to
set up linear networks inside our lab.

Our most extreme network setup, a linear network with 6 nodes, has 5 hops.
An IEEE 802.11b based MANET of 5 hops will extend to more than a Kilometre.
We do not envision an application requiring the strong guarantees akin to those
provided by TransMAN when the network is spread over a Kilometre. We use the
linear 6 node network as an extreme case to observe the worst case performance
of our system. For the clustered case, all nodes have their external antennas
attached giving them a range of 250m. This results in a strongly connected
network.

6.2 Message Delivery

We first analyse the delivery times for both FIFO and total order delivery. Fig-
ure 3 shows the delivery times for FIFO and total order message delivery. We
observe that the average latency for FIFO delivering a message is less than 400ms
and 200ms for linear and clustered topologies respectively. This shows that even
while providing strong reliability guarantees TransMAN can be used for appli-
cations with latency tolerance of about 400ms. Mobile mutliplayer games are a
possible candidates.

From Figure 3, we see only a slight increase in the time required to deliver
messages as the group size increases. An interesting result is that up to a group
size of 5 nodes, the effect of topology on delivery times is not as adverse as
expected. Due to the higher number of hops in the linear case we had expected
much higher delivery times for the linear case.

Next we observe the number of transmissions between a message transmis-
sion and its delivery at all participating nodes. Figure 3 show the average num-
ber of transmissions required per node to deliver messages. The figure shows
how in a clustered setup FIFO delivery is achieved by at most 2 transmissions.
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Fig. 3. Delivery times & Transmissions required: FIFO and totally ordered

The linear setup on the other hand shows a linear increase up to a network
of 5 nodes. Again, the linear network of 6 nodes being an extreme example,
shows a large increase in the number of transmissions required to deliver each
message.

For total order delivery the linear case shows a steeper increase in the number
of transmissions as compared to the clustered case. This is again due to the
increase in the number of hops as the size of a linear network increases and the
increase in the number of implicit acknowledgements required for total order
message delivery.

Comparing the number of transmissions and time taken to deliver messages
in total order from figures 3 we see that even though up to a network size of 5
nodes the latency of total order message delivery remains similar for linear and
clustered setups, the number of actual transmissions required is much higher in
the linear case. This is because even if in a clustered network total order delivery
is achieved with fewer transmissions than in the linear case, the collisions and
MAC layer backoffs result in similar message latencies as in a linear setup. This
shows the affect of spatial reuse and how more transmissions are accommodated
to provide similar latency.

Observing the clustered case for FIFO and total order delivery in Figure 3 we
see that the number of transmissions required to deliver messages in total order
grows more rapidly over the group size than in case of FIFO delivery. This is
because as the group size increases each message has to be acknowledged by more
and more nodes and this requires higher number of messages to be delivered,
requiring higher number of transmissions.

6.3 View Changes

Finally we look at the system performance while responding to a view change.
Figure 4 shows the number of message transmissions required to add and re-
move a node from a network of a given size. The x-axis shows the number of
nodes in the network. For the graph showing node addition, the x-axis shows the
group size before a new node is added. Correspondingly, for node removal, the
x-axis shows the number of nodes before a node is removed. We observe latency
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in number of transmissions in the network to normalise the effects of varying
heartbeats and buffering times.

Figure 4 clearly shows a linear increase in the number of transmissions re-
quired to respond to a change in group membership. This is because as the
group size increases the number of messages required to reach an agreement also
increases.

Another observation from Figure 4 is
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the similarity in the number of transmis-
sions required to undergo a view change
for the two topologies, until a network of
5 nodes. This is explained by the transi-
tive nature of dependencies which allows
each message transmission from a node to
implicitly acknowledge a number of mes-
sages irrespective of the topology. Thus,
each message transmission by a node con-
tributes to progress towards membership
agreements on all nodes. This effect of
transitive dependencies on the number of
transmissions required to install views shows that using a broadcast protocol is
a good choice for implementing a virtually synchronous group communication.

7 Related Work

Group communication systems have long been a focus of study, with systems
largely focussed on providing a solution in LANs [5] or WANs [4]. Group com-
munication for MANETs has been under some study lately. Probabilistic system
like [7] provide participating nodes with a randomised set of participating nodes
as a group membership. Friedman [6] proposes using a fuzziness level attached to
each node’s membership information. The idea of geographical proximity is used
in [8] to address the group membership problem. Using location information of
nodes to determine a consistent group membership [11] has been studied and
can provide a useful alternative to our system given a location service. Prakash
and Baldoni [10] provide a group membership protocol for synchronous networks
and is targeted towards channel allocation problems in wireless networks. Our
system in contrast to these systems is a deterministic solution that supports
virtual synchrony without requiring limits on clock drifts.

8 Conclusions

In this paper we presented TransMAN, a group communication system for mo-
bile ad-hoc networks. TransMAN is a complete group communication stack offer-
ing comparable functionality and features as a group communication system for
fixed-networks but is designed to cope with the challenges of dynamic MANETs.
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At the core of the system is the technique of observing messages exchanges to-
gether with the exploitation of the broadcast nature of wireless communication.
This reduces the acknowledgements and other control messages in the network.
These protocols are combined to offer reliable, virtual synchronous group com-
munication for MANETs.

An implementation of our system was developed in Ruby and we ran exper-
iments with different group sizes and topologies. These results show a message
delivery latency of 400ms for the worst case network setup and show that mes-
sage latency increases linearly with network size.
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Abstract. The catastrophic fault pattern is a pattern of faults occur-
ring at strategic locations that may render a system unusable regardless
of its component redundancy and of its reconfiguration capabilities. In
this paper, we characterize catastrophic fault patterns in mesh networks
when the links are bidirectional or unidirectional. We determine the min-
imum number of faults required for a fault pattern to be catastrophic.
We consider the problem of testing whether a set of faulty processors
is catastrophic. In addition, when a fault pattern is not catastrophic
we consider the problem of finding optimal reconfiguration strategies,
where optimality is with respect to either the number of processing ele-
ments in the reconfigured network (the reconfiguration is optimal if such
a number is maximized) or the number of bypass links to activate in
order to reconfigure the array (the reconfiguration is optimal if such a
number is minimized). The problem of finding a reconfiguration strategy
that is optimal with respect to the size of the reconfigured network is
NP-complete, when the links are bidirectional, while it can be solved in
polynomial time, when the links are unidirectional. Considering optimal-
ity with respect to the number of bypass links to activate, we provide
algorithms which efficiently find an optimal reconfiguration.

1 Introduction

Mesh architectures consist of a large number of identical and elementary process-
ing elements locally connected in a regular fashion. Each element receives data
from its neighbors, computes and sends the results again to its neighbors. Few
particular elements located at the extremes of the systems (these extremes de-
pend on the particular system) are allowed to communicate with the external
world. In this paper, we will focus on mesh architectures.
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Fault tolerant techniques are very important to mesh architectures [2]. Here
we assume that only processors can fail. Indeed, since the number of processing
elements is very large, the probability that a set of processing elements be-
comes faulty is fairly high. Without the provision of fault-tolerance capabilities,
the yield of such an architecture would be so poor that it would be unaccept-
able. Thus, fault-tolerant mechanisms must be provided in order to avoid faulty
processing elements taking part in the computation. A widely used technique
to achieve fault tolerance consists of providing redundancy to the desired archi-
tecture [1,2]. In these systems the redundancy consists of additional processing
elements, called spares, and additional connections, called bypass links. Bypass
links are links that connect each processor with another processor at a fixed
distance greater than 1. The redundant processing elements are used to replace
any faulty processing element; the redundant links are used to bypass the faulty
processing elements and reach others. The effectiveness of using redundancy to
increase fault tolerance clearly depends on both the amount of redundancy and
the reconfiguration capability of the system. It does however depend also on the
distribution of faults in the system. There are sets of faulty processing elements
for which no reconfiguration strategy is possible. Such sets are called catastrophic
fault patterns (CFPs). From a network perspective, such fault patterns can cause
network disconnection.

If we have to reconfigure a system when a fault pattern occurs, it is necessary
to know if the fault pattern is catastrophic or not. Therefore it is important
to study the properties of catastrophic fault patterns. Till today, the charac-
terization of CFPs is known for linear arrays with the following results. The
characterization has been used to obtain efficient testing algorithms both for
unidirectional and bidirectional cases [13,14] with order of magnitude improve-
ment over [3,4]. Efficient techniques has been obtained for constructing CFPs
[12]. Using random walk as a tool, a closed form solution for the number of CFPs
for uni- and bidirectional links has been provided in [8,10]. The knowledge of
this number enables us to estimate the probability that the system operates cor-
rectly [11]. Recently, Maity, Nayak and Roy [9] characterize catastrophic fault
patterns for two-dimensional arrays.

In this paper we completely characterize CFPs for mesh networks. We de-
termine the minimum number of faults required for a fault pattern to be catas-
trophic. From a practical viewpoint, above result allow to prove some answers to
the question about the guaranteed level of fault tolerance of a design. Guaran-
teed fault tolerance indicates positive answer to the question as: will the system
withstand up to k faults always regardless of how and where they occur? We
analyze catastrophic sets having the minimal number of faults. The paper also
describes algorithm for testing whether a set of faults is catastrophic or not.
In addition, when a fault pattern is not catastrophic, we consider the problem
of finding optimal reconfiguration strategies for both unidirectional and bidirec-
tional networks. Where the optimality is with respect to the number of processors
in the reconfigured network or with respect to the number of bypass links. The
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reconfiguration is optimal if number of processing elements is maximized in the
former case, while the number of bypass links are to be minimum in the latter
case.

2 Preliminaries

In this paper, we will focus on mesh networks. The basic components of such a
network are the processing elements(PEs) indicated by circles in Figure 1. There
are two kinds of links : regular and bypass. Regular links connect neighboring
(either horizontal or vertical) PEs while bypass links connect non-neighbors.
The bypass links are used strictly for reconfiguration purposes when a fault
is detected, otherwise they are considered to be the redundant links. We now
introduce the following definitions:
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Fig. 1. Mesh network of 54 PEs

Definition 1. A mesh network M = (V, E) consists of a set V of PEs and a
set E of links (where a link joins a pair of distinct PEs) satisfying the conditions
listed below.

V is the union of five disjoint sets: the set ICUL={ICUL1, ICUL2,. . ., ICULN1}
of left interface control units, the set ICUR = {ICUR1, ICUR2, . . . , ICURN1}
of right interface control units, the set ICUT = {ICUT1, ICUT2, . . . , ICUTN2}
of top interface control units, the set ICUB = {ICUB1, ICUB2, . . . , ICUBN2}
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of bottom interface control units, and a two-dimensional array A = {pij : 1 ≤
i ≤ N1, 1 ≤ j ≤ N2} of PEs. We sometimes refer to the processing element pij

as (i, j).
E consists of the links obtained as follows. Fix integers 1 = g1 < g2 < . . . <

gk ≤ N2 − 1 and 1 = v1 < v2 < . . . < vl ≤ N1 − 1. Join pij to pi′j′ by a link
if and only if (i) i = i′ and j′ − j is one of g1, g2, . . . , gk or (ii) j = j′ and
i′ − i is one of v1, v2, . . . , vl. Also join ICULi to pi1, pi2, . . . , pigk

and join
pi,N2−gk+1, pi,N2−gk+2, . . . , piN2 to ICURi by links, for i = 1, 2, . . . , N1. Simi-
larly join ICUTj to p1j, p2j , . . . , pvlj and join pN1−vl+1,j, pN1−vl+2,j , . . . , pN1j

to ICUBj by links, for j = 1, 2, . . . , N2.

We assume that N2 > gk and N1 > vl. We also assume N1 and N2 are multiple
of vl and gk respectively.

Definition 2. We refer to G = (g1, g2, . . . , gk | v1, v2, . . . , vl) as the link
redundancy ofM. We call g1, g2, . . . , gk the horizontal link redundancies ofM
and v1, v2, . . . , vl the vertical link redundancies ofM.

Figure 1 shows a mesh network with N1 = 6, N2 = 9 and G = (1, 3 | 1, 2). A
link joining two PEs of the type pij and pi,j+1 is called a horizontal direct link
and a link joining two PEs of the type pij and pi+1,j is called a vertical direct
link. Direct links are also called regular links. Links joining pij and pi, j+g with
g > 1 are called horizontal bypass links and links joining pij and pi+v, j with
v > 1 are called vertical bypass links.

The length of the horizontal bypass link joining pij to pi, j+g is g and the
length of the vertical bypass link joining pij to pi+v, j is v.

Note that no links exist in the network M except the ones specified by G
as in Definition 1. It is assumed that ICUL, ICUR, ICUT and ICUB always
operate correctly and we are considering information flow from ICUL ∪ ICUT
to ICUR ∪ ICUB.

Definition 3. Given a two-dimensional array A, a fault pattern F for A is the
set of faulty processors which can be any non-empty subset of A. An assignment
of a fault pattern F to A means that every processing element belonging to F
is faulty (and the others operate correctly).

Definition 4. A fault pattern is catastrophic for the mesh networkM if ICUL∪
ICUT is not connected to ICUR∪ ICUB when the fault pattern F is assigned
to A.

Definition 5. Let F be a fault pattern in a mesh networkM with link redun-
dancy G = (1, g2, . . ., gk | 1, v2, . . ., vl). If we remove all faulty PEs, their
adjacent links and all bypass links from M then a component of M will be
called a chunk. Let C0, C1, . . . , Cn be the chunks of F where C0 is connected
with ICUL ∪ ICUT , Cn is connected with ICUR ∪ ICUB and other Ci’s are
labelled arbitrarily.
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Definition 6. A path from a working processor (i0, j0) to a possibly faulty
processor (is+1, js+1) is a sequence of processors (i0, j0), (i1, j1), . . ., (is, js),
(is+1, js+1) such that, for each k = 0, 1, . . . , s, processor (ik, jk) is a work-
ing processor connected by a link to processor (ik+1, jk+1) and a processor is
used only once. The length of the path is s + 1. An escape path is a path form
ICUL ∪ ICUT to ICUR ∪ ICUB.

Our main contribution here is a complete characterization of catastrophic fault
patterns for mesh networks. LetM be a mesh network with link redundancy G =
(g1, g2, . . . , gk | v1, v2, . . . , vl), and let F be a fault pattern. Then we prove
that, F is catastrophic with respect toM implies that the cardinality of F , |F | ≥
max

{
N1
vl

, N2
gk

}
vlgk. We provide an algorithm to test whether a given F is catas-

trophic with respect to link redundancy G = (g1, g2, . . . , gk | v1, v2, . . . , vl).
When a fault pattern is not catastrophic, we are interested in finding escape

paths. Depending on the fault pattern there can exist several escape paths. We
are interested in finding those escape paths that are optimal with respect to
the size of the reconfigured network or the number of redundant links to be
activated to reconfigure the network. Here optimality is achieved when the size
of the reconfigured network is maximized, that is, when the number of processors
in the escape path that reconfigured the network is maximized. In this case, an
optimal escape path is called a maximum escape path, and a reconfiguration set
that achieves a maximum escape path is called a maximum reconfiguration set.
For example, consider the fault pattern F = { (1, 3), (1, 4), (1, 5), (2, 1), (2, 2),
(2, 3), (2, 4), (2, 5), (3, 1), (3, 4), (3, 5), (4, 1), (4, 2), (4, 3), (4, 4)} in a 4×5 mesh
networkM with link redundancy G = (1, 2, 3 | 1, 2). The maximum escape path,

1,1 1,2

3,3

4,5

3,2

Fig. 2. A mesh with a fault pattern

having 4 processing elements, is given by ICUL1 or ICUT1, (1,1), (1,2), (3,2),
(3,3) ICUR3 or ICUB3 for both bidirectional or unidirectional case. However
maximum escape path is not unique always.

In the latter case, optimality is achieved when the number of redundant links
that we have to activate in order to reconfigure the network is minimized. In
this case, an optimal escape path is called minimum escape path, and a re-
configuration set that achieves a minimum escape path is called a minimum
reconfiguration set. For example, consider the fault pattern in Figure 2. The es-
cape path ICUL3, (3,2), (3,3), ICUR3 is a minimum escape path since it uses
only two bypass links and there are no escape paths that use only 1 bypass
link.
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3 Characterization of Catastrophic Fault Patterns

In this section, we will characterize the catastrophic fault patterns for mesh
networks and prove that the minimum number of faults in a catastrophic fault
pattern is a function of N1, N2, the length of the longest horizontal bypass link
and the length of the longest vertical bypass link.
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Fig. 3. Tower-Bridge representation of mesh networks of Figure 1

Theorem 1. Suppose vl divides N1 and gk divides N2, then F is catastrophic
with respect to M implies that the cardinality of F , |F | ≥ max

{
N1
vl

, N2
gk

}
vlgk.

Proof: Suppose to the contrary that |F | < max
{

N1
vl

, N2
gk

}
vlgk. Then partition

the two-dimensional array A of PEs into blocks of vl rows as

A=
(

A1 A2 . . . AN1
vl

)T

and again partition each block Ai into sub-blocks

of gk columns as Ai =
(
Ai1

... Ai2

... . . .
... A

i
N2
gk

)
. For example, sub-block

A12 = {(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6)} in Figure 3. We place the sub-
blocks A1j , A2j , . . . , AN1

vl
j

as consecutive floors to form tower j as shown in

Figure 3. On the other hand, the sub-blocks Ai1, Ai2, . . . , Ai
N2
gk

form bridge i in

between the towers. We will refer the sub-blocks as floors later. Observe that,
each horizontal bypass link of the maximum length joins two consecutive ele-
ments in the same bar of a bridge. On the other hand, each vertical link of the
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maximum length joins two consecutive elements in the same pillar of a tower. For
example, Figure 3 shows the bar [(6, 3), (6, 6), (6, 9)] and the pillar [(2, 9),(4, 9),
(6, 9)]. So, in this representation, going up along a pillar corresponds to using the
longest vertical bypass links and going right along a bar corresponds to using the
longest horizontal bypass links. Note that, there are N1gk bars and N2vl pillars.
Now we consider two cases:

Case 1. N1
vl

> N2
gk

. That is |F | < N1gk. Since the number of faulty elements
|F | is less than the number of bars, there must be a bar with no faulty element,
regardless of the distribution of the fault pattern. Since the left and right of each
bar are linked to ICUL and ICUR respectively, F cannot be catastrophic since
we can use the horizontal bypass links of length gk to avoid the faulty PEs, a
contradiction.
Case 2. N1

vl
< N2

gk
. That is |F | < N2vl. Since the number of faulty elements |F |

is less than the number of pillars, there must be a pillar with no faulty element,
regardless of the distribution of the fault pattern. Since the top and bottom of
each pillar are linked to ICUT and ICUB respectively, F cannot be catastrophic
since we can use the vertical bypass links of length gk to avoid the faulty PEs,
a contradiction which proves the theorem. ��
This theorem gives us a necessary condition on the minimum number of faults
required for blocking a mesh network when vl|N1 and gk|N2. In general we have
the following result:

Theorem 2. F is catastrophic with respect toM implies that the cardinality of
F , |F | ≥ max

{
N1gk, N2vl

}
.

The proof of this theorem is similar to that of Theorem 1. This tells us that
fewer than max

{
N1gk, N2vl

}
faults occurring in A will not be catastrophic.

4 An Algorithm to Test Weather a Fault Pattern Is
Catastrophic

4.1 Bidirectional Mesh

Let M be a bidirectional mesh network of N1N2 processors with link redun-
dancy G = (1, g2, . . ., gk | 1, v2, . . ., vl), and let F be a fault pattern with m
faults. A simple way to test if F is catastrophic for M is to consider a graph
whose set of vertices is given by the chunks of working processors. More for-
mally, we construct a graph H = (V, E) as follows: The set V of vertices is
{C0, C1, . . . , Cn}, where Ci’s represent chunks of F and (Ci, Cj) ∈ E if and
only if there are two processors, pxy ∈ Ci and px′y′ ∈ Cj such that y = y′ and
|x − x′| ∈ {v1, v2, . . . , vl} or x = x′ and |y − y′| ∈ {g1, g2, . . . , gk}, that is,
such that these two processors are connected inM by a bypass link.

Fact 1. A fault pattern F is not catastrophic for a network M, if and only if
C0 and Cn are connected in the graph H .
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4.2 Unidirectional Mesh

Given a mesh network M and a fault pattern F , we construct a graph G0 =
(V, E) as follows: The set V of vertices is the set of working processors and ICUs,
and the set E of edges are the links between two working processors and the links
between working processors and ICUs. In addition, there are two more vertices
source and sink. We join source to each of the ICUT s and ICULs and join each
of the ICURs and ICUBs to sink. If M is unidirectional then G0 is directed
and undirected otherwise. For the directed graph we preserve the direction of
the link, in the edge representing it. We call the graph G0 the auxiliary graph of
M for the fault pattern F .

Example 1. Consider the fault pattern F = { (1, 3), (1, 4), (2, 1), (2, 2), (2, 3),
(2, 4), (3, 2), (3, 4), (3, 5), (4, 1), (4, 2), (4, 4)} in a 4 × 5 unidirectional mesh
networkM with link redundancy G = (1, 2, 3 | 1, 2). Figure 4 shows the auxiliary
graph.
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Fig. 4. Auxiliary graph G0

Note that in the auxiliary graph G0 = (V, E), |V | = 2N1 + 2N2 + w + 2 and
|E| ≤ 2N1+2N2+w|G|, where w is the number of working processing elements in
the mesh. Also note that the auxiliary graph resulting from unidirectional mesh
is directed acyclic in nature (See [5]). Time required to construct an auxiliary
graph G0 = (V, E) is O(2N1 + 2N2 + w|G|), that is, O(N1 + N2 + w|G|).

To find out if the fault pattern is catastrophic or not, we assign weight 1
to all the edges in the auxiliary graph. Now, we can run the shortest path
algorithm given in [5] for directed acyclic graphs and find out if there exists a
path from source to sink. In a graph (V, E), the shortest path algorithm takes



450 S. Maity, A. Nayak, and S. Ramsundar

O(|V | + |E|) time. A fault pattern F is not catastrophic for mesh M, if and
only if source is connected with sink in the auxiliary graph. Thus the problem of
testing whether a fault pattern is catastrophic for unidirectional mesh network
requires O(N1 + N2 + w|G|) time.

5 Maximum Escape Paths

In this section we consider the problem of finding maximum escape paths. We
prove that the problem is NP-complete for a bidirectional mesh network, while
for unidirectional mesh we provide an algorithm that finds a maximum escape
path in O(N1 + N2 + w|G|) time.

5.1 MRL Problem in the Case of Bidirectional Links

Consider the following Maximuim Reconfiguration Length (MRL for short)
problem:

Definition 7. (MRL problem) Given a bidirectional redundant meshM, with
link redundency G, a fault pattern F and a positive integer K, is there an escape
path of length at least K?

Theorem 3. The MRL problem is NP-complete.

Proof: We reduce the problem of testing whether there exists a hamiltonian
path between two given vertices of a graph (HP for short), known to be NP-
complete (see [6]) , to MRL problem. Since it is easy to give a non deterministic
polynomial time algorithm that solves MRL problem we conclude that MRL
problem belongs to the class NP.

Let H = (V, E) be the input graph of the HP problem. Without loss of
generality, assume that V = {1, 2, ..., n} and that 1 and n are the vertices to be
tested.

Consider the following instance of our problem. The mesh M has N1 = 3
rows and N2 = (6n3−3n2−9n+8)

2 columns. For i = 1, 2, . . . , n define ai = (n +
i − 2)n2 + (n−1)(n−2)+(i−1)(i−2)

2 + 1. The horizontal link redundancies are for
each edge (i, j) ∈ E, a horizontal bypass link of length | ai − aj |. Moreover
there is an additional bypass link of length g = a1 (it is easy to see that this
is the longest horizontal link connecting ICUL2 and PE (2, a1), and also PE
(2, an) and ICUR2). The vertical link redundancy will be singleton {1}. The
fault pattern F consists of all the processing elements in the first and the third
rows and all the processing elements in the second row except those in the aith
column, i.e., in the whole mesh only the processing elements (2, ai), 1 ≤ i ≤ n,
are working. Finally K = n.

Notice that the above MRL instance can be constructed in time polynomial
in the size of the graph and all the integers occurring in the description of the
instance are polynomially related to n.

We will prove that H has an hamiltonian path if and only if the above instance
of the MRL problem admits a solution, i.e., if there is an escape path of size n.
In order to prove this, we first need the following four facts.



On Fault Tolerance of Two-Dimensional Mesh Networks 451

a The only possible escape path connects ICUL2 and ICUR2. It is easy to
notice that all other pairs of ICU’s are already disconnected.

b Any escape path must traverse (2, a1) and (2, an). Indeed, as the first and the
last g − 1 processing elements are faulty and the length of the longest link
is g.

c If (2, ai), with 1 < i < n, is traversed by an escape path, then it must be
traversed after (2, a1) and before (2, an). Indeed, let dij , 1 ≤ i �= j ≤ n, be
the distance between (2, ai) and (2, aj), i.e., dij =| ai − aj |= n2 | i− j | + |
(j−1)(j−2)

2 − (i−1)(i−2)
2 |. Since for (i �= j) it holds that n2 | i − j |< dij <

n2 | i − j | +n2, then (for 1 ≤ i �= j, u �= v ≤ n), we have dij = duv if and
only if {i, j} = {u, v}.

d Graph H is isomorphic to the graph consisting of the non faulty elements
(2, ai), i = 1, 2, . . . , n and their incident horizontal links. Indeed, since dij <
d1n < g, 1 ≤ i �= j ≤ n, processors (2, ai) and (2, aj) are connected by a
bypass link, if and only if vertices i and j are connected by an edge in graph
H . Moreover, since no other two working processors are at a distance dij ,
this bypass link connects only (2, ai) and (2, aj).

Now we can prove that there is an escape path of length at least K = n if and
only if there is an hamiltonian path between vertices 1 and n in the graph H .
Assume that there is an escape path of size K = n. Since inM there is exactly
K working processors, each processor is involved in the escape path. Since all
the working processors are traversed, by a, b, c, d, we conclude that there exists
a hamiltonian path between vertices 1 and n in H (recall that by the definition
of path each processor can be traversed at most once).

Conversely, given a hamiltonian path between vertices 1 and n in H , by d,
it corresponds to a path from (2, a1) to (2, an), which traverses once all the
non faulty processing elements of M. This path can be easily extended to an
escape path of size K = n connecting ICUL2 to (2, a1) and ICUR2 to (2, an),
respectively, by means of the longest bypass link.

Therefore we can test if there exists a hamiltonian path between vertices 1
and n in H by testing if there exists an escape path of size at least K for the
arrayM. ��

5.2 MRL Problem in the Case of Unidirectional Links

When the mesh is unidirectional, the problem of finding a maximum escape path
can be solved in O(N1 + N2 + w|G|) time.

Definition 8. An auxiliary escape path is a path from source vertex to sink
vertex in an auxiliary graph.

It is easy to note that if there are p edges in an auxiliary escape path then the
corresponding escape path contains p− 3 processing elements.

Given a fault pattern F in an unidirectional mesh network, we first construct
the corresponding auxiliary graph G0 = (V, E). To get the escape path with
maximum processors, we assign weight −1 to all the edges in E. Now we run the
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single source shortest path algorithm for directed acyclic graphs (DAG) given
in [5] on G0 with the source vertex as the source. The shortest auxiliary path,
if any, from source to sink is obtained. By shortest auxiliary path we mean
that the sum of the edge weights in the path is least. This algorithm takes
O(|V |+ |E|) time. The construction of the graph takes O(N1 +N2 +w|G|) time.
It takes O(|E|) time to assign the weight −1 to each edge. So the total time
spent to find out an escape path with maximum processing elements, if any, is
O(N1 + N2 + w|G|).

6 Minimum Escape Paths

In this section we consider the problem of finding minimum escape paths. We
prove that the problem can be solved in O(w|G|+(N1+N2+w) log(N1+N2+w))
time if the bypass links are bidirectional, and in O(N1 + N2 + w|G|) time if
the bypass links are unidirectional. First we consider the case of bidirectional
links.

Given a fault pattern F in a bidirectional mesh network, we construct the
auxiliary graph G0 = (V, E) and assign weight 1 to all the edges representing
the bypass links (horizontal or vertical) in G0 and 0 to all the remaining edges.
Now run the Dijkstra’s single source shortest path algorithm on G0 with source
vertex as the source. The shortest auxiliary escape path, if any, is then obtained.
This algorithm requires O(|V | log |V | + |E|) time (using Fibonacci heap data
structure, see [5]). The construction of the auxiliary graph takes O(N1 + N2 +
w|G|) time and it takes O(|E|) time to assign weight to each edge. Thus the
problem of finding minimum escape path for bidirectional mesh network requires
O(w|G| + (N1 + N2 + w) log(N1 + N2 + w)) time.

Now we consider the case of unidirectional links. Given a fault pattern F in
a unidirectional mesh network, we construct the auxiliary graph G0 = (V, E)
and assign weight 1 to all the edges representing the bypass links (horizontal
or vertical) in G0 and 0 to all the remaining edges. Now, repeat the shortest
path algorithm for DAG, as in the subsection 5.2. The shortest auxiliary escape
path, if any, is obtained. Thus the problem of finding minimum escape path for
unidirectional mesh network requires O(N1 + N2 + w|G|) time.

7 Conclusions

In this paper we have completely characterized catastrophic fault pattern for mesh
networks. Before attempting any reconfiguration it is important to test whether
the set of faults is catastrophic. We have presented testing algorithms to test
whether a given fault pattern is catastrophic. When a set of faults is not catas-
trophic it is important to provide efficient reconfiguration algorithms that pro-
vide optimal reconfigurations. Optimality is considered either with respect to the
size of the reconfigured network or with the amount of bypass links need to re-
configure the network. We have proved that when the links are bidirectional, the
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problem of finding optimal reconfiguration with respect to the size of the recon-
figured network is NP-complete. In all the other three cases we give algorithms
which efficiently find an optimal reconfiguration.

Acknowledgment. The authors like to thank the anonymous referees for im-
portant comments that improved the technical quality of the paper.
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Abstract. With the sharply development of high-speed backbone network and 
phenomenal growth of Web applications, many kinds of Web server structures 
have been advanced and implemented to increase the serving ability of Web 
server. In this paper, we propose a pipeline architecture multi-thread web server 
open KETA which divides the requests processing into several independent 
phases. This architecture reduces parallelism granularity and achieves inner-
request parallelism to enhance its processing capability. Furthermore, a 
combined feed-forward/feedback model is designed to manage thread allocation 
in this special architecture. The feed-forward predictor relates instantaneous 
measurements of queue length and processing rate of each pipeline phase to the 
thread allocation over a finite prediction horizon. The feedback controller deals 
with the uncertainty the predictor brings and improves open KETA’s 
performance farther. Experimental results show the capability of open KETA 
and the effectiveness of the thread allocation model. 

1   Introduction 

The Internet has become an important medium for conducting business and selling & 
buying services. These applications require stringent performance guarantees from the 
web server. Some statistic shows that an e-commercial web site should guarantee its 
response in 7 seconds or it will lose more than 30 percent customers [1]. Measures 
suggest that web servers contribute for about 40% of the delay in a Web transaction 
and it is likely that this percentage will increase [2]. According to the Moore law, 
although end system’s capacities will double every 18 months, network bandwidth 
would triple every year for the next 25 years. So the bottleneck is likely to be on the 
server side. In order to alleviate this pressure, some improvement should be made on 
web server. There are mainly three ways to achieve this [4]: 

 Improve the performance of a web server node at the software level, 
namely software scale-up. 

 Upgrade web server’s hardware such as CPU, memory and network 
interfaces to improve processing capability. This strategy, referred to as 
hardware scale-up, simply consists in expanding a system by incrementally 
adding more resources to an existing node. 
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 Deploy a distributed web system architecture composed by multiple server 
nodes where some system component such as dispatcher can route 
incoming requests among different servers. The approach in which the 
system capabilities are expanded by adding more nodes, complete with 
processors, storage, and bandwidths, is typically referred to as scale-out. 

In this paper, we concentrate on the first method --- software scale-up. Through 
comparison and analysis among the architecture of the mainstream web servers 
nowadays and their processing mechanism, we put forward a kernel pipeline web 
server — open KETA (KErnel neTwork geAr). This web server divides the 
processing of a request into four phrases, each of which has its own thread pool. 
Different phases of different requests can be executed concurrently like a pipeline on 
condition that there are no data and structure dependency. This architecture can 
reduce parallelism granularity effectively so that the resource of a web server can be 
utilized fully. Furthermore, a combined feed-forward / feedback model is designed to 
manage thread allocation in this special architecture. The feed-forward predictor 
adjusts thread allocation among all pipeline phases based on the instantaneous 
measurements of queue length and processing rate of each pipeline phase over a finite 
prediction horizon. The feedback controller deals with the uncertainty the predictor 
brings and improves open KETA’s performance farther. 

The rest of this paper is organized as follows. Section 2 briefly describes some 
related work. The framework of open KETA is introduced in Section 3. Section 4 
presents the design of the feed-forward predictor and feedback controller. Section 5 
describes the evaluation results. 

2   Related Work 

In view of the architecture, the mainstream web server can be classified into three 
categories: Single Process (SP), Symmetrical Multi-thread (SMT) and Asymmetrical 
Multi-thread (AMT) (or Symmetrical Multi-Process and Asymmetrical Multi-
Processes). 

In SP web server, a single process is responsible for the whole processing of all 
requests, including listening to the port, setting up connection, analyzing and 
processing requests, sending responses, etc. Some representative examples are 
μserver [5] Zeus[6] and kHTTPd[7]. This kind of web server always uses non-
blocking systems calls to perform asynchronous I/O operation. SP server is able to 
overlap all the operations associated with the serving of many HTTP requests in the 
context of a single process. As a result, the overheads of context switching and 
process synch- ronization in the MT and MP architectures are avoided. However, 
relied on operating system’s well support for asynchronous disk operations, SP web 
server may only provide excellent performance for cached workloads, where most 
requested content can be kept in main memory. 

On workloads that exceed that capacity of the server cache, servers with MT or MP 
architecture usually perform best. SMT web server employs multiple threads to 
process requests. Some representative examples are KNOT [8] and Apache [9]. The 
capability and function of all threads are the same, which is the origin of the name 



456 P. Shao-Liang et al. 

“Symmetrical Multi-Thread”. SMT web server can overlap the disk activity, CPU 
processing and network connectivity concurrently so that it improves the server’s 
parallelism capability. However, SMT web server ignores that the processing of a 
request also can be divided into several phases among which there are some potential 
parallelism.  

AMT web server allocates different tasks to different thread. Flash [10] and Tux 
[11] are examples for this kind. They use one thread to process all connections and 
several helper threads to deal with the I/O operation. They decrease blocking time 
effectively and improve the efficiency of the service. However, it increases IPC cost 
between thread and helper threads and also can not utilize system resource fully like 
SMT architecture. 

From the discussion above, we can see that most mainstream web servers have 
some parallelism capability and their parallelism granularity is request. Once a 
request is blocked on some operation, the thread will stop. It’s well known that thread 
resource is limited and costly in web system so this paper tries to find a way to reduce 
parallelism granularity and achieve inner-request parallelism. Open KETA divides the 
processing of a request into four phrases. Thread in different phases performs 
different function and doesn’t intervene with each other when running just like 
different pipeline phase. In this frame, even if a request is blocked in some special 
phase, threads in other phases still can process other requests. Utilization rate of 
threads is increased and the whole system performance is improved. In the following 
section, framework of open KETA is presented in Detail.  

The application of control theory to software performance control has met much 
success in recent years. [12] presented a control theoretical approach to web server 
resource management based on web content adaptation. In [13, 14], control theory 
was used for CPU scheduling to achieve QoS guarantees on service delay. In [15], 
guarantees were made on delay control by applying control-theoretical techniques. 
This paper demonstrates that adding prediction to control loops can enhance feedback 
loop performance in a non-trivial way. 

3   Framework of Open KETA 

Open KETA is a kernel web server, the original developing intention of which is to 
improve web server performance by transferring the processing of static requests from 
user space to kernel space. When overloaded, performance of web server in user 
space is not so well because of much copy and syscall cost. Now many web servers 
are implemented in kernel space, such as kHTTPd and TUX. Considering system 
stability, kernel space web server only processes static requests instead of complex 
dynamic requests, and that dynamic requests are redirected to user space web server 
such as Apache. What’s more, measurements [16, 17] have suggested that the request 
stream at most web servers is dominated by static requests. Serving static requests 
quickly is the focus of many companies. So we suppose that the implementation of 
open KETA will bring performance improvement. Figure 1 shows the processing 
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(static requests processing)
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Fig. 1. Processing flow of open KETA 

flow of open KETA. For Linux already has a kernel space web server TUX to 
accelerate requests processing, FreeBSD doesn’t have yet, open KETA is 
implemented in FreeBSD kernel to improve its web performance. 

As is introduced above, Open KETA divides the processing of request into four 
phrases: Accept Connection (accept), Socket Recv (receive), Data Process and Send 
Response (send) each of which has its own thread pool. Threads of different phases 
run in a pipeline-like manner. Partition of pipeline phases is not at random but with 
some principle. Firstly, coupling degree of different phase should be relatively low so 
that threads in different phases could run concurrently. Secondly, depth of pipeline 
should be proper because too flat can’t bring much parallelism and too deep will 
cause much scheduling cost. 

Open KETA uses a managed buffer (MB) to transfer some control structures 
among all the phases. Furthermore, a software cache data cache (DC) is used to cache 
objects to reduce the times of disk access. DC and MB are initialized by a main thread 
as open KETA is loading. The framework of open KETA is presented in Figure 2. 
Main task of each phase is stated as followed: 

 Accept phase is responsible for listening to the port. Applied with HTTP 1.1, 
once it finds a new arrived request which doesn’t belong to an existing socket 
it will create a new socket and set up connection, else if the socket is still keep 
alive, the request will stride over the accept phase and go to receive phase 
directly. 

 Receive phase checks the completeness of http request and judges whether 
it’s a static request. If not it will be redirected to web server in user space such 
as Apache. Here the socket the request belongs to is thrown to the socket list 
of user space web server directly in order to avoid the cost of recreating and 
destroying socket. If the arrived request is a static one, it is inserted to the task 
list of Data process phase. 

 Data process phase first validates requests and then judges whether the object 
requested is in DC or not by a hash map, if yes the response message is 
generated. It is worth saying that the response head is stored in DC as long as 
the object is in DC so that the response message can reuse the response head. 
Once the object is not hashed in DC, get it from disk. If the conflict list of 
hash table is full or DC doesn’t have enough space, some object will be 
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washed out from DC. The management of DC is based on the Buddy system 
but something different is a block chain which is used to manage the space 
effectively and avoid the forming of fragments. 

 Just as its name implies, send phase sends the object back to clients. Open 
KETA utilizes Zero Copy which FreeBSD supports to reduce copy times and 
improve sending efficiency. 
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Fig. 2. Framework of open KETA 

In order to guarantee the real time service, all thread pools are initialized by a main 
thread when open KETA is loading. The number of thread is set empirically in a 
configuration file. As to the activation of threads of each phase, there are two ways in 
common: One is that a scheduler is specialized in this work in each thread group. 
After the execution, thread in previous group passes the result to the scheduler in this 
group. The scheduler will choose a thread based on some special rule. This method is 
extendable in implementation but the scheduler may be the bottleneck. Another way 
is that thread chooses the next-phase thread itself based on some rule. The advantage 
of this method is that cost of copy and control can be reduced greatly but thread 
scheduling of each group is not transparent to other groups. Considering that open 
KETA is implemented in kernel, efficiency may be more important, so the latter is  
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chosen and MB is used to transfer all control structures. When a thread has finished 
one task, it will check whether there are some unsettled tasks in task list, if yes the 
thread continues to process another task else it will sleep and not wake up until thread 
in previous phases activate it. 

From what is afore-mentioned, thread number of each phase is set from a 
configuration file when open KETA is loading. Actually, this number many be varied 
to fit different load conditions. When size of requested objects is large and open 
KETA need disk access in high frequency, data process phase would be the 
bottleneck of the pipeline; when most objects can be cached in DC, send phase would 
be the bottleneck. So in order to smooth the running of the pipeline, more threads 
should be allocated to bottleneck phase. In our previous work [18], we use a feedback 
control approach to adjust thread number based on the queue length of each phase and 
server utilization rate. But these guidelines seem not sufficient; What’s more, the 
drawback of pure feedback-based control is that it is a reactive approach, where 
corrections are made only after disturbances have had a chance to influence the 
system. Therefore, a feed-forward prediction is used to augment the feedback loop in 
this paper. The design of Feed-forward/Feedback Model will be presented in the 
following section. 

4   Design of Feed-Forward/Feedback Model 

The architecture of the feed-forward/feedback model is shown in Figure 3. The 
predictor is placed on the feedforward path to make estimates of per-phase thread 
allocation, it computes the thread number fN  for each pipeline phase from the 
processing rate and queue length of each phase regarding the past arrival pattern. 
Several feedback control loops adjust this allocation in response to measured per-
phase processing delay deviation that due to inaccuracy of the predictor and compute 
a corrected value bN . The objective of this model is to smooth the running of the 
pipeline. Since the more balanced the processing delay of all phases is, the more  
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Fig. 3. The feedback control loop augmented with feedforward predictor 
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potential the pipeline have, all that the predictor and the feedback controller should do 
is to achieve this balance among all pipeline phases by adjusting the thread allocation. 

f bN N N= +  is the final value of the thread number. The design of the feed-forward 
predictor and the feedback controller will be described below in detail. 
 

4.1   The Feedforward Predictor 

In order to provide an efficient feed-forward prediction, it is important to have an 
accurate model of the processing delay of each phase. Consider there are four phases 
in the pipeline, the queue length and processing rate of phase i in the kth sampling 
time are ( )iL k  and ( )iV k , so the total number of requests that phase i need to process 
during the (k+1) th sampling time is ( )iL k  plus that phase i-1 will insert. ( )iN k  is the 
current thread number of phase I, by changing the thread number of phase i from 

( )iN k  to ( 1)f
iN k + , the processing rate may change from ( )iV k  to 
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achieve the balance afore-mentioned, the following equations should be satisfied.  
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Accept phase is the first phase and does not have task list, so the requests it will 
process during the (k+1) th sampling time are tλΔ , tΔ is sampling interval. Let M be 
the total capacity of the server, so 

0 1 2 3( 1) ( 1) ( 1) ( 1)f f f fN k N k N k N k M+ + + + + + + =  (2) 

There are four equations in the four unknowns, ( 1)f
iN k + , i=0, 1, 2, 3 (0 for accept, 

1 for receive, 2 for data process, 3 for send). By solving these equations, we can get 
the desired value for ( 1)f

iN k + , which describe the thread allocation of each phase 

suggested by the predictor. These values constitute the predictor output. Ideally, we 
hope the processing delay of each phase during the next sampling time will be equal 
through above allocation. But in the combined feed-forward/feedback model, the 
output of the predictor is not directly applied. Instead it is mathematically combined 
with the output of the feedback controller ( 1)b

iN k +  whose purpose is to adjust for the 

deviation in resource allocation as described next. 
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4.2   The Feedback Controller 

The main short-coming of the feed-forward predictor is the fact that the actual per-
phase processing rates of the future requests are unknown. As mentioned above, all 
estimations are based on past measurement (per-phase processing rate). To deal with 
this uncertainty and to improve the performance of open KETA, several feedback 
controllers are added. These controllers use feedback from processing rate of each 
phase in last sampling point. 

The control action is computed from the difference, E, between the measurements 
of the processing delay ratio between adjacent phases and the set-point 1. For one 
controller is used for every pair of adjacent phases, three controllers are needed for 
these four pipeline phases. At every sampling time k, the loop measures the deviation 

in the delay ratio 
1

( )

( )
i

i

T k

T k−  
(i = 1, 2, 3) from the ideal target 1.The performance error is 

therefore defined as 
1

( )
( ) 1

( )
i

i
i

T k
E k

T k−

= − . If the feed-forward predictor is ideal, the ratio 

1

( )

( )

f
i

f
i

N k

N k−  of threads allocated to the two phases will be such that no error is observed. 

However, in general, the predictor is only approximate, causing a finite error to 
develop. The controllers are proportional, integral (PI) controller implemented 
according to the formula: 
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where g and r are controller design parameters known as the controller gain and zero, 
respectively. To combine the predictor and the controller, we simple add their 
outputs: 

( 1) ( 1) ( 1)f b
i i iN k N k N k+ = + + +  (4) 

Together with the total capacity condition 

0 1 2 3( 1) ( 1) ( 1) ( 1)N k N k N k N k M+ + + + + + + =  (5) 

From equation 3, 4, 5, all unknowns can be solved. 

ig  and ir  were pre-calculated for different adjacent phases using simple step 

response experiments. Small changes of the server sped were applied. It was observed 
how the processing delay of each phase was influenced. These experiments help to 
compute ig  and ir . 

5   Experimental Evaluation 

5.1   Comparison of Open KETA with Other Web Servers 

Open KETA is implemented in FreeBSD 5.3 kernel. In order to compare its 
performance with other web servers, we have done some experiments under different  
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loads. In view of open KETA’s nature, all experiments are carried out only with 
static requests. The testing environment is made up of one server and three or five 
clients which are described next: 

Server: SMP with two xeon 2.0G hz cpus,2GB memory, 36G SCSI hard disk and 
1000M network card; 

Clients: 2.4G hz cpu, 512M memory, 40GB 5400 rpm hard disk and 10-100M 
adaptive network card; 

We use a testing tool SPECWeb99 to generate web work-loads in our experiments 
which is commonly used to evaluate the performance of web servers. Platforms for 
evaluated web servers are Apache, open KETA in FreeBSD 5.3, Apache, Tux, and 
Zeus in Redhat Enterprise Linux v3.0. Note that the results of Table1, 2, 3 for open 
KETA do not include the feed-forward/feedback model. 

Table 1. Results of 300 concurrent connections (3 clients) 

Tested object Mean 
response 
time(ms  

Weighted 
bandwidth 
(bps  

Valid  
Invalid  

Confor-
ming 

Opera-
tions per 
second 

Apache(freebsd) 410.0 303272.69 300+0 50 761 

Apache(Redhat) 382.2 313600.49 300+0 56 765 

Tux 320.4 373585.24 300+0 300 907 

Zeus 342.5 357853.37 300+0 300 855 

Open KETA 307.0 389930.76 300+0 300 954 

When the concurrent connections are 1000, client may be the bottleneck (due to 
10-100M network card), so more clients are used. 

We can see from the results, the performance of open KETA is much better 
than the web servers listed above. A simultaneous connection is considered 
conforming to the required bit rate if its aggregate bit rate is more than 320,000 
bits/second, or 40,000 bytes/second. Other guidelines can be easily understood by 
their name. 
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Table 2. Results of 600 concurrent connections (3 clients) 

Tested 
object 

Mean 
response time 

ms  

Weighted 
bandwidth 
(bps  

Valid 
Invalid  

Confor-
ming 

Opera- 
tions per 
second 

Apache 
(freebsd) 

719.3 166083.41 600+0 0 771 

Apache 
(Redhat) 

758.2 157416.85 600+0 0 769 

Tux 456.1 261535.11 600+0 600 1296 

Zeus 536.1 228577.33 600+0 600 1100 

Open 
KETA 

352.4 356495.45 600+0 600 1702 

Table 3. Results of 1000 concurrent connections (5 clients) 

Tested 
object 

Mean 
response 
time 

ms  

Weighted 
bandwidth 
(bps  

Valid  
Invalid  

Conforming Opera- 
tions per 
second 

Apache 
(freebsd) 

1077.7 110974.79 983+17 0 773 

Apache 
(Redhat) 

1247.2 95514.28 989+11 0 750 

Tux 791.1 150558.99 999+1 678 1244 

Zeus 992.5 126145.36 996+4 565 987 

Open 
KETA 

437.7 290117.36 1000+0 35 2285 

5.2   Experimental Results for the Feed-Forward/Feedback Model 

The URL requests generating rate of SPECWeb99 is influenced by the server load. 
This character makes it unable to reflect the benefit adequately which the feed-
forward/feedback model brings. So we use another testing tool Benchmark Factory to 
show the real performance of the model. Benchmark Factory allows to Specifies a 
predetermine rate to send transactions to a server without waiting for a response from 
a client. For example, if the InterArrival time is 1000ms, a transaction is sent to a 
server once every 1000ms, resulting in 1 TPS for that transaction. 

The main thread of open KETA is responsible for the information collection and 
thread allocation in each sampling interval. Figure 4 and figure 5 present the TPS 
(Transactions per Second) comparison of open KETA without feed-forward/feedback 
model and with feed-forward/feedback model. The feed-forward/ feedback model 
helps to enhance open KETA’s performance obviously. 
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Fig. 4. TPS comparison (with VS without thread control model) 

 

Fig. 5. Mean response time comparison (with VS without thread control model) 

6   Conclusion 

In this paper, we proposed the pipeline framework of a kernel web server open 
KETA. This architecture can reduce parallelism granularity effectively so that the 
resource of a web server can be utilized fully. Furthermore, we experimentally 
investigated the benefits of combing a feed-forward predictor with a feedback 
controller architecture in the context of achieving pipeline phases’ balance of open 
KETA. The results showed in section 5 validate the predominance of open KETA and 
the effectiveness of the feed- forward/feedback model. 
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Abstract. In systems with power constraints, context switches in a task 
schedule result in wasted power consumption. We present variants of priority 
scheduling algorithms – Rate Monotonic and Earliest Deadline First - that 
reduce the number of context switches in a schedule. We prove that our variants 
output feasible schedules whenever the original algorithms do. We present 
experimental results to show that our variants significantly reduce the number 
of context switches. Our results also show that the number of context switches 
in the schedules output by these algorithms is close to the minimum possible 
number.  

Keywords: Real time systems, scheduling, low power, preemption, and context 
switches. 

1   Introduction 

Power consumption is a limiting factor in most real-time embedded systems, due to 
limited battery life. This issue has been addressed at various levels – at the architectural 
level (e.g. DVS, DFS, caching), at the systems level (e.g. process management, memory 
management, compilation techniques), and at the applications level (e.g. data structures 
and algorithm design). At the operating systems level, there have been three primary 
approaches to address the power consumption problem: process scheduling techniques 
[1-13], paging systems [14], and performance tuning [15].  

Various scheduling algorithms have been proposed to exploit energy-saving 
techniques at hardware level such as Dynamic Voltage Scaling and Dynamic 
Frequency Scaling [2, 3]. There are other scheduling algorithms that use support from 
memory hierarchy features [4], or compilers [5] to reduce power consumption. Most 
of these power-aware scheduling techniques are dependent on platform-specific 
features such as clocks, device characteristics, or memory technologies.  

One architecture-independent factor that affects power consumption of a process 
schedule is the cost of pre-emptions (or context switches) [16]. Context switch 
                                                           
 *  Supported by Microsoft Research, India through a Ph.D. research fellowship. 
** Supported by Microsoft Research, India through the Embedded Systems research grant  

2004-06. 
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duration is a hidden, unproductive duration in a schedule. Context switch duration 
includes the time taken for saving the context of the current process / thread and 
loading the context of the next process / thread. Typically, the duration of a context 
switch between threads is less than that between processes but even the former is not 
insignificant. For the rest of the paper, we assume that we are referring to process 
contexts, but most of the issues related to context switching between processes are 
applicable for threads as well. 

Various factors specific to the architecture and the operating system affect the 
context switch duration. For instance, the impact of register sets, floating point units, 
and caching schemes on context switch times have been reported in [17] and [18]. 
Gooch [18] also refers to the impact of the process queue on context switching time – 
in particular, the strong correlation between context switch time and the length of the 
run (process) queue. The direct impact of context switches in a schedule is the time 
spent in the act of context switching [15]. This time – dependent on the specific 
architecture and the operating system – is small but not insignificant. The number of 
context switches in a schedule may add up to a significant delay in the execution of a 
process and thus affect its schedulability. The total time spent in context switches 
would also result in wasted power consumption. An indirect but more significant 
impact of context switches could be due to data movement across the memory 
hierarchy i.e. cache block replacement and page replacement in RAM. In fact, the 
additional energy consumption due to this indirect impact has been reported to be 
significantly higher [6][15].  

The amount of energy wasted due to context switches in a schedule is proportional 
to the product of the number of context switches in the schedule and the average 
impact of a context switch. A power-aware scheduling algorithm should account for 
the impact of context switches on power consumption. We address this issue through 
variants of priority scheduling algorithms (Rate Monotonic and Earliest Deadline 
First) that reduce the number of context switches in a schedule. Several scheduling 
algorithms have been designed to be preemption-aware, i.e. they reduce the number of 
preemptions or context-switches. We discuss these algorithms in Section 2. In Section 
3, we describe our approach to reduce the number of context switches in a schedule 
and we present variants of well-known priority-scheduling algorithms – RM and 
EDF. In Section 4, we prove the correctness of our algorithms. In Section 5, we 
present experimental results to demonstrate the effectiveness of our algorithms in 
reducing context switches. In Section 6 we conclude. 

2   Related Work 

Various techniques have been proposed in the literature for reducing the number of 
context switches in a schedule. The techniques vary in complexity from simple, 
inexpensive heuristics to exhaustive search. Some techniques attempt to reduce the 
number of context switches while others address the indirect impact of context 
switches by reducing data movement in memory hierarchy.  

In [7], Oh and Yang propose a variant of the Least Laxity First Algorithm to reduce 
context switches in a schedule. When there is tie in the laxity between two processes 
the modified LLF algorithm continues the execution of the active process while 
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freezing the priority of the other process. This heuristic fixes the frequent context-
switching problem of LLF without affecting its optimality. The approach is simple and 
effective in addressing the limitation of LLF but it does not aggressively remove 
unnecessary context switches. In [8, 9], Wang and Saksena, describe a fixed priority 
scheduled algorithm that reduces context switches by assigning an active priority 
known as pre-emption threshold for each job. Pre-emption thresholds are assigned by a 
branch-and-bound algorithm using lateness heuristic. This approach is limited to fixed 
priority scheduling as threshold assignment may take exponential time. Lee et. al [6, 
10] address the impact of  context switches on caching behavior by proposing a new 
algorithm known as Limited Preemptive Scheduling (LPS).  LPS uses data flow 
analyses techniques to determine the preemption points with small cache loading costs. 
The primary limitation of this approach is that it requires extensive data flow analyses 
and therefore may not be suitable for dynamic scheduling. 

Our approach focuses on aggressive reduction of the number of context switches 
without relying on extensive computations. Our heuristic is not so simple as the 
MLLF heuristic but it is much more efficient than the exhaustive search used in [8] or 
the data flow technique used in [10].  Apart from the above techniques there have 
been other approaches where context reduction has been considered in conjunction 
with other techniques or goals. For instance, [11] demonstrates a pre-emption control 
technique for scheduling in processors with Dynamic Voltage Scaling. This technique 
is effective in reducing unnecessary context switches caused by dynamic voltage 
scaling particularly under low or medium processor utilization levels. As such this 
technique may not be effective in reducing context switches while scheduling under 
non-DVS processors (nor equivalently under high processor utilization levels when 
DVS by itself is not useful). Our algorithm aggressively reduces the number of 
context switches independent of the use of DVS. In [12], Vahid et. al. propose a 
modification to the Maximum Urgency First (MUF) scheduling algorithm [13] known 
as MMUF. MUF addresses the issue of schedulability of critical tasks in the presence 
of transient overloads. MMUF is a hybrid priority algorithm that is a generalization of 
RM, EDF, LLF, MLLF, and MUF. Like MLLF, MMUF lets the currently active 
process to continue running in the presence of other processes with the same priority. 
Thus with respect to reduction in context switches, MMUF is almost the same as 
MLLF. Our algorithm does not address the issue of transient overloads nor critical 
tasks. 

3   Algorithms  

Our approach to context switch reduction is similar to the one used in [7] and [12]: 
defer the preemption of an active process when it can be guaranteed that any process 
that is delayed will not miss its deadline. But the heuristics in MLLF and MMUF are 
weak. MLLF defers preemption only when there is a tie in the priority (i.e. laxity in 
this case) to begin with. The priority of the delayed process is frozen for the extension 
period. But if a higher priority process could have been delayed without missing the  
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deadline, MLLF would not do this. MMUF uses the same heuristic as MLLF. Thus in 
the best-case scenario, MLLF and MMUF perform as well as EDF but no better.  

We adopt a more aggressive approach that considers deferrals even in the presence 
of higher priority processes – without affecting the schedulability of the delayed 
processes. Our heuristic maximizes the extension period of the active process by 
considering the deadlines of all processes in the ready queue whose priority is same as 
or higher than the active process. Based on this heuristic, we present a scheduling 
algorithm (RCSS) parameterized by a priority function. By choosing the appropriate 
priority function, variants of EDF (named EDF_RCS) and of RM (named RM_RCS) 
are obtained from our algorithm. Schedulability of tasks is preserved by these variants 
i.e. the variant (say RM_RCS) is optimal if and when the original algorithm (say RM) 
is optimal. We present the algorithms below. We use the following notation in the 
algorithms: 

readyQ(t)  : the ready queue at time t ordered by priority. 
deadline(J) : deadline of a job J. 
period(J) : period of a job J (i.e period of task T, where J is an instance of T). 
execution_time(J) : execution time of a job J. 
remaining_time(J,t) : execution time of a job J still remaining at time t. 
slack(J,t) :  deadline(J) – t – remaining_time(J,t) 

Algorithm Reduced Context Switches Scheduling (RCSS) 
Input:    
A list L of tasks T1, T2, … Tn, their periods and execution times. 
A priority function priority, that is job-level fixed. 
Assumptions:  
Arrival times for first instances of all tasks are assumed to be 0. 
period(J) for a job J is the same as period(T) where J is an instance of task T. 
For each job J, it is assumed that       deadline(J) = arrival_time(J) + period(J). 
Output:   
A feasible schedule for L or failure. 
begin 
Let Cur be the job with the highest priority; schedule Cur; 
For every time unit t when there is at least one arrival or a departure or a  deferred 
switch: 
Let J be the job with the highest priority in readyQ(t)                 
if  (Cur is to depart)  
     then  Cur = J ; schedule Cur; 
      else if (priority(Cur) >=  priority(J))  
             then continue with Cur; 
             else ExtensionTime_Cur = extension_time(Cur, t); 
                  if (ExtensionTime_Cur==0)  
               then preempt Cur; Cur = J;  schedule Cur; 
               else if (ExtensionTime_Cur > 0)  
                     then   mark a deferred switch at  t + ExtensionTime_Cur;  
      continue with  Cur  upto t + ExtensionTime_Cur; 
else fail; 
end RCSS 
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// This function computes the maximum time period up to which each of the queued 
//jobs can be deferred; the minimum of these deferral times is the period for which the 
//current job can be continued.  
function int extension_time(current_job, t) 
begin  
Let j1, j2, …, jm be the jobs in readyQ(t) such that  
priority(j1) >= priority(j2) >= … >= priority(jm) >= priority(current_job)  
return mini[slack(ji, t) – Σk<i(remaining_time(jk,t)+ceil((deadline(ji)- 

deadline(jk))/period(jk))*execution_time(jk))]; 
end extension_time 

Variants of Rate Monotonic (RM) scheduling algorithm and Earliest Deadline First 
(EDF) are easily obtained from the above algorithm (RCSS) by specifying the priority 
function. They are given below: 

Algorithm Rate Monotonic with Reduced Context Switches (RM_RCS) 
Input:   A list L of tasks T1, T2, … Tn, their periods and execution times. 
Assumptions: Same as in Algorithm RCSS 
Output:  A feasible schedule if L is RM-schedulable, failure otherwise. 
 begin 
   (1) Define the priority function as   priority(J) = H / period(T)     
      where T is a task in L,  J is a job (instance) of  T,  and H is the hyper-period for L. 
       (2) Execute RCSS. 
end RM_RCS 

Algorithm Earliest Deadline First with Reduced Context Switches (EDF_RCS) 
Input:   A list L of tasks T1, T2, … Tn, their periods and execution times. 
Assumptions:  Same as in Algorithm RCSS                                              
Output:  A feasible schedule if L is schedulable, failure otherwise. 
 begin 
 (1) Define the priority function as  priority (J) =   -1 * deadline(J)  for any 
job J 
       (2) Execute RCSS. 
end EDF_RCS. 
 

Note on EDF_RCS 
Observe that in this case the fail statement in Algorithm RCSS will never be reached 
if the input L has a feasible schedule. Also, the extension time for any job may be 
increased further by replacing the use of ceil with the use of floor in the function 
extension_time(),  without affecting feasibility. 
End of Note. 

We explain the working of our algorithm (EDF_RCS) with the help of an example. 
Consider the following list of tasks (Table 1): 

Table 1. Task List (L) 

Task Arri. Time  (for the first instance) Period Exec. Time 
T1 0 4 1 
T2 0 5 2 
T3 0 20 7 
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Note 
This job list is derived from Table 1 
under our assumption deadline(J) = 
arrival_time(J) + period(J) for any job 
J. These jobs are arranged in the order 
of deadline and when the deadline is 
same, in the order of arrival – as this is 
the likely arrangement of a queue.  
End of Note. 

Table 2. Job list corresponding to L in Table 1 
(Hyper-period = 20) 

Job (Task) Arri.
Time

Exec.
Time

Deadline

J1 (T1) 0 1 4
J2 (T2) 0 2 5
J3 (T1) 4 1 8
J4 (T2) 5 2 10
J5 (T1) 8 1 12
J6 (T2) 10 2 15
J7  (T1) 12 1 16
J8 (T3) 0 7 20
J9 (T2) 15 2 20

J10 (T1) 16 1 20  

We illustrate the working of EDF_RCS with this list of jobs. 

• At time t=0, the jobs in the ready queue are J1, J2, and J8 with priorities –4, 
–5, and –20 respectively. So, EDF_RCS schedules J1 for 1unit.  

• At t=1, the ready queue has J2 and J8; J2 is scheduled.  
• At t=3, J8 is the only process in the ready queue and is scheduled.  
• At t=4, J3 arrives and has a higher priority (–8) than the active process J8  

(–20). So EDF_RCS computes extension_time(J8,t) as follows: 
extension_time(J8,t) = slack(J3, t)  =  deadline(J3) – t – remaining_time(J3)    
= 8 – 4 – 1  = 3. 

Thus EDF_RCS decides to continue J8 for up to 3 more units of time. 
• At t=5, J4 arrives with priority (–10). EDF_RCS calculates the extension 

time as follows: 
extension_time(J8,t) = min [slack(J3,t), slack(J4,t) –remaining_time(J3,t)–
floor((deadline(J4)– deadline(J3))/period(J3))*execution_time(J3)]  
=  min[ 8 – 5 – 1, 10 – 5 – 2 – 1 – 0 ] =  2 
So, J8 will be extended up to t + extension_time i.e. up to 5+2 = 7. 

All subsequent decisions are EDF decisions. The final schedule for this example is as 
in Fig 1: 

 

Fig. 1. Schedule by EDF_RCS  (or RM_RCS) for task list in Table 1 

Observe that EDF_RCS outputs a schedule with just one context switch. For this 
particular example, RM_RCS also outputs the same schedule i.e. the number of 
context switches is 1. As opposed to this RM produces the schedule in Fig. 2 (number 
of context switches = 5), EDF produces the schedule in Fig 3. (number of context 
switches = 3) and MLLF produces the schedule in Fig. 4 (number of context switches  
= 3). Furthermore, the minimum possible number of context switches in a feasible 
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schedule is 1 for this task set (this can be verified easily). This example demonstrates 
that RM_RCS and EDF_RCS are aggressive in eliminating context switches 
whenever possible while the other algorithms are not. Our experimental results 
(shown in Section 5) confirm this argument. 

 

Fig. 2. Schedule by RM for task list in Table 1 

 

 

Fig. 3. Schedule by EDF for task list in Table 1 

 

Fig. 4. Schedule by MLLF for task list in Table 1 

4   Optimality of the Algorithms 

We prove that our heuristic preserves optimality of scheduling decisions i.e. 
RM_RCS and EDF_RCS are optimal if and when RM and EDF (respectively) are 
optimal. For the purpose of the proofs we introduce some notations here.  

• A schedule S is a sequence of runs of the form (id, start time, end time). 
• When we want to identify some runs of a schedule but ignore others, we use:   

((R1, t1, u1), S1, (R2,t2,u2), S2, …, Sn-1, (Rn,tn,un), Sn) 
where each triple (Ri, ti, ui) is a run starting at ti and ending at ti+ui whereas 
each Si is a sequence of runs – possibly empty – occurring between runs  
(Ri-1,ti-1, ui-1) and (Ri,ti,ui). 

• We use NCS(S) to denote the number of context switches in a schedule S. 

Theorem 1 
If a task set is RM-schedulable, then RM_RCS outputs a schedule with no more 
context switches than the schedule output by RM. 
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Proof 
Let S be the job set for the given task set. We show that the schedule generated by 
RM_RCS for S is feasible, if there is a feasible schedule generated by RM for S. We 
consider each branch of the if statement in an iteration of the loop in Step(2):  

Branch 1 or 2 or 3: It is easily observed that RCSS agrees with RM in these cases. 
Branch 4: Cur can be extended up to extension_time(Cur,t). RCSS extends the 
execution of Cur. This leads to two possibilities: 
(a) Some future runs of Cur are merged into the current run possibly including a 
partial run. In this case, by Lemma 1, feasibility is invariant under this transformation 
and NCS(U) <= NCS(S). 
(b) All future runs of Cur are merged into the current run. In this case, by Corollary 1, 
feasibility is invariant under this transformation and NCS(U’) <= NCS(S). 
Branch 5: RCSS fails but in this case rest of the jobs would not be schedulable by 
RM either. 

Now, by induction on the number of iterations of the loop, we conclude that 
RM_RCS outputs a schedule that is feasible if RM outputs a feasible schedule. 
Furthermore, each iteration of the loop in Step(2) of RCSS will introduce no 
additional context switches than RM would.  
End of Proof. 

The following lemma stated informally as: the extension step in RCSS – the step that 
continues the active process – does not affect schedulability is used in the proof 
above. 

Lemma 1 
Let S be a feasible schedule: ((R1,t1,u1), S1, (R2,t2,u2), S2, …, Sm-1, (Rm,tm,um), 
Sm) where all Ri, 1 <= i <= m are runs of the same job B. Assume S was generated by 
a priority scheduling algorithm. 

Let U be the schedule  (((R1,R2...Rk-1,Rk’), t1, u1+u2+…+uk-1+uk’), S1, S2, Sk-
1,   (Rk’’,tk+uk’, uk-uk’), Sk, … (Rm,tm,um), Sm), where some runs of B at the 
beginning of S have been merged into a single run, and one run (Rk), has been partly 
merged. 

Assume        extension_time(B, t1+u1) >= (u2+u3+…uk-1+uk’)          (AS) 

Then U is feasible and NCS(U) <= NCS(S) 

Proof (omitted due to lack of space) 
Corollary 1 is a special case of Lemma 1, where all the runs of a particular job are 
merged into one. 

Corollary 1 
Let S be a feasible schedule ((R1, t1, u1), S1, (R2,t2,u2), S2, …, Sm-1, (Rm,tm,um), 
Sm) where all Ri, 1 <= i <= m are runs of the same job B. Assume S was generated by 
a priority scheduling algorithm. 

Let  U’ be the schedule (((R1,R2...,Rm), t1, u1+u2+…+um),  S1, S2, Sm) where 
all runs of B in S have been merged into a single run. 

Assume that   extension_time(B, t1+u1)>= (u2+u3+…um). 

Then U’ is feasible and NCS(U’) <= NCS(S) 
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Proof 
By Lemma 1, with k=m and uk = uk’. 
End of Proof. 
 

Theorem 2. If a task set is EDF-schedulable, then EDF_RCS outputs a schedule with 
no more context switches than the schedule output by EDF. 

Proof 
Similar to the proof for Theorem 1 but with priority(J) = -1*deadline(J) for any job J. 
End of Proof. 

5   Evaluation of the Algorithms  

Algorithmic Complexity 
Every scheduling decision of RCSS is either a priority decision or an extension 
decision. In the former case, the time taken for decision is O(logN) where N is the 
number of tasks. The O(logN) factor arises because the ready queue has to be kept 
prioritized. When the scheduling decision requires the computation of extension 
period, the time taken is O(logN + m*m) where m is the number of jobs of higher 
priority than the active job. The worst case value for m is O(N). Thus the worst case 
response time of our scheduling algorithm is O(N*N). But in practice, the value of m 
is likely to be less than N. Particularly for high priority jobs, the value of m will be 
much less than N. 

Experimental Results 
We demonstrate the effectiveness of our algorithms in reducing context switches 
using simulation results. We compare the performance of our algorithms (RM_RCS, 
EDF_RCS) with that of RM and EDF under three different conditions: number of 
context switches versus utilization, number of context switches versus hyper-periods, 
and number of context switches versus number of tasks. The details of these 
comparisons are described below in Experiments 1, 2, and 3. In addition, we also 
compare the performance of our algorithms against a context switch minimization 
algorithm (MIN_CS) that always returns a feasible schedule with the least possible 
number of context switches. MIN_CS is implemented as an exhaustive search 
algorithm that inspects all schedules and outputs the feasible schedule with the 
minimum number of context switches. The details of these comparisons are described 
in Experiments 4, 5, and 6. The following are the experiments and their results: 

Experiment 1.  Comparison of RM_RCS with RM and comparison of EDF_RCS 
with EDF. Number of task sets: 7;   Invariants: Utilization (100%) 
Comments: Experiment Duration = LCM of hyper-periods of the task sets. 
Performance:  (Fig. 5). Both RM_RCS and EDF_RCS show huge reduction in the 
number of context switches in comparison with RM and EDF respectively. In all  
cases, it can be observed that the number of context switches decreases with 
increasing number of tasks. 
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Experiment 2. Comparison of RM_RCS with RM and comparison of EDF_RCS with 
EDF. Number of task sets: 8; Invariants: Utilization (100%), Number of tasks (5)  
Performance:  (Fig. 6). Again, both RM_RCS and EDF_RCS show huge reduction in 
the number of context switches in comparison with RM and EDF respectively. 

Experiment 3.  Comparison of RM_RCS with RM and comparison of EDF_RCS 
with EDF. Number of task sets: 10;  Invariants: Number of tasks (5) 
Comments: Experiment Duration = LCM of hyper-periods of the task sets. 
Performance:  (Fig. 7 & 8). RM_RCS and EDF_RCS show substantial reduction in 
the number of context switches in comparison with RM and EDF respectively: close 
to 100% for low utilization (less than 0.7), about 80% for medium utilization 
(between 0.7 and 0.9), and about 50 to 60% for high utilization (more than 0.9). We 
show these reductions as ratios of the number of context switches (e.g. N (EDF_RCS) 
/ N (EDF)) in Fig. 8. In all cases, it can be observed that the number of context 
switches increases exponentially with increasing utilization.  
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Table 3. Minimum # of Context switches (Varying number of tasks) 

 # Context Switches 
# Tasks RM_RCS EDF_RCS MIN_CS 

5 240 480 240 
8 140 140 140 

10 140 140 140 

12 105 105 105 
15 84 84 84 
17 0 0 0 
20 0 0 0 

Table 4. Minimum # Context switches Table 5. Minimum # Context Switches 

# Context Switches
Util RM_RCS EDF_RCS MIN_CS
0.5 0 0 0

0.55 0 0 0
0.6 0 0 0

0.65 0 0 0
0.7 70 70 70

0.75 70 70 70
0.8 180 120 120

0.87 210 210 210
0.94 1435 1435 1435

1 1470 1470 1470

# Context Switches
Hyp RM_RCS EDF_RCS MIN_CS
40 5670 5670 5670

120 630 630 630
150 504 504 504
200 378 378 378
240 945 630 630
300 252 252 252

360 420 420 420
400 189 189 189

 

Experiment 4.  Comparison of RM_RCS and EDF_RCS with MIN_CS. 
Invariants, Comments: Same as Experiment 1 
Performance:  In most cases, RM_RCS (or EDF_RCS) minimizes the number of 
context switches in a feasible schedule. (see Table 3). 

Experiment 5. Comparison of  RM_RCS and EDF_RCS with MIN_CS. 
Invariants, Comments: Same as Experiment 2 
Performance:  In most cases, RM_RCS (or EDF_RCS) minimizes the number of 
context switches in a feasible schedule. (see Table 4). 

Experiment 6.  Comparison of  RM_RCS and EDF_RCS with MIN_CS. 
Invariants, Comments: Same as Experiment 3 
Performance:  In most cases, RM_RCS (or EDF_RCS) minimizes the number of 
context switches in a feasible schedule. (see Table 5). 

6   Conclusion  

We have designed variants of priority scheduling algorithms RM and EDF, using an 
aggressive preemption reduction heuristic. We have proved that these variants 
preserve the feasibility of schedules output by the original algorithms. Our 
experimental results show that our heuristic is highly effective in reducing context 
switches. Our variants not only vastly outperform other algorithms including other 
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preemption reduction algorithms but also output schedules with the minimum 
possible number of context switches in most cases. The primary limitation of our 
algorithm is that the worst-case response time is quadratic in the number of tasks. We 
intend to experiment with tradeoffs in the computation time of the heuristic function – 
which is the bottleneck – with the reduction in the number of context switches. Our 
focus has been only on reducing the number of context switches. We would like to 
combine our approach with techniques for reducing cache impact of context switches 
so as to provide an effective approach to reduction in power consumed due to context 
switches. 
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Abstract. In WDM optical networks, the fiber links may share some
common physical resources (e.g., cables, conduits) and the consequence
is that they have the Correlated Link Failure Probability (CLFP), which
denotes the probability of link l failure after link f fails. Based on CLFP ,
we propose a new dynamic survivable algorithm, called Differentiated
Path Shared Protection (DPSP), to protect the double-link failures in
WDM optical networks. In DPSP, each connection request can be as-
signed one working path and additional backup paths according to the
differentiated reliable requirements of users. Compared to previous work,
DPSP can obtain better performances in resource utilization ratio and
blocking probability.

Keywords: WDM networks, differentiated reliability, Correlated Link
Failure Probability (CLFP), double-link failures, path shared protection.

1 Introduction

In WDM optical networks, a wavelength channel has the transmission rate of
over several gigabits per second [1]. If the fiber links fail, a lot of traffic may
be blocked. Therefore, the protection design is very important for WDM op-
tical networks. Previous works mostly investigate the single-link failure that is
dominant in the WDM optical networks. The conventional protection schemes
include dedicated protection, link shared protection, path shared protection, and
segment shared protection [2-7], in which the path shared protection has the best
resource utilization ratio.

With the size of networks keeps enlarging, the probability of risks become
much higher, and thus the protection design for double-link failures has been
considered in WDM optical networks [8-11]. In [12-14], the authors have inves-
tigated the double-link failures and presented the protection algorithms that is
called Complete Path Shared Protection (CPSP). The basic idea of CPSP is to
assign one working path and two link-disjoint backup paths to each connection
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request. In the worst case, if the working path traverses a failed link and the
first backup path traverses another failed link, the second backup path also can
be available to transmit the traffic. It is obvious that CPSP is able to provide
complete protection for double-link failures. In CPSP, the probability of link
failure is assumed to be independent; that is, the failure of arbitrary link l and
link t is not correlative. However, in actual networks the fiber links may have
the relationships of correlated failures because they may share some common
physical resources.

The relationship of correlated failures can be defined as Correlated Link Fail-
ure Probability (CLFP), written as:

CLFP (l|t) = F (l|t), ∀l, t ∈ L, l �= t. (1)

where L denotes the set of fiber links, and F (l|t) denotes the probability of link
l failure after link t fails, written as:

F (l|t) = F (l ∩ t)/F (t) = F (l ∩ t)/ [1−R(t)] , ∀l, t ∈ L, l �= t. (2)

where F (l ∩ t) denotes the probability of simultaneous failure of link l and link
t, and R(t) denotes the reliability of link t. The probability F (l ∩ t) (between
0 and 1) can be obtained by the link failure detection based on the statistic
experience. The link reliability R(t) (between 0 and 1) can be determined by
many environment factors (e.g., temperature, earthquake, humidity) and man-
made factors (e.g., dredges up, fires). At the beginning period of the foundation
of the network, R(t) can be determined by the fiber component manufacturers.
After several years, R(t) can be estimated by the failure rate based on the past
experience [15].

According to Eq.(1) and Eq.(2), we can observe that the value of CLFP (l|t),
(l, t ∈ L, l �= t) should be between 0 and 1. Bigger CLFP (l|t) means higher
probability of link l failure after link t fails, and smaller CLFP (l|t) means lower
probability of link l failure after link t fails.

Based on the idea of different Qualify-of-Protection (QoP) and users’ require-
ments, previous works in [15-19] have investigated the differentiated reliable pro-
tection problem and proposed the corresponding algorithm to survive the single-
link failure. The algorithm in [16] first computes a high reliable working path;
if the reliability of the working path is not smaller than the users’ requirement,
the backup path is not needed; otherwise, the backup path should be needed.
However, the algorithm in [16] assumes that there only exists the single-link
failure and the link failure probability is independent; that is, CLFP (l|t) = 0,
(∀l, t ∈ L, l �= t). Therefore, the algorithm in [16] can not be suitable for double-
link failures protection considering the relationships of correlated failures. How-
ever, the idea of differentiated reliability is sound and can be extended to our
proposed algorithm in this paper, since the differentiated reliable protection can
obtain better resource utilization ratio [16].

In [12-14], previous algorithm CPSP assigns one working path and two link-
disjoint backup paths to each connection request. Although it can provide com-
plete protection for double-link failures (i.e., 100% reliable protection), it has
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two main flaws (see subsection 2.2): 1) the assignment of two backup paths may
lead to more reserved backup resources consumed; 2) if the degree of source
node or destination node for a connection request is smaller than three (i.e.,
the network is not 3-connected), we cannot find three link-disjoint paths (one
working path and two backup paths), and thus the connection request will be
blocked [12-14]. Therefore, CPSP may have low resource utilization ratio and
high blocking probability.

To overcome the two flaws of CPSP, in [20] the authors proposed a differ-
entiated protection algorithm for double-link failures. However, the algorithm
in [20] does not present some key issues in details, e.g., link-cost assignment
with differentiated reliability, the policy of computing high reliable working and
backup paths. Based on [20], in this paper we propose a new dynamic sur-
vivable algorithm, called Differentiated Path Shared Protection (DPSP), which
considers the idea of differentiated reliable protection. DPSP can dynamically
establish the connections according to the requirements of users, and thus com-
pared to CPSP, it can save significant resources and reduce the blocking
probability.

The rest of the paper is organized as follows. Section 2 is for problem state-
ment. Section 3 proposes the procedures of DPSP in details. Section 4 presents
the simulation results. Section 5 is for conclusions.

2 Problem Statement

2.1 Network Model

The network topology is G(N, L, W ) for a given survivable meshed WDM optical
network, where N is the set of nodes, L is the set of bi-directional links, and W is
the set of available wavelengths per fiber link. |N |, |L| and |W | denote the node
number, the link number and the wavelength number, respectively. Connection
requests arrive at the network dynamically, and there is only a connection re-
quest arrives at a time. We assume each required bandwidth is a wavelength
channel and each node has the wavelength conversion (OEO) capacity. A min-
imal cost path algorithm, Dijkstra’s algorithm, applies to compute the routes.
The important notations and assumptions are introduced as follows.

l ∈ L: Bi-directional fiber link between a node pair in G.
COST ∗

l : Dynamic cost of link l; it is determined by the current state of the
network (e.g., free wavelengths, reserved wavelengths, paths’ reliabilities).

WPn: Working path of connection n;
BP 1

n ,BP 2
n : First and second backup path, respectively.

WWl, FWl, RWl: Number of working wavelengths on link l, number of free
wavelengths on link l, and number of reserved backup wavelengths on link l,
respectively.

ve
l : Set of connections whose working paths traverse link e and corresponding

backup paths traverse link l.
|S|: Number of elements in set S.
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R(l): Reliability of link l.
CLFP (l|t): Defined as Eq.(1).
UR: Reliability required by users.

2.2 Routing Paths Selection

In this subsection, we present the routing paths selection of the previous scheme
in [12-14] and our proposed scheme. The previous scheme does not consider the
differentiated reliable protection, and it computes one working path and two
link-disjoint backup for each connection request to provide complete reliable
protection for double-link failures. Our proposed scheme considers the differen-
tiated reliable protection based on CLFP , and it computes one working path,
or one working path and one backup path, or one working path and two backup
paths, for each connection request according to the reliabilities required by users.
Therefore, our scheme can provide the satisfactory reliability to the users mean-
while it is able to save more resources. We give an illustration in Fig. 1, in which
each link’s reliability is assumed to be 0.98, all CLFP s are assumed to be 0.50,
and UR is assumed to be 0.97.
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Fig. 1. Illustration for routing selection; assume reliability of each link is 0.98, all
CLFPs are 0.50, and UR=0.97; a) network topology; b) routing selection without
CLFP; c) routing selection with CLFP; d) a connection request with source node f
and destination node h will be blocked by previous scheme, but it can be established
by our scheme

Routing without differentiated reliable protection: For each connection
request n, the previous scheme without differentiated reliable protection com-
putes one working path and two link-disjoint backup paths. In Fig. 1(b), a con-
nection with source node a and destination node d has been established. We can
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observe that the connection consumes nine wavelengths (three working wave-
lengths and six reserved backup wavelengths). Compare to our proposed scheme
presented as follows, the previous scheme consumes more wavelength resources,
and the consequence is that the resource utilization ratio will be low and the
blocking probability will be high.

In Fig. 1(b), since the degree of nodes a and d is both three, there exists three
link-disjoint paths (one working path and two link-disjoint backup paths). How-
ever, in Fig. 1(d), for the connection request with source node f and destination
node h, since the degree of nodes f and h is both two, there only exists two
link-disjoint paths (f − d− h and f − e− a− g − h). Thus, the previous scheme
cannot find three link-disjoint paths and this connection request will be blocked.
Compare to our scheme presented as follows, this connection request can be es-
tablished because the joint reliability of the working path and the backup path
has already satisfied the users’ requirements.

Routing with differentiated reliable protection: For an arbitrary lightpath
denoted as LPn (e.g., WPn, BP 1

n , BP 2
n), the reliability can be written as:

R (LPn) =
∏

e∈LPn

R(e). (3)

The probability of LPn failure can be written as:

F (LPn) = 1−R(LPn) = 1−
∏

e∈LPn

R(e). (4)

Subject to double-link failures, the probability of BP 1
n failure after WPn fails

(i.e., WPn traverses a failed link and BP 1
n traverses another failed link) can be

written as:
F
(
BP 1

n |WPn

)
= max

t∈BP 1
n,e∈WPn,t�=e

[CLFP (t|e)]. (5)

The probability of simultaneous failure of BP 1
n and WPn can be written as:

F
(
BP 1

n ∩WPn

)
= F (WPn) · F (BP 1

n |WPn) =

[1−R(e)] · {maxt∈BP 1
n,e∈WPn,t�=e[CLFP (t|e)]} .

(6)

The joint reliability of BP 1
n and WPn can be written as:

R
(
BP 1

n , WPn

)
= 1− F

(
BP 1

n ∩WPn

)
=

1− [1−R(e)] · {maxt∈BP 1
n,e∈WPn,t�=e[CLFP (t|e)]} .

(7)

In this paper, we assume that there only exits double-link failures. In the worst
case, if WPn traverses a failed link and BP 1

n traverses another failed link, BP 2
n
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cannot fail simultaneously. Therefore, the probability of simultaneous failure of
WPn, BP 2

n , and BP 2
n can be assumed to be zero, and the joint reliability of

WPn, BP 2
n , and BP 2

n and can be written as:

R
(
BP 2

n , BP 1
n , WPn

)
= 100%. (8)

Based on the above analysis, for a connection request n, we can compute the
routing paths as follows:

Step1: Compute one working path. If and only if

R (WPn) ≥ UR. (9)

accept the request and establish the connection; otherwise, go to Step 2.
Step2: Compute the first backup path. If and only if

R
(
BP 1

n , WPn

) ≥ UR. (10)

accept the request and establish the connection; otherwise, go to Step 3.
Step3: Compute the second backup path.

For the connection request with source node a and destination node d shown
in Fig. 1(b), we first compute one working path a−b−c−d and obtain R(WPn) =
0.94 < UR, so that we need to compute the backup path. If the first backup
path a− g − h has been found, we can get R(BP 1

n , WPn) = 0.97 = UR in Fig.
1(c). Then, the reliability of the connection satisfies the users’ requirement, and
we need not compute the second backup path. We can find that, in Fig. 1(c), the
connection only consumes six wavelengths (three working wavelengths and three
reserved backup wavelengths). Compared to the previous scheme in Fig. 1(b),
our scheme saves more wavelengths, and more free wavelengths can be used by
the following requests, and the consequence is that the blocking probability can
be reduced.

In Fig. 1(d), for a connection request with source node f and destination node
h, since the degree of nodes f and h is both two, the previous scheme cannot find
three link-disjoint paths and will block this connection. However, our scheme will
not block this connection since R(BP 1

n , WPn) = 0.98 > UR if the working path
f − d − h and the first backup path f − e − a − g − h have both been found.
Compared to the previous scheme, in node-degree constraints, our scheme has
lower blocking probability.

Comparison of two schemes: Comparing the two routing paths selection
schemes, it is obvious that our scheme has tow advantages: 1) less backup paths
assignment that will lead to fewer reserved wavelengths consumed and higher re-
source utilization ratio; 2) lower connections blocking probability in node-degree
constraints. Therefore, our scheme has better resource utilization ratio and lower
blocking probability than the previous scheme. We evaluate the performances in
section 4 and find that the results are promising.
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2.3 Reserved Backup Wavelength Assignment

For arbitrary link l, according to [14] the reserved backup wavelengths can be
written as:

TRWl = max{|vt
l |+ |vt

l − ve
l |, ∀t, e ∈ L, t �= e �= l}. (11)

The difference between TRWl and RWl is that TRWl is the reserved backup
resources on link l with n connections while RWl is the reserved backup resources
on link l with (n− 1) connections.

2.4 Link-Cost Assignment

Computing the working path: Assume connection request n arrives at a
given time. We first adjust the cost of link l(∀l ∈ L) according to Eq. (12) and
follow to compute a minimal cost working path WPn that may be the maximal
reliable path.

COST ∗
l =

⎧⎨
⎩

+∞, if : FWl = 0

− logR(l), otherwise
(12)

Proof : we compute the logarithm of both sides of Eq. (9), and obtain:

log(WPn) = log R(1) + log R(2) + ... + log R(e) ≥ log UR. (13)

Since R(e) and UR are between 0 and 1, log R(e) and log UR have negative
values. Multiplying both sides by -1 in Eq.(13), we obtain:

− log(WPn) = − logR(1)− log R(2)− ...− log R(e) ≤ − logUR. (14)

It is obvious that if the link-cost COST ∗
l is defined as such a function of its

reliability (i.e.− log R(e)), the cost is additive and the path with minimal cost
may be the path with maximal reliability. Therefore, the standard shortest-path
algorithm (i.e. Dijkstra) can be applied to compute the minimal cost path.

If the working path with maximal reliability has been found and the reliability
of the working path is not smaller than UR, we know that the protection backup
path is not needed. Thus, more wavelengths would be saved and the resource
utilization ratio would be improved.

Computing the first backup path: If the reliability of the working path is
smaller than UR, we know that the protection is needed. We first adjust the cost
of link l(∀l ∈ L) according to Eq. (15) in which ε is a sufficient small constant
(e.g., 10−2) and follow to compute the first link-disjoint and minimal cost backup
path BP 1

n that may has high joint reliability with the working path.

COST ∗
l =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

+∞, if : (l ∈ WPn) ∪ (FWl + RWl < TRWl)

ε, else : 1− F (WPn) ·max∀e∈WPn,e�=l[CLFP (l|e)] ≥ UR

1, otherwise

(15)
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Proof : After the working path has been fixed, the reliability R(WPn) =∏
e∈WPn

R(e) is a constant. To obtain high joint reliability R(BP 1
n , WPn), the

maxt∈BP 1
n,l∈WPn,l �=t[CLFP (t|l)] in Eq. (7) should be small. If the link-cost is

defined as Eq. (15), the minimal cost backup path will be favorite to traverse
these links that will likely lead to satisfactory reliability (i.e.,1 − F (WPn) ·
maxt∈BP 1

n,l∈WPn,l �=t[CLFP (t|l)]). Therefore, the joint reliability R(BP 1
n , WPn)

may be high.
If the working path and the first backup path have been both found and the

joint reliability R(BP 1
n , WPn) is not smaller than UR, we know that the second

backup path is not needed. Therefore, more reserved backup wavelengths can be
saved and the resource utilization ratio can be improved.

Computing the second backup path: If the joint reliability R(BP 1
n , WPn)

is smaller than UR, we know that the second backup path is needed. Since the
joint reliability R(BP 2

n , BP 1
n , WPn) = 100% according to Eq. (8), we need not

focus on computing a high reliable route but focus on improving the reserved
wavelengths sharing degree when computing the second backup path. We first
adjust the cost of link l(∀l ∈ L) according to Eq. (16) and follow to compute
the second link-disjoint and minimal cost backup path BP 2

n that may use fewer
new backup wavelengths.

COST ∗
l =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

+∞, if : [l ∈ (WPn + BP 1
n)] ∪ (FWl + RWl < TRWl)

ε, else : RWl ≥ TRWl

1, otherwise

(16)

Proof : we can see from Eq. (16) that, these links, which already have enough
reserved wavelengths (RWl ≥ TRWl) have less link cost. If the backup paths
traverse these links, we need not reserve new backup wavelengths. Therefore,
more wavelength resources can be saved and the resource utilization ratio can
be improved.

3 Proposed Algorithm

3.1 Procedure and Complexity of the Algorithm

The procedures of our proposed algorithm, called Differentiated Path Shared
Protection (DPSP), are presented as follows.

Step1: Wait for a connection request arrival.
If a connection request arrives, go to Step 2.
Else, update the network’s state and go back to Step1.

Step2: Adjust the link-cost according to Eq. (12) and compute working path.
If succeed to find the working path, check the reliability of the working path

according to Eq. (9).
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If R(WPn) ≥ UR, record the routing and wavelengths assignment, up-
date the network’s state and go back to Step1.

Else, go to Step3.
Else, block the connection request, update the network’s sate, and go back

to Step1.
Step3: Adjust the link-cost according to Eq. (15) and compute the first backup

path.
If succeed to find the first backup path, check the joint reliability of the

working and backup paths according to Eq. (10).
If , record the routing and wavelengths assignment, update the network’s

state and go back to Step1.
Else, go to Step4.

Else, block the connection request, update the network’s sate, and go back
to Step1.

Step4: Adjust the link-cost according to Eq. (16) and compute the second
backup path.

If succeed to find the second backup path, record the routing and wave-
lengths assignment, update the network’s state, and go back to Step1.

Else, block the connection request, update the network’s sate, and go back
to Step1.

The above procedures of DPSP show that the time complexity mostly de-
pends on running the times of Dijkstra’s algorithm whose time complexity is
approximately O(|N |2). In the worst case, DPSP will run one time of Dijkstra’s
algorithm to compute one working path, and run two times of Dijkstra’s algo-
rithm to compute two backup paths. Therefore, the time complexity of DPSP is
approximately O(3|N |2).

3.2 Performance Parameters

The Resource Utilization Ratio (RUR) is calculated as:

RUR =
∑

l∈L(WWl + RWl)
|E| . (17)

where E is the set of connections that are holding on the network. It is obvious
that smaller RUR means that we need to assign fewer resources and also means a
smaller bandwidth reserve on all the backup paths and a higher degree of backup
capacity sharing; that is, a higher resource utilization ratio. Higher resource
utilization will lead to lower traffic blocking because more free wavelengths can
be used by the following requests.

The Blocking Probability (BP ) is the ratio of |R| to |V |, where R is the
set of connection requests that are being abandoned by the network and V
is the set of all connection requests that have arrived at the network. In the
case of dynamic traffic, the BP can approximately reflect the effectiveness of
resource utilization, and a smaller BP means a higher resource utilization
ratio.
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4 Simulation Results and Analysis

We simulate a dynamic network environment with the assumptions that the
connection requests arrival according to an independent Poisson process with
arrival rate β, and the connection holding time is negative exponentially dis-
tributed 1/μ. Then, the network load is β/μ erlang. In simulations, we assume
μ = 1 and each required bandwidth is a wavelength granularity. The test network
topology can be found in [14], where each node-pair is interconnected by a bi-
directional fiber link. The number of wavelengths for each fiber link is assumed
to be five. All nodes are assumed to have wavelength conversion capacities.

According to [16-20], the reliability of each link is randomly distributed be-
tween 0.96 and 1, and the CLFP of each link pair is randomly selected from
0.90, 0.50, 0.30, 0.20, 0.10. We compare the performances of DPSP to the pre-
vious CPSP [12-14]. All simulation results are averaged by simulation of 106

connection requests.
We assume there are three different levels of users’ requirements (i.e., 95%,

97%, and 99%). It is obvious that in Fig. 2(a) DPSP has smaller value of RUR
than CPSP, and this means that DPSP has higher resource utilization ratio. The
reason for this is that DPSP needs fewer backup paths and backup resources (see
subsection 2.2), and then the resource utilization ratio of DPSP will be higher.
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Fig. 2. Performance of DPSP and CPSP with different requirements of users: a) re-
source utilization ratio (RUR) versus network load; b) blocking probability (BP ) versus
network load

In Fig. 2(b), we can find that DPSP has lower blocking probability than CPSP.
There are two reasons for this: 1) DPSP has higher resource utilization ratio,
and then more free resources can be used by the following requests, and the
blocking probability will be lower than CPSP; 2) DPSP can overcome the flaw
of CPSP under node-degree constraints (see subsection 2.2) and can establish
more connection requests, which results in lower blocking probability.

We also see that in Fig. 2(a), when the UR increases, the resource utilization
ratio decreases. The reason for this is that, if the UR is higher, the connections
need more backup paths and backup resources, and then the resource utilization
ratio will be lower.
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Fig. 2(b) also shows that, when the UR increases, the blocking probability
increases. There are two reasons for this: 1) when the UR increases, the re-
source utilization ratio decreases, and then fewer free resources can be used by
the following requests and the blocking probability will be higher; 2) when the
UR increases, the connections need more backup paths, and then more con-
nections will be blocked under node-degree constraints. Therefore, the blocking
probability will be high when the UR increases.

We can thus conclude that the proposed DPSP can obtain better performances
in resource utilization and blocking probability than previous CPSP.

5 Conclusions

In this paper, we have proposed a new dynamic survivable algorithm called
Differentiated Path Shared Protection (DPSP) to protect the double-link failures
in WDM optical networks. Considering the differentiated reliable protection,
DPSP can assign one working path, or one working path and one backup path,
or one working path and two backup paths to each connection request. The
simulation results show that, compared to previous algorithm CPSP, DPSP can
perform higher resource utilization ratio and lower blocking probability.
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Abstract. The significant resource requirements of distributed real-
time multimedia applications often push today’s system platforms to
their limits. As a consequence, efficient, economic and adaptive manage-
ment of resources is a major issue in distributed multimedia systems.

This paper outlines a model-based time service encompassing three
different aspects of time that are fundamental for sophisticated strategies
within cross layer failure semantics, flow control, and synchronization.

1 Introduction

Distributed multimedia applications such as traffic control systems, video con-
ferencing, or telemedicine systems exhibit communication patterns that in many
ways differ from contemporary communication paradigms. Media streams are
sequential, ordered infinite sequences of discrete typed data objects that contin-
uously flow from some source to some destinations. In general, media streams
also are quite voluminous, encompassing for example HDTV video streams with
a bit rate of up to 2.8 GBit/sec. Media streams have real-time properties, using
time to specify synchroneity, periodicity, ordering and timeliness. Last but not
least, communication failures affecting single stream fragments are not fatal in
general; they may be tolerated depending on the importance of the fragment as
well as the application’s quality requirements.

Contemporary communication models such as RPC or RMI do not apply well
to such communication patterns. Distributed multimedia applications thus often
build their own communication abstractions directly on top of low level transport
protocols such as TCP, UDP, SCP, or RTP/RTCP.

This paper discusses a time model to support the design and implementation
of stream communication abstractions. It focuses on four different aspects of time
and evaluates how they can be exploited in communication failure semantics,
flow control, and synchronization. The model has been implemented by the time
service of the Noja middleware framework [1,2].

2 Time in Distributed Multimedia Applications

Time in distributed multimedia systems serves many different purposes.

Temporal Ordering. Objects in multimedia documents are ordered by their
creation time. This time in general is relative to the begin of the document. For
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example in a DV-coded PAL video document frame ordering is implemented by
a time stamp carried by each frame. When media documents are communicated,
media objects are wrapped into stream objects which may be ordered differently,
depending on the order in which they are processed by the receiver.

Timeliness. In distributed real time multimedia applications arrival times of
media objects are of major importance. Media objects arriving too early require
buffer resources, while objects arriving too late may become useless. Here, time is
used to synchronize stream processing with real time; incorrect synchronization
may result in extensive resource usage or loss of media objects.

Synchroneity. Multimedia documents such as multi camera and multi audio
track recordings consist of single media documents that are related to each other.
Whenever the document is processed as a whole, interdependent streams have
to be synchronized with respect to a common time base.

Periodicity. In many media document formats any two media objects have a
fixed distance in time. PAL video documents for example consist of 25 frames
per second, resulting in a frame distance of 1/25 second. Audio documents
have a much smaller periodicity, e.g. 1/44.000 for a stereo document in CD
PCM format. Periodicity of a media document for example allows to predict
resource requirements and temporal ordering of future media objects in a media
stream.

2.1 Model Requirements

This section discusses the role of time in four major building blocks of a com-
munication model: failure semantics, flow control, synchronization and adaption
control and summarizes the results in fig. 1.

A communication model’s failure semantics specifies guarantees given to
an application even in the presence of communication failures. Failure semantics
simplify application level failure handling by providing easy-to-use abstractions
restricting the visibility of complex low-level communication failures.

In order to detect timing failures, a failure semantics’s implementation must
compare the arrival deadline of a media object with its actual arrival time (ques-
tion (1)). More sophisticated schemes also strive for predicting future timing
failures (question (2)), thus allowing for failure prevention policies or for early
discarding of media objects that are predicted to miss their deadline. Both, re-
covery and prevention policies will only be successful if they meet their objectives
within the affected object’s deadline (question (3)).

Flow control balances the flow of media streams between the components
of a distributed multimedia application, including buffering of early stream ob-
jects (question (4)) as well as reordering stream objects that arrive in disarray
(question (5)). Additionally, jitter compensation requires answering question (6).

Synchronization control manages the temporal relations between differ-
ent media documents and/or different components of a distributed multimedia
application. Questions (7) and (8) arise whenever multimedia documents encom-
passing more than a single media document are processed.
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Adaptation control manages dynamic changes of application requirements,
stream properties, or resource availability. Additionally to being triggered ex-
ternally, adaptation control watches internal indicators such as variations of the
total average media object processing time, the processing time within individ-
ual application components, or transmission times of communication channels
(questions (9) - (11)).

(1) Is a given stream object in time?
(2) Can a given stream object reach its destination in time?
(3) Is there enough time for error recovery or prevention policies?

(4) Is a given stream object too early?
(5) What is the ordering of two given stream objects?
(6) What is the temporal distance between two given stream objects?

(7) What is the processing deadline for two given stream objects so that they will
arrive synchronously at their destination?

(8) Which stream objects from different media streams must be processed syn-
chronously?

(9) What is the average processing time of stream objects of one media stream in
the multimedia application?

(10) What is the average processing time on one processor?
(11) What is the average transmission time on a given communication channel?

Fig. 1. Questions to be answered by the time service

3 The Model

The time model introduced in this section is a concise, precise and – with respect
to the requirements summarized in figure 1 – complete foundation for exploiting
and managing several different aspects of time in distributed multimedia sys-
tems. The heart of the model are three basic time types together with methods
to handle corresponding time objects. This section introduces these time types
and methods and illustrates how they are combined in order to provide answers
to the question catalogue in figure 1.

3.1 Basic Sets and Functions

We model a distributed multimedia application by a directed graph, its node
set P representing individual application components (processors), its edges (∈
P × P ) modelling the flow of media streams among the processors.

Nodes as well as edges have attributes that describe time related dynamic
properties such as current channel bandwidth, network load, or CPU and mem-
ory availability. In order to calculate and predict the timing behavior of an
application, these attributes are monitored during application runtime.

Timing properties relate to observation points. Important observation points
where streams enter and leave processors will be represented by the set OP =
{In, Out}. As an example, the observation point at the output port of processor p
where p connects to some processor q is denoted by (p, Out), while its counterpart



494 W.E. Kühnhauser and M. Süßkraut

at q is (q, In). At processors q with more than one incoming edge, each edge may
have its individual observation point which then will be identified by (p, In, q);
the same holds for outgoing edges, respectively.

When a multimedia document is wrapped into a media stream for commu-
nication, each media object is encapsulated by a stream object. The set of all
stream objects managed by a multimedia application is represented by the set
S, and the set of all media objects by the set M . Unwrapping a media object
from a stream object is modelled by a function mo : S →M .

Each stream object belongs to a media stream ms ∈ MS , MS denoting the
set of all media streams of an application. Mapping a stream object to its media
stream is modelled by stream : S → MS . All stream objects of a media stream ms
use the same path through the application graph: from the processor source(ms)
to the processor sink(ms).

Time values are of type T = R; negative numbers denote negative temporal
distances. The end-to-end-time for a media stream is defined by ete : MS → T .

3.2 Time Types

Media Time tm. Any media document is an ordered sequence of media objects.
Ordering is based on generation time stamps carried by each media object. In peri-
odic document formats (such as PCM audio files) ordering may be implicit, given
by the order objects appear within the document. Time stamps define temporal
ordering as well as temporal distances. For each time stamped media object, the
function tm : M → T results in its media time. For each media object from the
same document, tm is strictly monotonous. For periodic documents with objects
mi and period p ∈ T , media time stamps compute by tm(mi) = p ∗ (i− 1).

Streaming Time ts. Dynamic and proactive policies for adaptation, error cor-
rection and prevention require monitoring and prediction of the communication
system’s timing behavior. Error correction for example will ponder the time re-
quired for corrective actions against deadline misses (question (2)). To this end,
stream objects take up time stamps at each observation point. For each stream
object, the function ts : P × OP × S → T results in its stream time at some
observation point.

Stream-global Logical Clock tg. In asynchronous distributed systems we
cannot assume a global clock, and time stamps based on unsynchronized lo-
cal clocks would not compare. However, clocks can be synchronized cheaply by
an NTP-like synchronization scheme where the application graph serves as the
NTP clock synchronization tree. A stream source serves as stratum-0 server,
and explicit synchronization among stratum-0 servers becomes necessary only if
more than a single source exists. Synchronization among lower strati then uses
downstream synchronization by messages piggy-backed on the stream. Note that
the resulting global clock is relative to the root of the synchronization tree and
is global with respect to a given stream, only. By synchronizing the root node
of the stream’s synchronization tree with an NTP stratum-0 server the whole
tree then becomes synchronized with UTC time. The function tg : MS → T
represents the stream-global logical clock within the model.
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3.3 Questions and Answers

We now combine the time types tm, ts and tg into functions answering the ques-
tion catalog in fig. 1.

Failure Control. With respect to question (1), the boolean function ontime(s)
computes by comparing the expected total processing time tpt of s with the
stream’s end-to-end time: ontime(s) ⇔ (tpt(s) = ete(stream(s)). If the ob-
servation point is the entry point of the sink for s, tpt computes easily by
tpt = ts(sink, In, s)− ts(source, In, s). However, in general an observation point
is somewhere on the path between source and sink where ts(sink, In, s) is still
unknown and has to be predicted. In this case, the more general form of tpt
includes a predicted remaining processing time ppt related to (p, op, q) : tpt(s) =
ts(p, op, s) + ppt(p, op, sink, In, s)− ts(source, In, s). With ppt discussed below,
ontime answers questions (1) and (2).

In order to answer question (3), the duration of the failure handling policy
must be known. Policy-individual time-to-repair values are modelled by a policy-
individual function ttr : P×OP×P×OP×S → T which any failure handling pol-
icy is required to provide. Then, the estimated arrival time eta for a stream object
s, repaired at some observation point (p, op) with assistance of a node p′ at obser-
vation point (p′, op′) is eta(p, op, p′, op′, s) = tg(stream(s))+ttr(p, op, p′, op′, s)+
ppt(p, op, sink, In, s). If eta(p, op, p′, op′, s) ≤ ts(source, In, s) + ete(stream(s))
holds, s can be repaired at p without violating end-to-end time guarantees.

Flow Control. We already know that a stream object is on time if ontime(s)
holds at observation point (p, op). For the same reasons, if ts(p, op, s) − ts
(source, In, s) + ppt(p, op, sink, In, s) < ete(stream(s)) then s is too early, re-
spectively if ts(p, op, s)−ts(source, In, s)+ppt(p, op, sink, In, s)>ete(stream(s))
then s is too late (question (4)); additionally, the difference between both sides
of the equation quantifies punctuality.

The order of two stream objects s, s′ ∈ S (question (5)) at some observation
point (p′, In) is defined by the order s and s′ left (p, Out), where (p, p′) is an
incoming edge at p′. Thus the relation s ≤ s′ at observer point p is defined
by s ≤ s′ ⇔ ts(p, Out, s) ≤ ts(p, Out, s′). Note that due to stream object
dependencies stream object order and media object order may differ.

For question (6), the temporal distance between two stream objects s and
s′ at observation point op on processor p computes by distancets(p, op, s, s′) =
ts(p, Out, s′)− ts(p, Out, s). Note that distancets is a value relative to an obser-
vation point, suited for jitter compensation with respect to the last edge only.
The absolute temporal distance distancetm between two media objects computed
by distancetm(s, s′) = tm(mo(s′))− tm(mo(s)) can be used for (absolute) jitter
compensation only if the difference between media and stream order is known.

Synchronization Control. For two stream objects s and s′ to arrive at their
destination synchronously (question (7)) their expected arrival times must be
the same: eta(p, op, sink, In, s) = eta(p, op, sink, In, s′). The optimum processing
time opt for each stream object is computed by opt(p, op, s) = eta(p, op, sink,
In, s)− ppt(p, op, sink, In, s). Because the processing time of any media object
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depends on its media time tm, any two media objects s and s′ from different
streams have to be processed synchronously (question (8)) if and only if their
media times are the same, i.e. the relation dub holds: s dub s′ ⇔ tm(mo(s)) =
tm(mo(s′)).

Adaptation Control. The interim processing time ipt of a stream object s be-
tween two observation points op, op′ on processors p, p′∈P is ipt(p, op, p′, op′, s)=
ts(p′, op′, s)−ts(p, op, s). Then, the average processing time apt(p, op, p′, op′, S′) =∑

s∈S′ ipt(p, op, p′, op′, s)(|S′|)−1 of stream objects between op, p and op′, p′ is
computed based on statistical data collected from the observation of stream ob-
jects from some subset S′ ⊆ S, which in an implementation will become stable
only after a certain application runtime. This answers questions (9) - (11).

Predicted Processing Time ppt. Some of the above equations assume that
stream times at both observation points are known. If we want to predict the
ipt at some earlier processing stage, the more general predicted processing time
ppt(p, op, p′, op′, s) = apt(source, In, p′, op′, s) − apt(source, In, p, op, s) applies.
ppt thus assumes that observations in the past allow to foretell the future. Within
a given implementation environment, ppt’s quality will depend on the extent this
assumption is honored.

4 Summary

The goal of our work was to develop a time model to support the design and im-
plementation of stream communication abstractions in middleware frameworks
for distributed multimedia applications. Our approach was to analyze the roles
of time within a communication model’s failure semantics, flow, synchronization
and adaptation control components, and to develop a stringent time model in
which many roles of time time are casted into a small set of well-defined time
functions.

Implementing the formal model within the time service of the distributed
multimedia framework Noja [1,2] was a straight-forward affair. For a description
of the implementation and experimental results with respect to its resource re-
quirements and real-time behavior we refer the reader to the long version of the
paper available from the authors.
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Abstract. In WDM optical networks, prior to data transfer, lightpath establish-
ment between source and destination nodes is usually carried out through a 
wavelength reservation process. The two common approaches for this, namely 
Source Initiated Reservation (SIR) and Destination Initiated Reservation (DIR) 
use only one wavelength for reservation, and, under heavy load, it is often 
blocked due to outdated link information. The situation can be improved by 
increasing the number of wavelengths to be attempted for reservation 
concurrently. This idea, implemented on DIR in this paper, is termed as 
Destination Initiated Multiwavelength Reservation Protocol (DIMRP). DIMRP 
is analyzed to find that an optimum number named as selectivity (i.e., number 
of simultaneous wavelengths to be attempted for reservation) exists for a given 
value of mean connection requests and total number of wavelengths per link. 
DIMRP is compared with its peers and overall result appears quite promising to 
draw the attention of network providers.  

1   Introduction 

In wavelength division multiplexing (WDM) networks, when a connection request 
arrives at a source node, a dedicated path is required to be established between source 
and destination. This is realized first by determining a proper route between the 
source and the destination and then allocating a free wavelength to all the links of the 
route (wavelength assignment). Such an all optical path is commonly referred as a 
lightpath [2-3]. This work is restricted to wavelength assignment part only. It is 
considered that no wavelength converters are present at intermediate nodes.  

Wavelength assignment protocols may be divided into two main categories based 
on number of wavelength(s) attempted to establish the lightpath. These are Single 
wavelength Reservation Protocols (SRP) and Multiple wavelength Reservation 
Protocols (MRP) Both SRP and MRP can again be classified as Source Initiated (SI) 
and Destination Initiated (DI), based on whether source or destination initiates the 
process of reservation [3] leading to four different types of protocols i.e., SISRP, 
DISRP, SIMRP and DIMRP. Different forms of SISRP, DISRP and SIMRP along 
with their modifications are studied in previous works [1-6]. It has been already 
established that DISRP in general is more efficient than SISRP and SIMRP in terms 
of blocking probability (bp) [3]. DISRP with retry is even better at the cost of a 
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nominal increase in control overhead and average setup time. However, DIMRP is not 
attempted earlier, and, hence, no known results are available, to the best of our 
knowledge.  

A connection request is blocked when no single wavelength is available for use 
throughout the chosen route between source and destination. Due to processing 
delays, when a control message actually tries to reserve a particular wavelength on 
route, that wavelength in the meanwhile may already been reserved by another 
contemporary connection request. This type of blocking is due to outdated global 
information. This motivates for reserving multiple free wavelengths (if available) 
instead of a single wavelength on every hop of the route, so that chance of getting at 
least one wavelength throughout the path may be improved considerably. However, 
this may cause the over reservation problem. In such cases some future requests may 
be blocked due to unavailability of wavelengths. In this work, the trade off between 
outdated information and over reservation in case of DIMRP is studied and compared 
with DISRP and DISRP with retry [3]. 

The paper is organized as follows. In section 2, DISRP is introduced while section 3 
elaborates DIMRP. Results and discussions are presented in Section 4. Finally, Section 
5 concludes the paper. 

2   Destination Initiated Single Wavelength Reservation Protocol  

In DISRP, a source node generates a PROB signal, which contains the information of 
the availability of wavelengths of the next link. The PROB gets updated as it strikes 
the nodes on the selected route and finally reaches the destination with a set of 
wavelengths available (say ). Now, if  becomes zero anywhere before the 
destination due to non availability of wavelength, the request is blocked and a control 
packet FAIL is sent in the reverse path to the source. On the other, if PROB reaches 
destination with a non-zero , destination selects one from the available set of 
wavelengths and initiates a RES signal to reserve the wavelength hop by hop on the 
reverse path towards source. If it fails to reserve the wavelength (which may be 
reserved in the mean time by some other requests), a FAIL signal is sent to source and 
a REL signal is initiated towards destination to release the wavelength reserved up to 
that node and the request is blocked if no retry is attempted. In case of DISRP with 
retry, the destination after getting the REL signal, sends RES signal once again (retry) 
towards the source using another wavelength from PROB pool. This may be repeated 
for a number of retries till success or until all possible retries are exhausted. If all of 
them fail, a FAIL control packet is sent to the source.  

3   Destination Initiated Multiwavelength Reservation Protocol  

In case of DIMRP, control packets similar to that of DISRP are used. In DIMRP 
multiple number of wavelengths are attempted (if available) for reservation. When 
PROB signal reaches destination with number of available wavelengths ( ) greater  
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than 1, there is a choice on the number of wavelengths to be attempted concurrently 
for reservation, which may be termed as maximum wavelength permitted (mwp). The 
mwp should be less or equals to α and greater or equals to 1. If the RES signal 
reaches the source node successfully (i.e., at least one wavelength is reserved and 
lightpath is successfully established) then transmission is started. During transmission 
of first packet, all other reserved wavelengths if any, are released using REL. 
However before reaching the source node, if at any hop, no further wavelength is 
available for reservation due to outdated information, the reserved wavelengths up to 
that hop from the destination are released using REL signal. Also a FAIL signal is 
sent to the source and the connection is blocked. Finding an optimum value of mwp, 
termed as selectivity(s), is a challenging issue as over reservation may spoil the 
advantage of concurrency.  

4   Results and Discussions 

Extensive simulation experiments are done under various network conditions. 
Routing is assumed to be fixed and shortest path. Connection requests arrive to the 
network nodes following Poisson’s distribution with mean rate of λ connections per 
second, and connection holding times are exponentially distributed with an average 
holding time of 1/μ second. The number of wavelengths (w) on each optical fibre is 
varied from 30 to 80. NSFNet topology (16 nodes connected with 24 bidirectional 
links) is used in the simulations for which results are presented here.  
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Fig. 1. Variation of  bp with cr for  DIMRP and DISRP (with retry)  for w=70 

DIMRP is first compared with DISRP (with retry 1 and retry 2) for w=70, which is 
shown in Fig. 1. Here DISRP without retry is not considered as it is already 
established that DIMRP performs better than DISRP without retry in respect of bp. 
From the figure it is observed that up to a certain value (250) of connection request 
(cr), DIMRP offers better result compared to DISRP with retry 1. DISRP with retry 2 
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is close to DIMRP for low values of cr (up to cr=150) and considerably better beyond 
that. It is obvious that DISRP with retry numbers more than two will be further better 
than DIMRP with respect to bp. But while choosing a protocol, the trade-off between 
bp, control packet and average setup time should be considered. 
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Fig. 2. Variation of  set up time  with cr for  DIMRP and DISRP (with retry)  for w=70 

As average setup time is also an important parameter for a protocol, the average 
setup time of  DIMRP and  DIRSP with retries are studied and  results   are   shown in  
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Fig. 3. Variation of  bp with mwp for DIMRP for different wavelengths 

Fig. 2. It can be observed from the figure that DIMRP is always better than DISRP 
with retries. This is because rate of success is more for more retries, but extra time is 
required to convert previous failure cases to success, thereby increasing the set up 
time. Another point may be noted that difference in set up time between DIMRP and 
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Fig. 4. Variation of   bp with mwp for   DIMRP for different cr 

DISRP with retry also increases with increase in cr. This is due to the fact that at 
higher values of cr, more failure cases use retries to become successful taking more 
set up time. 
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Fig. 5. Variation of selectivity with cr of DIMRP for different wavelengths 

Another important parameter is the average number of control packets required in 
different protocols. In case of DIMRP number of control packets required is same as 
required for DISRP without retries. But for DISRP with retries, extra two control 
packets are required for each retry. Thus, if blocking probability, setup time and 
control packets are considered, then DIMRP appears to be the better choice. 

Now, a relation among cr, w and mwp with bp is tried to find out in DIMRP. In 
this direction, first the variation of bp with mwp is studied for different values of w 
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and a fixed value of cr. Fig. 3 shows the results. In Fig. 4, bp versus mwp are shown 
for different values of cr for a fixed number of w. 

Results shown in Fig. 3 and Fig. 4 indicate that there must be a values for a 
combination of w and cr for which bp remains minimum. This information may be 
really useful for a given network. As w of a network remains fixed, depending on the 
status of cr (which can be studied at regular intervals), the system can switch over 
from one value of s to other to deliver better efficiency in terms of lower bp. 

The relation of s with cr for different values of w is shown in Fig. 5. From the 
figure it can be observed that the system will deliver best result if s is selected as 5 
when cr is 100 or 150 for w=60. However the same network will deliver best when s 
is selected as 2 when cr is 300. These values are based on the network considered 
here. However for different networks, these set of values may be different and can be 
found out by studying the networks. 

5   Conclusion 

In this paper, DIMRP is analyzed at length and selectivity is found out for different 
values of mean connection requests (i.e., arrival rate) and total number of wavelengths 
per link. From the results it can be concluded that, in a given network for which 
available wavelength is fixed, value of selectivity can be dynamically changed from 
time to time depending on the condition of connection requests to minimize blocking 
probability. DIMRP is also compared with its peers to report the advantages with 
respect to set up time and control overhead to justify its relevance. 
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Abstract. This paper proposes a hybrid transformation technique, where the 
intraframes of video sequence are coded by discrete wavelet transform and the 
interframes are coded with discrete cosine transform technique. It also proposes 
the selection of sequence of frames predicted from the reference intraframes. 
This proposal consistently minimizes the prediction error for the predicted 
frame for further processing. The experimental results show that the proposed 
hybrid transformation technique outperforms conventional transformation 
coding technique in terms of encoding time and prediction errors. The 
advantages of this approach include the potential for improving efficiency and 
ease of transmission. 

Keywords: Transformation, video coding, discrete cosine transform, discrete 
wavelet transform. 

1   Introduction 

Transformation is the main module in any image and video coding standards. Spatial 
image data are inherently difficult to code effectively because neighboring symbols in 
the spatial domain are highly correlated and the energy is distributed randomly across 
the image. This necessitates the decorrelation of the symbols in the image. The 
desirable properties of the transformation module in image and video coding 
standards are energy compaction and suitable for practical implementation in software 
and hardware. The two most widely used transformation methods are Discrete Cosine 
Transform (DCT) [1] and Discrete Wavelet Transform (DWT) [2]. DCT is usually 
applied in small and equal sized blocks (8x8, 16x16) of image symbols and DWT is 
applied either on complete image or on large tiles of the image. Other alternatives of 
the transformations are 3-D transforms, variable block size transforms, fractal 
transforms and Gabor analysis.    

DCT is best transformation technique for motion estimation and compensated 
predictive coding models.  Due to blocking artifacts problems encountered in DCT, 
sub band coding methods are considered as an alternative for this problem. DWT is 
the best alternative method because of its energy compaction and preservation 
property. Due to ringing artifacts incurred in DWT, there is a tremendous contribution 
from the researchers, experts from various institutes and research laboratories for past 
two decades.  In this paper, we have incorporated the advantages of DWT filter for 
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intraframes and DCT for interframes of motion compensated hybrid video encoder. 
However the intra frames are coded with wavelet transform, impact of this can be 
seen in both intraframe and interframe video sequence coding. With better quality 
anchor pictures are retained in frame memory for prediction, the remaining interframe 
pictures are more efficiently coded with discrete cosine transform. 

The paper is organized as follows. Section 2 gives the basics of video coding, in 
which various redundancy minimization methods and motivation for hybrid 
transformation technique are briefly described. Section 3 discusses the proposed 
hybrid video encoder. Extensive experimental results and discussion have been 
provided for validation in section 4 and conclusion is given in section 5. 

2   Basics of Video Coding 

For any interframe video coding standards, the basic functional modules are motion 
estimation and compensation [3], transformation, quantization [4] and entropy 
encoder [5]. As shown in the Fig. 1, the temporal redundancies exists in successive 
frames are minimized or reduced by motion estimation and compensation module. 
The residue or the difference between the original and motion compensated frame is 
applied into the sequence of transformation and quantization modules. The spatial 
redundancy exists in neighboring pixels in the image or intraframe is minimized by 
these modules. The transformation module converts the residue symbols from time 
domain into frequency domain, which intends decorrelate the energy present in the 
spatial domain. This is so appropriate for quantization. Quantized transform 
coefficients and motion displacement vectors obtained from motion estimation and 
compensation module are applied into entropy encoding module, where it removes 
the statistical redundancy.  

Motion estimation and 
compensation module 

(Temporal redundancy)

Transform and 
Quantization modules 
(Spatial redundancy)

Entropy encoding module
(Statistical redundancy)

Motion vectors

Encoded
data

Video
data

 

Fig. 1. Basic Video encoding module 

In DCT-based MCP coding architecture [6], [7], previously processed frames are 
considered as reference frames to predict the future frames. Even though the 
transformation module is energy preserving and lossless module, it is irreversible in 
experiments. Subsequently the transformed coefficients are quantized to achieve 
higher compression leads further loss in the frame, which are to be considered as 
reference frames stored in frame memory for future frame prediction. Decoded frames 
are used for the prediction of new frames as per the MCP coding technique. JPEG 
2000 [8] proved that high quality image compression can be achieved by applying 
DWT. This motivates us to apply DWT for intraframes and DCT for interframes of  
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video sequence. In addition to the hybrid transformation technique, it is considered 
there will be memory constrained problem in the frame memory when conventional  
I, P, P, P, P . . . sequence applied. To resolve this problem, a new Group of Frames 
(GOF) sequence is also proposed in this paper, which minimizes the prediction error 
and also reduce the frame memory storage complexity. 

3   Proposed Hybrid Video Encoder 

Hybrid transformation technique incorporates the redundancy minimization 
techniques. In specific, the spatial redundancy is removed or minimized by 
incorporating the DWT for intraframes and DCT for interframes of video sequence. 
The advantage of the subband coding has been applied effectively by using Haar 
wavelet filter coefficients [0.707, 0.707] in intraframes. The main problem 
encountered by using DCT like blocking artifacts is over come by applying DWT 
for intraframes. However, DCT is the best transformation technique for block based 
motion estimation and compensation video coding. The first frame in a GOF [9] is 
intraframe coded. Frequent intraframes enable random access to the coded stream. 
Interframes are predicted from previously decoded intraframes. Hence, these briefly 
narrated in the following subsections. 

3.1   Prediction of Frames 

The GOF shows that every fifth frame is an intraframe as shown in Fig. 2. The two 
frames next to and before that intraframe are coded with reference to this intraframe. 
Thus errors are minimized since the maximum distance between intra and interframes 
is 2.  

I1 P2 P3 P4 P5 I6 P7 P8 P9 P10 I11

 

Fig. 2. Arrangement of Group of frames in proposed system 

In conventional motion compensated video coding architecture, the interframes 
are coded with respect to closest predicted frames or intraframes. In this proposal, 
interframes are coded only with the reference to intraframes. Hence, the previously 
processed decoded frames in the frame memory are wavelet coded. The propagation 
error incurred due to blocking artifacts in the case of DCT is significantly 
minimized in the subsequent frames. Bidirectional frames are not considered in this 
hybrid transformation video coding due to complexity. Hence, all the predicted 
frames are processed from intraframes. The sequence followed in this hybrid video 
coding is I1, P2, P3, I6, P4, P5, P7, P8, I11, P9, P10 , . . . 
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3.2   Structure of Hybrid Transformation Video Encoder 

Interframes are predictive frames that are effectively coded with respect to 
previously coded frames. At high frame rate, the correlations in the successive 
frames in a video sequence are more. Hence, reducing or minimizing the spatial 
correlations among the successive frames in a video sequence is to be effectively 
achieved by transformation techniques in interframe coding. The previously 
reconstructed frame is used to generate a prediction of the current frame. The 
difference between prediction and the current frame, the prediction error or residual, 
is quantized and encoded. Block based method is used for motion compensation. 
Full Search or exhaustive motion estimation algorithm is implemented for motion 
compensated prediction from closest intraframe. In this exhaustive search 
algorithm, every possible position in the search window is compared. Scalar 
quantization followed by arithmetic encoding is applied on transformed values and 
finally bit stream is generated and stored in video buffer. Fig. 3 shows the structure 
of the hybrid transform video encoder. 
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Fig. 3. Hybrid transform video encoder 

4   Experimental Results and Discussion 

The experiments were conducted for three video sequences “Usb” (316x128, 18 
frames, 8 bpp), “Blur” (128x128, 8 frames, 24 bpp) and “Fishtank” (320x240, 96 
frames).  The experimental results show that the proposed hybrid transform coding 
technique outperforms over conventional DCT based video coding in terms of 
encoding time. Prediction error is greatly minimized by using the proposed method.  
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Table 1. Average PSNR (dB) comparisons of conventional and proposed GOF for DCT video 
coding 

Conventional GOF Proposed GOF Sequence 
Y-PSNR U-PSNR V-PSNR Y-PSNR U-PSNR V-PSNR 

Usb 31.9529 36.4677 36.6588 32.1638 36.7835 36.8897 
Blur 34.1437 35.7634 35.7375 34.2945 35.7927 35.7906 
Fishtank 31.5310 35.7282 35.2760 31.5677 35.7828 35.3384 

 
Table 1 compares the Luminance and Chrominance values of various video 

sequences using conventional GOF and proposed GOF sequence for DCT based video 
coding. It is observed that 0.21 dB, 0.15 dB and 0.03 dB Y-PSNR [10] improvements 
in proposed GOF than the conventional GOF methods for “Usb”, “Blur” and 
“Fishtank” video sequence respectively. A considerable improvement also achieved 
in U- and V-PSNR chrominance values. 

Table 2. Average PSNR (dB) comparisons of conventional and proposed GOF for Hybrid 
video coding 

Conventional GOF Proposed GOF Sequence 
Y-PSNR U-PSNR V-PSNR Y-PSNR U-PSNR V-PSNR 

Usb 33.7759 35.3856 35.7582 33.8143 35.4151 35.7986 
Blur 34.2633 34.8835 35.5948 34.3568 34.9086 35.6175 
Fishtank 32.8396 34.7072 35.5448 32.8978 34.7449 34.5876 

 
Table 2 compares the Luminance and Chrominance values of various video 

sequences using conventional GOF and proposed GOF sequence for hybrid based 
video coding. It is observed that 0.1 dB, 0.09 dB and 0.06 dB Y-PSNR improvement 
in proposed GOF than the conventional GOF methods for “Usb”, “Blur” and 
“Fishtank” video sequence respectively. A considerable improvement also achieved 
in U- and V-PSNR chrominance values. 

Table 3. Average PSNR (dB) comparisons and encoding time between DCT and Hybrid video 
coding 

DCT coding Hybrid coding Sequence 
Y-PSNR Encoding time (ms) Y-PSNR Encoding time (ms) 

Usb 32.1638 117328 33.8143 107000 
Blur 34.2945 16531 34.3568 13407 
Fishtank 31.5677 1205906 32.8978 1004703 

 
Table 3 compares the Y-PSNR and Encoding time of various video sequences 

using proposed GOF sequence for both DCT and hybrid based video coding. It is 
observed that 1.65 dB, 0.06 dB and 1.33 dB Y-PSNR improvements in proposed 
hybrid coding for “Usb”, “Blur” and “Fishtank” video sequence respectively. It is also 
seen that the encoding time of proposed hybrid coding is 1.09, 1.23 and 1.20 times 
faster than the conventional DCT coding for the video sequences taken for 
experiments.  
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5   Conclusion 

In this paper, a hybrid transformation technique for video coding has been proposed. 
In which, the intraframes of video sequence are coded by DWT with Haar wavelet 
filter and the interframes of video sequence are coded with DCT technique. It also 
proposes the selection of sequence of frames predicted from the reference intraframes. 
These proposals consistently minimize the prediction error for the predicted frame for 
further processing. The experiments are conducted on three video sequences with 
different natures. The empirical results show that the proposed hybrid transformation 
coding technique is 1.09 to 1.23 times faster than conventional DCT transformation 
coding technique in terms of encoding time for the video sequences. It is also achieve 
0.03 dB to 1.65 dB Y-PSNR improvement over the conventional transform coding 
methods.  
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Abstract. Security is a major concern for a large fraction of sensor net-
work applications. Douceur first introduced the notion of sybil attack [4],
where a single entity(node) illegitimately presents multiple identities. As
the nodes in sensor networks can be physically captured by an adversary,
sybil attack can manifest in a severe form leading to the malfunction of
basic operational protocols including routing, resource allocation and
misbehavior detection. In this study, we propose a location verification
based defense against sybil attack for sensor network where we assume
that the network is consisted of static sensor nodes. We report quanti-
tatively about the probability of not being able to detect sybil attack.
This probability is indicative of the usefulness of our proposed protocol.

Keywords: Sybil attack, Security, Wireless Sensor Network, Triangu-
lation, Location Verification.

1 Introduction

Sensor networks are now being widely deployed in planned or ad hoc basis to moni-
tor andprotect different targeted infrastructures including life-critical applications
such as wildlife monitoring, military target tracking, home securitymonitoring and
scientific exploration in hazardous environments. The criticality of a large subset
of applications triggers the need for providing adequate security support for them.
Unlike in general data networks, the nodes of sensor networks may be physically
captured by an adversary and thus can induce different modes of harmful attacks
in addition to active and passive eavesdropping.This typical feature alsomakes the
design of cryptographic primitives for sensor networks extremely challenging.

Douceur first introduced the notion of sybil attack [4], where a single entity
illegitimately presents multiple identities. Physically captured nodes claiming
superfluous misbehaving identities could control a substantial fraction of the
system leading to malfunction of basic operational protocols including routing,
resource allocation and misbehavior detection. An excellent taxonomy of sybil
attacks in sensor networks and their detrimental effects are presented by New-
some et. al. in [8], along with some defense mechanisms. In their work, they
have provided a definition of simultaneous sybil attack where an attacker tries
to have his sybil identities all participate in the network at once.

S. Chaudhuri et al. (Eds.): ICDCN 2006, LNCS 4308, pp. 509–521, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Sybil attack could be prevented if each honest identity possesses an unforge-
able certificate issued by some trusted Certifying Authority(CA) and it is man-
dated to produce that certificate as a proof of authenticity before the identity
takes part in any network activity. This condition implies that for inducing sybil
attack the adversary has to necessarily forge valid certificates. But since sensor
nodes are resource constrained devices, so computationally expensive public key
cryptography based certification schemes are not suitable to be applicable in
sensor networks.

It has also been mentioned in [8] that location verification could be a promis-
ing approach to defend sybil attack. In this work, we aim to provide such a
solution for defending simultaneous sybil attack. Our solution does not require
to verify the exact physical position of a node, rather it works out by securely
verifying whether the physical position of the node is within a region. The region
is defined in terms of a new functional for planar triangulation which we have
come up with and we call it as Inner Core of a triangulation. A lot of theoret-
ical and algorithmic questions come along with this new functional, but in this
paper we just try to show how this functional could be of use in defending sybil
attack rather than delving into solving those problems. Lastly, our solution is
mainly targeted for those sensor network based applications where it is required
to deploy sensor nodes in a planned manner.

We organize our paper as follows. Section 2 describes prior art and also briefly
reviews the merits and demerits of each. In Section 3, we formally define the
problem by clearly mentioning network assumptions and security goals. Section
4 defines the new functional Inner Core for planar triangulation. In Section 5,
we describe our solution and also provide a formal analysis of its security. Lastly,
Section 6 concludes this work along with future directions of research.

2 Related Work

Sybil attack was first introduced by Douceur in [4], wherein a direct validation
method of a node’s identity based on resource testing was proposed. The basic
idea of the scheme is to estimate the resource (e.g., computation, storage and
communication) associated with each identity and thereby deciding whether each
identity possesses a dedicated hardware piece. Scheme proposed in their work
applies for general P2P networks and is not suitable to be applicable in sensor
networks where an adversary may bring in very powerful devices (in terms of
computation, storage and communication) to defeat the scheme. Karlof et. al.
analyzed different attacks including sybil attack in [7] for wireless sensor network
and described some countermeasures against them. In their approach, each node
is provided with a unique symmetric key which it shares with a trusted base
station. Two nodes then can verify each other’s identity through establishment
of a shared key, via the base station, using symmetric Needham-Schroeder-like
[2] protocol. The solution thus relies on the existence of a trusted third party.
Again, there are some attacks [1] against Needham-Schroeder-like protocol in
which case the proposed solution fails.
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Wang et. al. [5] introduced the concept of trust graph in mobile ad hoc net-
work, which facilitates in establishing trust relationship between communicating
nodes and considers the possibility of having heterogeneous certifying authori-
ties (CAs). Assumption here is that if a certifying authority CA1 trusts another
certifying authority CA2, then CA1 also trusts identities certified by CA2. It
is interesting to note here that this assumption and mechanism can safeguard
against sybil attack as long as none of the CAs is compromised. Their scheme
also demands each node to have moderately high storage and computational ca-
pability and also charges high communication cost and thus remains unsuitable
for sensor networks. Newsome et. al. in their work [8] established a taxonomy of
different kinds of sybil attack and provided two methods based on radio resource
testing and random key predistribution to verify whether a node’s identity is a
sybil identity. Though their random key pre-distribution based scheme is very
promising, but still its not mature enough to conceive the notion of certificate in
the symmetric key domain. The scheme also has limitation in a typical scenario
where the nodes of the sensor network come from different vendors.

Kong et. al. proposed a public key cryptography based distributed threshold
certification scheme [3] which establishes trust relationship between communicat-
ing nodes via unforgeable, renewable and globally verifiable certificates carried
by each node in the network. Its not explicitly mentioned that their work can
stand against sybil attack as otherwise attacker has to guess valid certificate of
the claimed identity. But, their work is based on public key cryptography and
targeted to meet the needs of wireless ad hoc networks. It does not readily suit
well in resource constrained sensor network architecture. Zhang et. al. in [10]
have proposed an identity certificate based scheme to defend against sybil at-
tack in sensor networks. Their method associates each node’s identity with an
unique identity certificate, where Merkle hash tree has been used as the basic
means of computing identity certificates. Main drawback of the scheme is that it
is not scalable as it does not allow nodes to join the network on the fly because of
huge computational overhead. Method also requires a large number of messages
getting exchanged to build a trust between a pair of nodes and also it can not
stand against sybil attack launched by colluding nodes.

3 Problem Definition

Network Assumptions: The network is consisted of a large number of sensor
nodes and is deployed by a single authority. We are considering here those sensor
network based applications where it is required to deploy sensor nodes in a
planned manner. We also assume the presence of a powerful setup server which
configures the sensor network and is aware of the locations of all the sensor
nodes being deployed. Once deployed, each node is static and can be thought of
as placed in a plane with each node having a distinct position where it is placed /
deployed. We also allow new nodes to join the network on the fly. But since its a
planned deployment, so we only allow joining of new nodes within the convex hull
of initial set of deployed nodes. This is not a very unrealistic assumption since
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for a planned deployment its not difficult to know a priori the region in which
to deploy the sensor nodes and accordingly we can then deploy the initial set
of sensor nodes. All the sensor nodes are capable of communicating using both
radio frequency (RF) and sound channel and can only directly communicate
with a limited number of neighboring nodes.

We also assume that both the transmission channels are perfectly secure, that
is, any message being sent over any of these channels reaches the destination as
unintercepted. All the sensor nodes trust the setup server and assume its be-
havior to be perfectly fare. Unlike in general data networks, nodes of a sensor
network are susceptible to physical capture by an adversary and then can con-
trol them to attack the network. But the fraction of them will only be a small
percentage of the overall network.

Security Goals: Our goal in this paper is to provide a mechanism to safeguard
against simultaneous sybil attack where a malicious node simultaneously claims
many identities of itself to defeat some of the well known protocols like data
aggregation, routing, etc. An attacker who launches a simultaneous sybil attack
will attempt to position the sybil identities in strategic locations of the network
in order to defeat the above protocols. We thus choose to verify securely the
position of any new node that pops up in the network, which in turn can act as
a mechansim to defend against sybil attack.

4 Inner Core: A New Functional for Planar Triangulation

Definition 1. Inner Core of a triangle (Figure 1) T with vi(i = 1, 2, 3) as
vertices is defined as,

IC(T ) = {∩3
i=1Disk(Vi, li)} ∩ T,

where li = min {Length of the sides of the triangle T incident on Vi}, and
Disk(Vi, li) is the circular region with Vi as it’s center and li as its radius.

Fig. 1. Inner Core of Triangle T
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Inner Core of triangulation Δ of a set S ⊂ R2 of planar points is defined as the
union of the inner cores of its constituent triangles, i.e.,

IC(Δ) =
⋃

T∈Δ

IC(T ).

For a set S of planar points, the set F of all triangulations becomes exponential
in size with the number of planar points. So, a natural and obvious question is to
find out the triangulation for which Inner Core gets maximized, i.e., to find out
Δ ∈ F for which the area of ConvH(S)−IC(Δ) is minimized, where ConvH(S)
denotes the convex hull of the set of planar points S.

Delaunay triangulation D of a set of points S ⊂ R2 forming a regular triangu-
lar lattice coincides with the lattice itself and hence ConvH(S)−IC(D) = φ and
thus maximizes Inner Core. Getting started with this observation, we haven’t
been able to either prove or disprove that Inner Core achieves its maximum for
Delaunay triangulation and hence we make the following conjecture.

Conjecture 1. The functional IC(Δ) of a set of planar points S achieves its
maximum if and only if Δ is the Delaunay triangulation of S.

5 Protocol

In this section we describe the applicability of Inner Core in preventing sybil
attack. We assume the presence of a software agent who is aware of the locations
of all the deployed sensor nodes. Agent can get to know about the location of
a sensor node either by consulting with the setup server or when a new node
claims its location after joining the network. On joining the network when a new
node claims its location, then agent applies our proposed protocol and tries to
verify the claimed position. If it can verify the position then adds the claimed
location in its list of deployed sensor nodes. Otherwise, it rechecks the claimed
location with the setup server to get to know whether setup server has deployed
any node in that location.

5.1 Basic Protocol

The agent starts this protocol by finding a triangulation Δ of the set of planar
points S, where each point in S corresponds to a position of an immobile sensor
node in the network. When a new node claims its position somewhere in the
network, the agent identifies the triangle in which the claimed position of a new
node is, and hands over the charge of the remaining part of the protocol to be
executed by the sensor nodes in the positions of the vertices of the identified
triangle. Agent does that by letting each sensor node representing a vertex of
the identified triangle know about the claimed identity of the new node.

Remaining part of the protocol then goes as follows: Let, V1, V2 and V3 be
the nodes forming the triangle within which the new node claims its position.

Step 1: Each of the nodes Vi (i = 1, 2, 3), generates a random number Ri and
attaches with it its own identity yielding a messages Mi where Mi = RiVi.
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Step 2: Each of the nodes Vi (i = 1, 2, 3), then sends Mi to the new node X
that claims its identity to be in the triangle.

Step 3: Node X receives three messages Mi (i = 1, 2, 3), one from each of
the nodes and constructs M ′

i = RiX and then sends it back to the node Vi (i =
1, 2, 3). Messages Mi are sent using radio frequency channel, and messages M ′

i

are sent using sound channel.
Step 4: Each node Vi (i = 1, 2, 3), then measures the elapsed time tii between

the delivery of the message and the receipt of the corresponding message M ′
i and

reports back to the software agent by sending tii.
So, if we assume that the processing time in each node is almost close to zero,

then,
tii = d(Vi, X)(1/c + 1/s) (1)

where d(X, Y ) denotes the euclidian distance between the nodes X and Y , and
c and s are the distances traversed in unit time in radio frequency and ultra
sound channel. The notion of using two channels for computing tii values has
been borrowed from [6]. The reason why in Step 1, each node Vi (i = 1, 2, 3),
generates a random number to compute the message Mi is straight forward.
This is required to ensure that all the nodes V1, V2 and V3 and also the newly
claimed node X is actively participating in the protocol and thus is facilitating
in correctly computing tii values. Otherwise, it could have been possible for a
malicious node to defeat the protocol by replying early (if it knows in a priori
these Ri’s).

If the new claimed node X is a honest one, which claims its position within
the Inner Core of the triangle defined by the nodes Vi (i = 1, 2, 3), then we could
expect, for all the nodes Vi (i = 1, 2, 3), tii ≤ tij , where tij is the total time
required for a message to reach Vj from Vi and then getting back a response in
turn from Vj , for all j �= i and j ∈ {1, 2, 3}. This time also we have the same
assumption of using both radio frequency and ultra sound channel and hence tij
values for i = 1, 2, 3 and j �= i where j ∈ {1, 2, 3} can be calculated as

tij = d(Vi, Vj)(1/c + 1/s) (2)

It is to be mentioned here that since agent knows the locations of all the nodes
V1, V2 and V3 so it can easily compute the tij values at its side using (2).

So, if all the Vi’s are honest, then the agent will consider the claimed node X
to be an honest one if the above inequality holds for all i = 1, 2, 3, and for all
j �= i where j ∈ {1, 2, 3}. If it is so, then it adds the node, location pair in its list
of deployed nodes. This follows easily from (1) and (2) as for any vertex of the
triangle, its distance from any point inside the Inner Core is less than or equal
to its distance from the other two vertices of the triangle. This is the most ideal
case which we could expect for the protocol to function properly.

Therefore, the agent is required to find a triangulation Δ of the set of planar
points S such that the claimed location of the node is in the Inner Core of Δ. If
no such triangulation exists then the software agent initiating the protocol con-
sults with the setup server. If the setup server has deployed this node, then its
possible for the agent to crosscheck it and in which case it allows the node to join
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the network otherwise rejects. Now given a point X within the convex hull of S,
whether there exists any triangulation Δ of S such that X is in the Inner Core of Δ
is not known to us. Even if it exists how to find out such a triangulation is also an
open question. Hence as long as we do not have answers to these questions, agent
can initiate the protocol by finding the Delaunay triangulation of S for which we
conjecture that it maximizes Inner Core for a set of planar points.

The proposed protocol exhibits the following interesting properties. It does not
require a large number of messages to get exchanged in order for the protocol to
work. Agent contributes to the message complexity by sending three messages
while delegating the charge of the protocol to the sensor nodes forming the
identified triangle. Each of the three sensor nodes forming the triangle is required
to send two messages, one to the new node and another to the Agent. The newly
joined node requires to send three messages. From the protocol its also clear that
messages are of short length. Also the protocol does not demand from any sensor
to have stored a huge amount of information excepting only its own location in
the plane. Protocol does not suffer from the problem of scalability as it allows
new nodes to join the network on the fly. The only restriction here is that a new
node will only be allowed to join the network if it is within the convex hull of
initial set of deployed nodes.

5.2 Modified Protocol to Handle Processing Delay in the New
Node

In Step 4 of the protocol, we have seen that each node Vi (i = 1, 2, 3) computes
the value of tii and the expression for tii in (1) assumes that processing time
in each node (in particular, in the new node X) is almost close to zero. But in
practice, this is not the case, as the new node X needs some time to process the
packets (in Step 3 of the protocol) received from each of the nodes Vi (i = 1, 2, 3).
To handle this situation, we modify our protocol slightly. First we introduce a
parameter called minimum processing time (Δmin) for any sensor node and we
also assume that a sensor node is capable of measuring the processing time for
each packet. We now modify Step 3 of the protocol as follows. New node X
constructs M ′

i = RiΔiX, where Δi is the time spent in processing the message
from node Vi (i = 1, 2, 3). So, the elapsed time t′ii between the delivery of the
message Mi and the receipt of the corresponding message M ′

i is given by,

t′ii = d(Vi, X)(1/c + 1/s) + Δi. (3)

Because of the modification in Step 3 of the protocol, it is now possible for each
node Vi (i = 1, 2, 3) to be able to compute t′ii instead of computing tii and in
Step 4 of the protocol it reports back to the software agent by sending the pair
t′ii and Δi. The agent then checks for all i = 1, 2, 3 whether t′ii−Δi ≤ tij , for all
j �= i and j ∈ {1, 2, 3}, where tij retains the same meaning as has been described
in the previous section, to verify the claimed location of the new node.

This above solution works fine when Δi = Δmin. But, the problem arises when
Δi > Δmin. The new node X may maliciously claim its message processing time
to be more than Δmin, while the original processing time is very close to Δmin.
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Fig. 2. Region of Acceptance of Triangle T

Doing this helps the node X to establish its location to be inside the Inner Core
of the triangle, while actually being located somewhere outside the Inner Core.
This is because, by choosing Δi’s large enough node X can force t′ii−Δi ≤ tij for
j �= i and j ∈ {1, 2, 3} to get satisfied for all i = 1, 2, 3, and thus can defeat the
protocol. The problem thus for the case Δi > Δmin can be solved as follows. The
solution works by identifying a region included in the Inner Core of the triangle
such that if the claimed location of X is inside this new region then its true location
has to be within the Inner Core of the triangle. As malicious node can claim its
message processing time as Δi (> Δmin) in order to make t′ii−Δi to be less than
equal to tij , similarly the verifying nodes Vi (i = 1, 2, 3) can adjust the values of
tij ’s accordingly to prevent the malicious node from defeating the protocol. How
adjustments to these tij values can be made and how this relates to identifying a
region included in the Inner Core of the triangle is discussed below.

When node X claims Δi as its message processing time for node Vi (i = 1, 2, 3)
of the triangle, then the maximum distance which a message can traverse first
in radio frequency channel and then in sound channel in time Δi−Δmin can be
calculated as,

si =
(Δi −Δmin)
(1/c + 1/s)

. (4)

We now define a new region called Region of Acceptance (ROA) relative to a
triangle T with Vi (i = 1, 2, 3) as vertices as follows.

Definition 2. Region of Acceptance of a triangle (Figure 2) T with Vi(i =
1, 2, 3) as vertices is defined as,

ROA(T ) = {∩3
i=1Disk(Vi, l

′
i)} ∩ T,

where

l′i =
{

li − si, if li > si

0, otherwise,

and Disk(Vi, l
′
i) is the circular region with Vi as its center and l

′
i as its radius.
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Its now easy to see that, if the new node X claims Δi for node Vi (i = 1, 2, 3),
then ROA(T ) is either fully included in IC(T ) or ROA(T ) = φ. To verify the
location of the new node X, the agent then does the following.
1. On having received the t′ii and Δi pair from each of the nodes Vi (i = 1, 2, 3),

it first checks whether ROA(T ) ⊆ IC(T ) or ROA(T ) = φ.
2. If ROA(T ) ⊆ IC(T ), then agent computes the time t′ij instead of tij for all

i = 1, 2, 3, and j �= i, j ∈ {1, 2, 3} as

t′ij = (d(Vi, Vj)− si)(1/c + 1/s)

=⇒ t′ij = tij − (Δi −Δmin) for all the nodes Vi (i = 1, 2, 3).
Then it checks to find whether t′ii −Δi ≤ t′ij , for all j �= i and j ∈ {1, 2, 3}.
If it is so, then the agent considers the new node X to be an honest one.
This only applies, if the claimed location of the new node is within ROA(T ),
which the agent can easily determine by calculating the values of si’s from
the Δi values. If the claimed location is somewhere inside IC(T )−ROA(T ),
then to verify the location agent has to crosscheck it with the setup server.

3. If ROA(T ) = φ, then the agent verifies the location by crosschecking it with
the setup server.

One interesting thing to note here is that, if Δi = Δmin for all i = 1, 2, 3,
then ROA(T ) = IC(T ) and as such the agent can verify the location anywhere
within the Inner Core of the triangle.

5.3 Security Analysis

Let us now consider the case when all the nodes in the set S are not honest.
These dishonest nodes can help a sybil node to establish its claim of being
present in the Inner Core of a triangle. In this discussion we will assume that the
message processing time of a sensor node is negligible, i.e., almost close to zero.
We now define Region of Vulnerability of a triangle T as a region such that if a
malicious node is physically present in this region then it can defeat the protocol
by successfully inducing a sybil node within the Inner Core of T. Definition of
Region of Vulnerability also takes into account the fact that either no node or
any number of nodes forming the triangle T can be malicious. But since every
node Vi has to report back to the agent by sending tii values, so a malicious node
in the position of any vertex of a triangle can’t help another malicious node to
launch a successful sybil attack very easily by sending erroneous tii values. An
attempt to do so may help the agent to be able to isolate the malicious nodes
since it is computing the tij values at its side.

Region of vulnerability for a triangle can then be calculated for the following
four cases.

Case A: All the vertices of the triangle are honest. Region of Vulnerability of
T (Figure 3) can then be calculated as

Rov(T ) = {
3⋂

i=1

Disk(Vi, li)} − T,

where the notations li and Disk(Vi, li) have been described earlier.
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Fig. 3. Region of Vulnerability

Case B: Two of the nodes (Vi’s) are honest, while the other one is not. We
will see that in this scenario the protocol may fail, being unable to detect a valid
sybil attack. Let us consider that in triangle T with vertices V1, V2, and V3 node
V1 and V3 are honest and V2 is dishonest. The region of Vulnerability of triangle
T is shown as shaded in Figure 4. Now, a malicious node actually being present
in the shaded region and claiming a sybil identity within the region defined by
the triangle T, can defeat the protocol in identifying the newly claimed node as
a sybil node in association with another dishonest node V2. Node V2 represents
the distance of the new node from itself by appropriately sending t22 such that
the agent concludes that the new node is indeed in the Inner Core of the triangle.
In this case the Region of Vulnerability can be formally written as

Rov(T ) =
⋂

i∈Vhonest

Disk(Vi, li)− T

where Vhonest represents the set of honest nodes of triangle T and such that
|Vhonest| = 2.

Fig. 4. Region of Vulnerability w.r.t. node V2
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Case C: One of the nodes in T is honest, and the other two are not. This
case is shown in Figure 5. Node V3 is honest, and nodes V1 and V2 are dishonest.
The region of vulnerability of triangle T with respect to the dishonest nodes V1

and V2 is shown as shaded in the figure. The Region of Vulnerability in this case
can be formally written as

Rov(T ) = Disk(Vi, li)− T,

where Vi (i ∈ {1, 2, 3}) is the only honest node of T.

Fig. 5. Region of Vulnerability w.r.t. nodes V1 and V2

Case D: All the three nodes of the triangle are dishonest. In this case wherever
the malicious node be physically present it can always launch a successful sybil
attack and thus we have Rov(T ) = ConvH(S).

Region of Vulnerability for a triangulation Δ of a set of nodes S can be
equivalently defined as the union of the region of vulnerabilities of its constituent
triangles, i.e.,

Rov(Δ) =
⋃

T∈Δ

Rov(T ).

Having defined the Rov(Δ) for any triangulation Δ of the set of nodes S,
we will now calculate the probability that a sybil node will remain undetected
by our protocol. This probability is simply the area of the region, the physical
presence of a malicious node in which can help in successfully launching a sybil
attack, divided by the area of the region inside the convex hull of the set of
nodes S. This region, physical presence of a malicious node in which can help in
successfully launching a sybil attack is essentially the intersection of Rov(Δ)’s
for all such Δ. So the probability that sybil attack remains undetected under
the proposed protocol is given by,⋂

Δ∈ C Rov(Δ)
ConvH(S)

,
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where C denotes the class of all triangulations of the set of planar points S. Since
we don’t have the answers to some of the questions related to Inner Core and
as we have planned to use Delaunay triangulation D ∈ C for the time being, so
the probability that sybil attack remains undetected is given by,

Rov(D)
ConvH(S)

.

6 Conclusion

In this paper, we have proposed a protocol which can prevent simultaneous sybil
attack in a sensor network and our protocol is meant for those sensor networks
for which planned deployment of the nodes is required. The protocol works by
securely verifying whether the physical position of the new node is within a
region. One interesting property of the protocol is that its scalable as it allows
new nodes to join the network on the fly. Our protocol takes the help of a new
functional for planar triangulation called Inner Core which we have defined in
this work. We have left three questions as open regarding this new functional and
one in the form of a conjecture. Two open question that are of particular interest
for the sake of the protocol are: (i) Is it possible to derive a characterization such
that given a point X and a set of points S = Vi : i = 1, 2,.... ,n; we will be able
to answer whether a triangulation Δ of the convex hull of S exists such that
X is in Inner Core of Δ, and (ii) If yes, how can we find a polynomial time
algorithm to find such a triangulation. Being able to answer these two questions
will have significant impact on the performance of the protocol as it will help in
minimizing the number of queries that an agent has to make to crosscheck the
location of a node with the setup server.
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Abstract. This paper addresses the problem of secure path key es-
tablishment in wireless sensor networks that uses the random key pre-
distribution technique. Inspired by the recent proxy-based scheme in [1]
and [2], we introduce a friend -based scheme for establishing pairwise
keys securely. We show that the chances of finding friends in a neigh-
bourhood are considerably more than that of finding proxies, leading
to lower communication overhead. Further, we prove that the friend-
based scheme performs better than the proxy-based scheme in terms of
resilience against node capture.

1 Introduction

In the last few years, wireless sensor networks (WSNs) have become a very ac-
tively researched area. The impetus for this spurt of interest were developments
in wireless technologies and low-cost VLSI, that made it possible to build in-
expensive sensors and actuators. Each such device has limited computational
power, memory and energy supply. Nevertheless, because of the low cost, such
devices can be deployed in large numbers, and can thereafter form a sensor net-
work. Applications have been suggested in diverse areas, including surveillance,
environmental monitoring, health care and crisis management systems.

In some application areas, security is a major concern. When sensor networks
carry sensitive information, it is important to ensure privacy. For example, in a
surveillance application, it would be very undesirable if intruders can access the
information being carried by the network. To provide security, the well-developed
public key cryptographic methods have been considered, but these generally
demand excessive computation and storage from the resource-poor sensors [3].
This has led researchers to conclude that symmetric key cryptography, in which
nodes share a secret key, is the only viable solution.

While cryptographically strong algorithms are available, the issue of key dis-
tribution and management is critical to the level of security actually achieved.
At one end of the spectrum, we have a system in which all the sensors share
a single secret key. But this makes the network very vulnerable; an adversary
needs to capture just a single sensor node to access any information that the
network carries. At the opposite end, we have a system where each node has a
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distinct shared key for every other node. But for large sensor networks, such a
scheme demands an excessive amount of on-board memory, which is again unde-
sirable. It is also possible for nodes to securely generate keys on the fly using key
exchange algorithms, such as the well-known Diffie-Hellman scheme. However,
the computational and storage requirements for such schemes have also been
deemed unacceptable for sensor networks [3].

In [4], Eschenauer and Gligor suggested a probabilistic solution to the problem
of efficient key distribution. In this scheme, nodes have a secure link if they
share a key in common and those which do not share a key undergo path key
establishment phase to set-up a pair-wise key.A drawback of this scheme is that
the secret key is known to all the nodes on the path from the source to the
destination node during path key-establishment phase.

This ‘per-hop key exposure’ problem have been considered by several re-
searchers. In [1], the authors proposed an elegant solution of using multiple
node-disjoint paths between S and D for secure path key establishment. But the
problem of discovering multiple node-disjoint paths is computationally hard, and
too much overhead may be incurred in this process. In a later work [2], the au-
thors relax the requirement of node-disjoint paths, and utilize multiple proxies
for path key establishment. A proxy P is a node that shares one or more keys
with the source node S and one or more keys with the destination node D.

In this paper, we propose a novel scheme to efficiently solve the ‘per-hop key
exposure’ problem. It is based on nodes that are referred to as friends of the
destination. A friend of the destination is simply a node that shares one or more
keys with the destination. Each friend F in a neighbourhood of S sends part-keys
back to the source, where a part-key is obtained by applying a hash function to
all the keys shared between F and D. The source then chooses a number of these
part-keys, say i, and uses a publicly known function to generate the shared key
KSD from them. S informs D about which i friends’ part-keys were used, and
this information is sufficient for D to generate KSD using the publicly known
function.

We compare our friend-based scheme with the proxy-based scheme reported
in [2], and find several advantages. First, for a source-destination pair, the re-
quirement for a node to be a friend is less stringent than for it to be a proxy.
This implies that the computational and communication effort in finding a friend
is less than in finding a proxy, making the friend-based approach more viable.
Second, our friend-based scheme is able to achieve a level of security at least as
good as the one based on proxies.

2 Related Work

The random key pre-distribution scheme was first proposed by [4]. We discuss
this proposal in some detail in the next section. Based on this, several schemes
with enhanced security features have been suggested. A q-composite-random key
pre-distribution scheme is proposed by [5] which achieves strengthened security
under small scale attack while trading off increased vulnerability in the face
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of a large scale physical attack on network nodes. It then uses multi-path key
reinforcement scheme to update the communication key to a random value after
key set-up phase.

In [6], a seed-based approach is used for assigning keys to each node. Each
key is associated with a unique key identifier or key-id. Moreover, the key itself
cannot be deduced from the knowledge of the key-id. For any node, a set of key-
ids is generated from a common pseudo-random generator with the node identity
acting as the seed. The corresponding keys are then stored in the node. This
makes it possible for each node to identify the key-ids that another node has, and
thereby find if they share any common keys. The seed-based approach reduces
the communication burden in sharing key identifiers. For example, the source
node can find out if it shares a common key with the destination node without
having to communicate with the destination node. [7] uses similar technique for
shared key discovery phase.

[8] gives a scheme where memory requirements can be reduced at the expense
of pre-deployment knowledge. In this scheme, knowledge about which nodes
are likely to be the neighbours of each sensor node is exploited such that the
probability of any two neighbouring nodes sharing a common key is maximized
without degrading the other performance metrics, such as security and memory
usage.

The scheme in [9] exhibits a nice threshold property: When the number of
compromised nodes is less than the threshold, the probability that any node
other than these compromised nodes are affected is close to zero. Their scheme
builds on Blom’s key pre-distribution scheme [10] and combines the random key
pre-distribution method with it.

Our work is closest to that reported in [1] and [2]. Both these papers consider
the path key establishment problem. Let S and D be the source and destination
between which a shared key is required. D generates a secret key and this key
is securely passed to S. [1] proposes a scheme in which the key is broken up
into l nuggets, and the nuggets are passed to D along node-disjoint paths. All
nuggets are required to reconstruct the key. Therefore, an attacker has to capture
at least one node along each of the node-disjoints paths to recover the key. In
[2] , the authors note the following shortcomings of this scheme: (a) Finding l
node-disjoint paths is an NP-hard problem, and too much overhead is required;
further, in some cases it may not be possible to find l such paths, (b) A nugget is
exposed to each intermediate node along its path to S; thus, contrary to intuition,
increasing l does not necessarily improve the level of security, because the nuggets
are exposed to more nodes, increasing the vulnerability of the scheme.

To address this drawback, [2] proposes a scheme in which no more than one
node along a path knows the key nugget. This node is referred to as a proxy.
Thus, D can securely pass a nugget to the proxy on the path, and the proxy
can securely relay the nugget to S. Moreover, the paths used need not be node-
disjoint any longer and, in fact, need not be composed of secure links either,
because security is achieved by the shared keys between S and the proxy, and
the proxy and D.
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3 Path Key Establishment

We begin this section by reviewing briefly the basic scheme in [4]. We then
discuss the path key establishment scheme given in [2]. This is followed by our
friend-based scheme.

In [4], Eschenauer and Gligor suggested a probabilistic solution to the problem
of efficient key distribution. In this scheme, each sensor node is assigned a key-
ring consisting of k keys chosen at random (without replacement) from a pool
of P keys. After deployment, two nodes within communication range exchange
key-identifiers or challenges to discover common keys. Then, a common key is
selected for secure communication. Node pairs without a common key establish
a path key through a secure path.

Physical link

Secure link

Fig. 1. An example showing the network graph and the key graph

Figure 1 shows a wireless sensor network with 7 nodes. If two nodes are within
radio range, they are joined by a solid line representing a link. The collection of
nodes and links constitutes the “network graph.” Further, a dashed line connect-
ing two nodes indicates that they share one or more keys, i.e., the link between
them is secure. The sub-graph consisting of the nodes and the secure links is
referred to as the “key graph.”

A natural question that arises in this context is whether the key graph
is connected. [4] makes use of fundamental results in the theory of random
graphs, due to Erdös and Renyi [11], to determine the pool size P and the key-
ring size k such that the key graph is connected with arbitrarily high
probability.

Thus, two neighbours on the network graph can find, with very high probabil-
ity, a secure path between them. This secure path is constituted by a sequence
of links from the key graph. [4] suggests that this secure path be used to es-
tablish a key between the neighbours. In this approach, the key to be shared
is successively encrypted and decrypted by the nodes along the secure path.
The drawback is that the key to be shared is exposed to each node on the
path, and if one of these nodes is compromised, the key is available to the
adversary.
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3.1 Proxy-Based Scheme

The solution to secure path key establishment given in [2] utilizes the notion
of proxies. The idea is that D breaks the key into key nuggets and sends the
nuggets securely to proxies by using one of their common keys. Next, each proxy
P , then forwards the key nugget securely to S using one of their common keys.
Any path between D and P , and between P and S can be used for this. The
authors give two algorithms that D can use to discover proxies.

3.2 Friend-Based Scheme

The friend -based scheme we propose is similar in spirit to the scheme in [2],
but has some further advantages. We will utilize the seed-based approach [6] for
shared key discovery phase which reduces the communication burden in sharing
key identifiers. We now outline the friend-based scheme.

S broadcasts a request packet containing the identifier of D and with the
Time-To-Live(TTL) bit set to H hops. The request is sent to the nodes by
using the broadcast support in the underlying routing protocol. Intermediate
nodes receiving the request packet check their key-rings to find if they have
any keys in common with D. If a node does not share a key with D, and if
TTL is not zero, it simply forwards the request packet to others. If it does
share a key, then it is a friend. All those friends which are proxies, send part-
key back to S in encrypted form using the underlying encryption algorithm
Ee(., .), with a bit in the header (hereby, will be called as HEB, the Header
Encryption Bit) set to 1. Other friends, send part-key in clear text with HEB
set to 0. A shortest path routing algorithm is used to route packets from
F to S.

A part-key is simply an l-bit substring of a key shared between F and D.
It is obtained by using a hash pre-specified function h(.) on the key. In case F
shares multiple keys with D, F performs an XOR operation on all the common
keys and finally applies the function h(.) to the result. This part-key is sent back
to S.

On receiving part-keys from possibly multiple friends, source S randomly
selects i of the part-keys, some of them(say, ne ≥ 1) should be one which were
received in encrypted form. These i part-keys are then combined using a publicly
known function g(.) to obtain a full-length key KSD to be used between S and D.
Note that the ne part-keys are first decrypted using the underlying decryption
algorithm Ed(., .) and then are used as arguments for the function g(.).

We note that only the identities of the friends are being sent to the desti-
nation D, not the part-keys. Moreover, these identities are sent securely to the
destination by choosing one of the proxies, the information of which was already
obtained during the broadcast-reply phase. Even if an adversary somehow man-
ages to extract this information, he will not be able to generate the secret key.
He will merely know the key− ids of the friends involved and thus the common
keys shared between every friend and D. Since it is computationally impossible
to obtain keys from key-ids, the adversary will not have access to the keys them-
selves. Now, in addition to having node-ids’ infomation, if the adversary also
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captures the communication between all the friends and S, he will not be able
to generate the key KSD as some of the part-keys involved were received in en-
crypted form. We note also that the method outlined here is independent of the
specific functions h(.) and g(.) that are used. Pseudo-code for the friend-based
scheme is supplied in the Appendix.

4 Comparative Analysis

In this section we first establish the viability of our friend-based approach as
compared to the proxy-based approach. We show that in any collection of m
nodes, the number of friends is statistically higher than the number of prox-
ies. We then evaluate the security of our scheme in terms of the resilience of
our scheme to node capture. We also show that the friend based scheme re-
quires adversaries to expend much more computation effort than the proxy based
scheme.

4.1 Feasibility Analysis

Suppose there are m nodes in the network excluding the source and destination
nodes. Let r be a node other than the source and destination nodes. Let A be the
event that r shares at least one key with the source node S, B be the event that
r shares at least one key with the destination node D and C be the event that
the source and destination nodes do not share a key.1 We denote the complement
of an event E by Ec.

Let p′ be the probability that a node other than the source and destination
nodes is not a friend, given that the source and destination do not share a key.
If P is the key Pool size and k is the key ring size, then the probability p of a
node being a friend is given by

p = 1− p′

= 1− P (Bc|C)

= 1−
(
P−k

k

)
(
P
k

) (1)

Let q be the probability that a node other than the source and destination
nodes is a proxy, given that the source and destination not do not share a key.
We have

q = P (A ∩B|C)
= 1− P (Ac ∪Bc|C)
= 1− P (Ac|C)− P (Bc|C) + P (Ac ∩Bc|C)

= 1− 2

(
P−k

k

)
(
P
k

) +

(
P−2k

k

)
(
P
k

) (2)

1 This is the event when the source and destination need to establish a secret key.



528 A. Gupta, J. Kuri, and P. Nuggehalli

By comparing (1) with (2), we see that p > q. Therefore, in any collection of
nodes it is easier to find friends compared to proxies. The complementary cumu-
lative distribution function of the number of friend and proxies in a collection of
m nodes is plotted in Fig. 2.
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Fig. 2. The complimentary distribution function of the number of friends and proxies

4.2 Security Analysis

In analyzing the security properties of the friend-based and proxy-based schemes,
we assume that S and D are never captured. In our threat model, we assume
that once a node is captured, all of its keys become available to the adversary.
Consequently, if S or D is captured then the secret key is revealed straight away.
The more interesting case is when neither is captured.

Suppose that apart from S and D, there are m nodes in all. Let us now assume
that x nodes (distinct from S and D) have been captured. It is possible for the
adversary to find out which of these x nodes are friends or proxies. For this,
knowing the node-id of D is sufficient. Then, the adversary can generate the
key-ids in D’s key-ring, as well as those in a captured node’s key-ring and find
out if there is a non-empty intersection. In this way, the number of friends or
proxies in the x captured nodes can be obtained.

We now consider the i friends or proxies that were actually used to gen-
erate the key KSD. Clearly, the x captured nodes can either include these i
friends/proxies (let us call this event R) or not. If Rc occurs, then the adversary
cannot obtain the secret key. If R occurs, the adversary can possibly obtain the
key after some more effort, as we show below.

If R occurs,we know that the x captured nodes containat least i friends/proxies,
because the i friends/proxies actually used for KSD are already present. Let the
total number of friends/proxies present among the captured nodes be the random
variable Z, taking values in {i, (i + 1), . . . , x}. In this situation, the adversary has
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to guess the right collection of i friends to obtain KSD. Let us suppose that the
adversary can make L attempts to get the key. Then, our basic measure of resiliency
againstnode capture is theprobability of key recovery by theadversary inLattempts.
Clearly, as L increases, we expect the probability to increase.

Let HL denote the event that KSD is recovered by the adversary in L at-
tempts. Then

P (HL) = P (Rc)P (HL|Rc) + P (R)P (HL|R) (3)

Now, as noted before, P (HL|Rc) = 0. So we need to obtain P (R) and P (HL|R).
P (R) is given by

P (R) =

(
m−i
x−i

)
(
m
x

) (4)

Also

P (HL|R) =
x∑

k=i

P (HL, Z = k|R)

=
x∑

k=i

P (HL|Z = k, R)P (Z = k|R) (5)

P (HL|Z = k, R) can be found as follows. Given that there are k friends/proxies,
the probability that the adversary finds the “correct” combination of
friends/proxies in the first attempt is 1

(k
i)

. Similarly, using a standard combinato-

rial argument, the conditional probability that the correct combination of friends
is found in the 2nd attempt is also 1

(k
i)

. In fact, this argument applies equally well

to cases where the correct combination is found in the 3rd, 4th, . . ., min(L,
(
k
i

)
)th

attempt. In all cases, the conditional probability is 1

(k
i)

. Thus, we have

P (HL|Z = k, R) =
min

(
L,
(
k
i

))
(
k
i

) (6)

The difference between the friend-based and proxy-based schemes appears when
computing P (Z = k|R). Recalling that p denotes the probability that a node is
a friend and q the probability that a node is a proxy, we have from the binomial
distribution:

P (Z = k|R) =
(

x− i

k − i

)
pk−i(1− p)x−k (7)

for the friend-based scheme and

P (Z = k|R) =
(

x− i

k − i

)
qk−i(1− q)x−k (8)

for the proxy-based scheme. Hence, from (3), (4) (5), (6), (7) and (8) we have
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Theorem 1. When x nodes are captured by the adversary, the probability of key
recovery in L attempts in the friend-based scheme is(

m−i
x−i

)
(
m
x

) x∑
k=i

min(L,
(
k
i

)
)(

k
i

) (
x− i

k − i

)
pk−i(1 − p)x−k

and in the proxy-based scheme is(
m−i
x−i

)
(
m
x

) x∑
k=i

min(L,
(
k
i

)
)(

k
i

) (
x− i

k − i

)
qk−i(1 − q)x−k
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Fig. 3. Security comparison between friend-based and proxy-based schemes

In Fig. (3(a)) we show how the probability of key recovery varies with x for the
two schemes, for some values of m, i, p and q. It can be seen that the probability
of key recovery is distinctly lower for the friend-based scheme.

We also note that as L tends to infinity, we obtain the probability that key
recovery occurs at all. When both L→∞ and x→∞, the expressions suggest

that the probability of key recovery in either scheme approaches (m−i
x−i)
(m

x) . This is

intuitively meaningful, because (i) when many attempts are allowed, the differ-
ence between the two schemes is due only to the probabilities of finding a friend
and a proxy (p and q), and (ii) when a large number of nodes is captured, prac-
tically the entire mass of the binomial distribution (in the expressions above)
are being considered and the summation is very close to 1. Hence, the difference
in performance between the two schemes vanishes as L and x become large,

with the probability of key recovery being given by (m−i
x−i)
(m

x) . This can be seen in

Fig. (3(b)).
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The analysis above was carried out for a chosen number of attempts L. Al-
ternatively, one may ask the question: Given that the i friends/proxies used to
generate KSD are included in the x captured nodes (i.e., the event R), what
is the average number of attempts required by an adversary to obtain KSD?
Letting NF and NP denote the random number of attempts required in the
friend-based and proxy-based schemes respectively, we seek to obtain E(NF |R)
and E(NP |R). This requires that the conditional probabilities P (NF = l|R) and
P (NP = l|R), l = 1, 2, . . . ,, be obtained first; this can be done using the same
approach employed above. We omit the details for brevity. Some representative
values are given in Table 1.
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quired for key recovery in a typical scenario

Table 1. Comparison between friend-
based scheme and proxy-based scheme

m = 60, i = 3, P = 100000, k = 250

x P (R) E[NF |R] E[NP |R]

29 0.1 256 46
35 0.2 435 72
41 0.3 682 106
45 0.4 890 133
48 0.5 1071 157
51 0.6 1274 184
53 0.7 1424 203
56 0.8 1669 234
58 0.9 1846 256
60 1.0 2037 280

It can be seen that as x increases, the difference in computation effort in-
creases dramatically. To get some intuitive understanding of this phenomenon,
we consider the friend-based scheme with large x. In this scenario, the number
of captured friends will be very close to the expected number, namely xp, with
high probability. Similarly, for the proxy-based scheme, the number of expected
proxies is very likely to be around xq. Thus, we can make a first-cut comparison
between the two schemes by considering the expected value of NF and NP , given
that xp and xq nodes have been captured, respectively.

We plot these values in Fig. 4 and note that NF is almost one order of mag-
nitude greater than NP .

5 Conclusion

Our friend-based scheme for secure path key establishment is inspired by the
proxy-based scheme in [1] and [2]. We showed that because a friend needs to share
one or more keys with only the destination, the chances of finding a friend in a
neighbourhood are considerably greater than that of finding a proxy. This means
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that friends can be found with less communication overhead, and therefore,
appreciable savings in energy can result.

Further, we showed that the friend-based scheme exhibits clear advantages
with respect to resilience against node capture. This was proved by obtaining
analytical expressions for the conditional probability of key recovery within L
attempts by the adversary. For typical scenarios, the average computational
effort for key recovery was also shown to be much larger for the friend-based
scheme.

Our next step will be to carry out a detailed study of the energy expense
incurred by the friend-based scheme and compare it with the proxy-based
scheme.

References

1. Ling, H., Znati, T.: End-to-end pairwise key establishment using multi-path in
wireless sensor network. In: Proceedings of the 2005 IEEE Global Communications
Conference (GLOBECOM 2005). (2005)

2. Li, G., Ling, H., Znati, T.: Path key establishment using multiple secured paths
in wireless sensor networks. In: Proceedings of ACM CoNEXT, Toulouse, France
(2005)

3. Carman, D.W., Kruus, P.S., Matt, B.J.: Constraints and approaches for distributed
sensor network security. In: Technical Report #00-010, NAI Labs. (2000)

4. Eschenauer, L., Gligor, V.D.: A key-management scheme for distributed sensor
networks. In: Proceedings of the 9th ACM Conference on Computer and Commu-
nications Security (CCS). (2002)

5. Chan, H., Perrig, A., Song, D.: Random key predistribution schemes for sensor
networks. In: Proceedings of IEEE Symposium on Research in Security and Privacy.
(2003)

6. Zhu, S., Xu, S., Setia, S., Jajodia, S.: Establishing pairwise keys for secure com-
munication in ad hoc networks: a probabilistic approach. In: Proceedings of the
11th IEEE International Conference on Network Protocols (ICNP). (2003)

7. Pietro, R.D., Mancini, L.V., Mei, A.: Random key assignment for secure wire-
less sensor networks. In: ACM Workshop on Security of Ad Hoc and Sensor
Networks, George W. Johnson Center at George Mason University, Fairfax, VA,
USA (2003)

8. Du, W., Deng, J., Han, Y.S., Chen, S., Varshney, P.K.: A key management scheme
for wireless sensor networks using deployment knowledge. In: Proceedings of the
IEEE INFOCOM. (2004)

9. Du, W., Deng, J., Han, Y.S., Varshney, P.K.: A pairwise key pre-distribution
scheme for wireless sensor networks. In: Proceedings of the 10th ACM Conference
on Computer and Communications Security (CCS). (2003)

10. Blom, R.: An optimal class of symmetric key generation systems. In: Advances
in Cryptology: Proceedings of EUROCRYPT 84 (Thomas Beth, Norbert Cot, and
Ingemar Ingemarsson, eds.), Lecture Notes in Computer Science, Springer-Verlag,
209:335-338. (1985)

11. Spencer, J. In: The Strange Logic of Random Graphs. Algorithms and Combina-
torics 22, Springer-Verlag, ISBN: 3-540-41654-4 (2000)



A New Scheme for Establishing Pairwise Keys for Wireless Sensor Networks 533

Appendix: The Algorithm

Algorithm 1. The friend-based algorithm
Pseudo-code at S:
Input: Destination id D
Output: A pairwise key KSD

Set TTL = H
Request packet (RP) contents: D
Receive part-keys
Randomly select:
ne part-keys with HEB = 1 & i − ne with HEB = 0
for j = 1 to ne do

Part-key j = Ed(Selected part-key j, KSFj ) {Ed(., .) → decryption algorithm}
end for
for j = ne + 1 to i do

Part-key j = Selected part-key j
end for
KSD = g(part-key 1, part-key 2, . . ., part-key i)

Pseudo-code at Fj (jth friend of S):
Input: Destination id D
Output: Part keyF

Given D, generate key-ids KD1 , KD2 , . . . , KDk

Given S, generate key-ids KS1 , KS2 , . . . , KSk

Part-keyF = 0; flags = 0; flagd = 0; HEB = 0
for m = 1 to k do

for l = 1 to k do
if (KFm == KDl) then

Part-keyF = XOR(Part-keyF , truncated KFm)
flagd = 1

end if
if (KFm == KSl) then

flags = 1
end if

end for
end for
if (flags == 1) and (flagd == 1) then {Proxy node}

Part-keyF = Ee(Part-keyF , KSF ) {Ee(., .) → encryption algorithm}
HEB = 1

end if
if (Part-keyF �= null) then

Send Part-keyF and identity F to S
else if (TTL �= 0) then

Broadcast request packet to neighbours
else

drop the packet
end if



S. Chaudhuri et al. (Eds.): ICDCN 2006, LNCS 4308, pp. 534 – 545, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Distributed Location and Lifetime Biased Clustering 
for Large Scale Wireless Sensor Network 

Biswanath Dey and Sukumar Nandi 

Indian Institute of Technology Guwahati, 
North Guwahati, Assam, India 

{bdey, sukumar}@iitg.ernet.in 

Abstract. Recent research in wireless sensor networks have shown in most of 
the WSN applications node positions are often known in priori, to be able to 
effectively assimilate data from the WSN deployment. Also expected lifetime 
of the network, ie. for how long the deployment should work, is often an 
important specification for a particular deployment. In this paper we proposed 
two novel protocols, we call, Location and expected Lifetime Biased Clustering 
(LeLBC) and a modification of it, with fully localized intra cluster chaining 
(LeLBC-ICC). Both the protocols utilize the location information and network 
lifetime requirement as the knowledge for scheduling cluster head selection 
expeditiously. Experiment results have shown that LeLBC outperforms widely 
quoted non deterministic cluster based protocol LEACH, while LeLBC-ICC 
gives comparable results with the near optimal solution PEGASIS. Both the 
protocols use only localized information and maximum numbers of nodes 
remain alive during entire lifetime of the network. 

Keywords: Clustering, Energy efficiency, Network lifetime, Sensor Network. 

1   Introduction 

A wireless sensor network consisting of a large number of small irreplaceable battery 
powered sensors with low-power transceivers can be an effective tool for gathering 
data in a variety of environments[1,3,4]. The data collected by each sensor is 
communicated through the network to a single processing center called Base Station, 
usually having more resources in terms of energy and computing power. The base 
station uses all reported data to determine characteristics of the environment or detect 
an event[2,3,4]. Fig 1 shows a typical sensor network deployment. Such networks are 
deployed for numerous applications for unmanned data collection in uncongenial 
environments for a wide range of time eg. habitat monitoring, monitoring of sensitive 
environmental zones, biospheres, wildlife habitats etc., forecasting the trends related 
to weather, pollution, floods, structural wear and tear of buildings etc., smart home, 
smart office etc[1,2,3,4,6]. 

Sensor networks differ from conventional wireless ad hoc networks in certain ways 
[2]. The number of nodes in network is much higher with comparatively dense 
network topology. The nodes are highly resource constrained in terms of memory, 
processing power and battery life. Sensor networks are application specific i.e. they  
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Fig. 1. A typical sensor network 

are often designed and deployed with an end goal in mind, like for example data 
gathering in a region based on particular event over a specified period of time. 

A sensor node is usually composed of four components [2], a processing unit, a 
power unit, one or more sensing unit and a transceiver. The processing unit is 
typically an 8-16 bit, 1-24 MHz microcontroller with 1KB-4MB onboard memory. 
The power unit usually consists of one or more batteries, providing 3V-4.5V, with a 
capacity ranging from 1700mAh-2700mAh. Due to limited and irreplaceable battery 
power of each sensor node, sensor networks are highly sensitive to energy usage. For 
any node, energy consumption is observed at three stages, sensing, processing and 
communication. While most of the energy is consumed in communication, optimizing 
these three stages leads to reduction in the energy consumed. 

In large scale wireless sensor network, cluster based communication found to 
surpass the direct mode of communication in addressing scalability and energy 
efficiency [8,9,18,19]. Cluster based approaches tend to increase network lifetime by 
uniformly distributing the energy dissipation over the entire network. While in case of 
direct communication, nodes away from the base station tend to deplete more energy 
in communication and so dies more quickly, compared to the nodes nearer to the base 
station, thus creating energy imbalance in the network. This, in turn, causes network 
partitioning. Recent developments in sensor network research shows, in most of the 
WSN applications, node positions are known in priori, which is required, to be able to 
assimilate data effectively from the WSN deployment. While designing for a sensor 
network deployment, expected lifetime of the network, that is, for how long the 
deployment should work, is often an important criterion for a particular deployment, 
and needs to be approximated in advance for the successful deployment of the 
network [15,16].  

In our protocols we have used these two parameters as the guiding factors for 
clustering. In LeLBC, we schedule the selection of cluster heads in a particular round 
of network operation based on its position in the network and the number rounds to be 
elapsed until the network should operate. Such scheduling of cluster heads is unlike 
non deterministic, randomized cluster head selection in LEACH[8,9]. In LeLBC-ICC, 
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nodes within a cluster, forms intra cluster chains with purely localized information, to 
minimize the energy required due to transmission. However such chain formation is 
unlike the chaining scheme used in PEGASIS [11,12] which requires global 
knowledge of each node position. Experiments results has shown, both of our 
protocols performs relatively well than interesting data gathering protocols viz. 
LEACH and gives comparable results with PEGASIS. 

This paper is organized as follows. Section 2 discusses the contemporary research 
reported in literature in clustering for sensor network. We emphasis on two highly 
quoted work LEACH [8] and PEGASIS [11] as the backbone idea of our protocols 
come from these two interesting protocols. Section 3 discusses the preliminary 
concepts in sensor network communication, regarding radio model used, performance 
metrics etc. The LeLBC protocol is discussed in section 4 followed by simulation 
setup in section 5 and results and discussions in sections 6. Section 7 presents the 
modification of LeLBC, viz. LeLBC-ICC which incorporates intra cluster chaining 
and the experiment results following intra cluster chaining. Finally in section 8 we 
conclude the paper detailing the future prospects and works still to be done. 

2   Related Work 

Routing and clustering is an intensely studied field in contemporary research in 
wireless sensor network [2,7,8,10,11,18,19]. In order to cope up with unique 
characteristics of sensor network described in previous section newer range of 
protocols had to be developed [2,3,4,5,17].  

Low Energy Adaptive clustering hierarchy (LEACH)[8] is a hierarchical clustering 
protocol specific to sensor network first of its kind, which uses clustering for 
prolonging network lifetime. LEACH has four phases of operation viz. advertisement, 
cluster setup, schedule creation (TDMA) and data transmission. In the advertisement 
phase each node decides whether it can become a cluster head, based on a 
predetermined percentage P, of cluster head desired in the network with respect to 
total number of nodes in the network. With given cluster head probability P, during 
start of a network round r, a node that has not become cluster head in past 1/P rounds, 
tries to become the cluster head by generating a random number between 0 and 1, 
which is compared with a thresh hold T(n), calculated as shown below. If the random 
number selected by a node is less than T(n), the node becomes the cluster head. Each 
node that is elected to become a cluster head advertises itself using the medium access 
control based CSMA protocol and transmitting at the same energy.   

T(n)=P/(1-P*(r mod (1/P))) 

In cluster setup phase each non-cluster-head nodes decides which cluster to join 
based on the received signal strength from the cluster head advertisement. This 
process is repeated periodically with the aim so that every node in the network 
becomes cluster head and all nodes can equally share the responsibility of message 
transmission, ensuring longer life for all the nodes. 

In schedule creation phase the cluster head builds a TDMA schedule for the 
member nodes and transmits the schedule to each member nodes and in data 
transmission phase each member nodes transmits its data to cluster head. At the end 
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of every TDMA cycle cluster head aggregates all packets and sends as another set of 
messages to BS as CDMA packets. 

Although LEACH is one of the most elegant protocol that is extensively studied by 
many researchers [10,11,13,17,18] the randomized nature of its cluster head selection 
has some limitations. There are ample scope for improvement as far as the network 
lifetime and energy efficiency is concerned as described in [10,11]. Efficient 
scheduling of cluster head selection biased by node location and expected network 
lifetime can increase the network performance which is the core focus of our research. 

A major improvement over LEACH is achieved by PEGASIS[11] in terms of 
network lifetime, which is claimed to be the near optimal solution by its inventors. In 
PEGASIS, group heads are chosen randomly and each node communicates only with 
close neighbor(s) to form a chain leading to its cluster head. The randomization of the 
cluster heads guarantees that the nodes will die in a random order throughout the 
network thus keeping the density throughout the network proportional. PEGASIS 
assumes to have global knowledge of the network topology, allowing it to use a 
greedy algorithm while constructing the chain. 

However in PEGASIS there are a few drawbacks. First the clustering is based on 
random cluster heads. The chain described in PEGASIS may not be an optimal 
routing mechanism, other approaches such as directed diffusion [7] appears to give 
better performance. Again each node knowing the location information of all other 
nodes is tremendously costly in terms of memory and scalability. 

A possible solution to the above limitation would be to allow each cluster head 
making the best decision for the members of its cluster following a greedy algorithm 
which would result in a system that all nodes would be transmitting to the best 
neighbor in the cluster. We follow this scheme in LeLBC-ICC where as the nodes 
sends its location information to cluster head as part of its ‘interest’ to become the 
member of the cluster. Thus the scheme is fully localized with each node require to 
know only its own location information. 

3   Preliminaries 

A wireless sensor network, as shown in fig 1, can be viewed as a random deployment 
of N stationary nodes, over an M*M area. The randomness of distribution can be 
uniform or skewed over the region[20]. The main sources of energy dissipation in 
sensor nodes are transmission and reception. With symmetric propagation 
channel[21], the energy required to send a packet of k bits from node u to node v, is 
same as sending the same packet from v to u. 

The energy required to transmit a packet of k bits over a distance d is given by, 

ET = C1 k + C2  k d   + C3 

Whereas the energy dissipated to receive a packet of k bits is given by, 

    ER = C1 k + C3  

Where C1 and C2  are energy dissipated to run the transmitter circuitry and energy 
dissipation of the transmission amplifier respectively. These parameters depend on the 
selected radio model. For radio model used by inventors of LEACH, C1 and C2  are 
50nJ/bit and 100 pJ/bit/m2 respectively.  is the path loss component usually = 2. C3 
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is a constant added in order to take in to consideration the overhead due to signal 
processing and minimum energy needed for successful reception and MAC control 
messages. For ideal MAC considerations we can ignore the constant C3 (i.e. C3=0). 

In case of direct communication, each sensor node sends their packets directly to 
base station (BS). While in case of cluster based protocols, such as LEACH, nodes 
sends their packets to their nearest cluster heads (CH). The cluster head receive p k-bit 
packets from p neighbors, perform some aggregation operation and transmit the data 
to the base station in the form of q k-bit packets, where q=cp, with c (=1) being the 
compression coefficient. 

The lifetime of a sensor network can be defined with three metrics [10] namely 
first node dies or FND, half of the nodes alive or HNA and last node dies or LND. 

Given a particular network configuration we can determine the maximum number 
of rounds possible before the first node dies as shown in [11]. Likewise even if the 
approximate life time of a deployment is not specified in priory, it is possible to 
approximate it to some extent, locally at node level considering the initial energy 
level of each node, the energy cost for electronics and , the path loss 
component[15,16]. 

4   LeLBC: Location and Expected Lifetime Biased Clustering 

At a round, our protocol, Location and expected Lifetime biased clustering (LeLBC), 
allows a node, to become CH based on its position and expected network lifetime in 
order to evenly distribute the energy dissipated throughout the network. This result in 
most of the nodes still remains reachable throughout the operating lifetime of the 
particular deployment. 

Let us assume the sensor field in fig.2. Let us assume R to be the radius of the 
sensor field i.e. maximum distance of the farthest node from the BS. Let us assume a 
virtual circle with radius R/2 as shown and let E is the expected lifetime of the 
deployment. 

Obviously during initial rounds, all the nodes have sufficient amount of remaining 
energy level to reach farthest node (CH or BS). But as more and more rounds get 
elapsed, remaining energy level as each node lowered and with that energy node can 
transmit to a shorter distance (We assume nodes can tune its transmitter based on 
energy level). Our target is to form cluster heads far from the half radius (R/2) circle 
during initial rounds and as the network ages, cluster heads are formed nearer to the 
circle of radius R/2. 

With given network radius, R, the expected lifetime, E, finding the best feasible 
radius R’ (lets call it as ‘ideal radius’) for a cluster head at round r, involves a simple 
mapping depicted in fig 3. 

The logic behind the working principle of the protocol is simple. During initial 
stages nodes (CHs) near the outer circle (radius=R), have sufficient energy to reach to 
BS. But with time, their energy will deplete and a stage will come, when with their 
remaining energy level they can not reach to BS but will still have sufficient energy to 
transmit up to the nodes nearer to the inner circle (radius=R/2). If during that stage  
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Fig. 2. A typical real world sensor network deployment 

CHs are formed nearer to inner circle, distant nodes can still reach to BS through 
these CHs. 

Again during initial rounds of network operation, nodes nearer to BS are favored to 
be the CHs than nodes nearer to inner circle (of R/2 radius). This will conserve the 
energy level of the nodes nearer to the inner circle, as in this case they are 
transmitting to a shorter distance than if they would have transmitted to BS. 
Considering uniform initial energy level for all the nodes, nodes nearer to BS will 
have sufficient energy to reach nodes nearer to the inner circle during later rounds of 
network operation. Thus all or most of the nodes will remain reachable from the BS, 
throughout the entire network lifetime, which is our prime objective. Different phases 
of the LeLBC protocol is enlisted below. 

4.1   Cluster Head Selection Phase 

The cluster head selection phase of LeLBC closely resembles with LEACH with 
some modifications taking into considerations of the two parameters viz. location of 
the node within the network and expected lifetime of the network as described above. 

At any round ‘e’, once a node N is a candidate to become CH, first it is examined 
from its location where it is in the network, beyond the inner circle (radius=R/2) or 
below it (nearer to BS). 

In the area beyond the half radius circle, based on the expected network lifetime E 
and present round ‘e’, ideal position of the node that should be the cluster head will be 
near the circle with radius, Rout

ideal where, 

Rout
ideal=|(e-(R-R/2))/E| 
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Again in the area below the half radius line (nearer to BS), the ideal position of the 
node that should be the cluster head at round ‘e’, will be near the circle with radius, 
Rin

ideal where, 

Rin
ideal =|(e*R/2))/E| 

If the candidate node is on this radius line it will be selected as one of the cluster 
heads for this round. 

Now as the nodes were randomly deployed, it is likely that the candidate may not 
lie in on this ideal radius line. We take a point P, on the circle with ideal radius, 
closest to the candidate node. Obviously this point lies on the straight line connecting 
candidate node and the BS. 

 

Fig. 3. Mapping to find most feasible CH position 

We introduced a parameter we call, positional tolerance (PT) here. If the candidate 
node is within the distance (PT) from P, this node will be selected as one of the cluster 
heads for this round, other wise the node can not be the cluster head. 

Note that if PT =0, it puts tight restriction on a node becoming cluster head, thus 
number of cluster heads will be very less, (may be even zero) as most of the candidate 
node will fail the test and thus the protocol behaves almost similar to direct 
transmission. On the other hand if PT =R, LeLBC will behave similar to LEACH. 
Experimentally it is seen that a value near to 0.63*R for PT gives best results.  

4.2   Cluster Set Up Phase 

Once some of the nodes become the CH, they broadcast advertisement packets, as in 
LEACH. A node, which is not a cluster head, selects the closest cluster head as its 
head. Election of cluster heads following the method stated above ensures that a non-
cluster head node also conserves energy keeping network lifetime-wide comm-
unication in consideration. Once the cluster is set up, the cluster head then creates a 
TDMA schedule telling the member nodes when they can transmit; the schedule is 
broadcast to the non cluster nodes which requires only constant power for 
broadcasting the schedule. 

4.3   Data Transmission Phase 

All non-cluster head nodes send their data to their respective cluster heads in their 
respective TDMA slots. At the end of a TDMA cycle, the cluster heads aggregates the 
data and sends it to base station as CDMA frame.  
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5   Simulation Setup 

We tested our protocol exhaustively, in MATLAB[22], for different network 
scenarios, with different parameters for network size, BS locations, node densities etc, 
as shown in table 1. For space constraint we present the performance characteristics 
of our protocol compared to existing ones for the most generalized parameters shown 
in bold face in the table. In all our simulations we have considered simple radio 
model, as in [8,11]. We have taken PT =0.63R in all the cases. 

6   Results and Discussions 

Fig 4 and fig 5 shows the number of rounds elapsed when 1%, 25%, 50%,75%,100% 
of nodes dies for different protocols for scenario 1 and scenario 2 respectively. We 
have tested out protocols for different values of PT ranging from 0-100% of Network 
Radius, R, and found the value nearly 0.63R for PT gives the best results. So we have 
taken PT =0.63R in all the cases in the simulations for scenario 1 and 2. Fig 6 plots 
characteristics depicting influence of PT on different lifetime metrics.  

Table 1. Simulation Parameter for different scenarios 

Parameters Scenario 1 Scenario 2 

Network Size (In m*m) 50m X 50m 100m X 100m 
Number of Nodes 50, 100, 150 50, 100, 200 

Initial Battery Power of nodes (in J) 0.25, 0.50, 0.75 0.25, 0.50, 0.75, 1.0 

Message length (in bits) [k] 2048, 4096, 8192 2048, 4096, 8192 

Energy dissipation in Tx / Rx [C1] 50 nJ/bit 50 nJ/bit  

Energy dissipation in Tx amplifier [C2] 100 pJ/bit/m2 100 pJ/bit/m2  

Base station Location (0,0), (25,25), (25,150) (0,0), (50,50), (50,300) 

Advertisement message length (in bits) 16, 32, 64 16, 32, 64 

 

Fig. 4. Performance characteristics for scenario 1 
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Fig. 5. Performance characteristics for scenario 2 

We see that in both the scenarios LeLBC outperforms LEACH in terms of number 
of rounds. Also in LeLBC the nodes dies rather steadily with almost 100% of the 
nodes remain alive for 80% of the network lifetime. Fig 7 shows the rate at which 
nodes die with increasing number of rounds in all the protocols. However in both the 
scenario we see that, for LeLBC, the number of rounds for which the network 
operates is significantly less than that of chaining based protocol PEGASIS, which 
claimed to be near optimal[11]. In the following section we propose a modification of 
LeLBC, where we form intra cluster chaining but in a completely localized manner. 

 

Fig. 6. Effect of PT  on LeLBC (scenario 1) 

7   Intra Cluster Chaining 

We modified LeLBC following the interesting chaining scheme proposed in [11] but 
in a completely localized manner. In LeLBC-ICC, during cluster set up phase a node 
that qualifies to be the cluster head broadcasts, as in LeLBC or LEACH, a strong but 
short advertisement packet. The non cluster head nodes select the closest cluster head 
and transmit a packet as its ‘interest’ to become a member of the cluster. We modified  
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Fig. 7. Node dieing rate (scenario 2) 

this interest packet. Now along with this interest packet, a non cluster head node also 
sends its location information to the intended cluster head. 

Once the clustering is over, the cluster head will have the location information of 
all the member nodes. With this information the cluster head can calculate the best 
possible chain among the cluster members. Once such a chain is created, the cluster 
head broadcast the chain to the cluster members as part of the acknowledgement 
packet. The cluster members follow this chain for data transmission instead of 
following the TDMA schedule as in LEACH or LeLBC. 

 

Fig. 8. Performance of LeLBC-ICC (scenario 2) 

Note that no extra packet transmission is required than original LeLBC or LEACH. 
Such chaining saves energy during data transmission as described in [11,12]. 
However unlike PEGASIS, LeLBC-ICC is completely localized. Each node need to 
know only its own location. Again as the chain is formed by the cluster head, having 
implicitly obtained location information of all member nodes, it can determine the 
best chain possible, making it more efficient, unlike PEGASIS where individual 
nodes has equal influence over chain formation. Fig 8 shows the number of rounds 
elapsed when 1%, 25%, 50%,75%,100% of nodes dies in LeLBC-ICC compared to 
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other protocols for scenario 2. It is seen that in LeLBC-ICC with intra cluster 
chaining, there is a significant increase in overall network lifetime performance. 
Although the maximum number of rounds is still higher in PEGASIS while 25-100% 
of nodes dies, but in LeLBC-ICC with fully localized chaining we are getting 
comparable results. Also as revealed in fig 7, we can see that in case of LeLBC-ICC 
100% of the nodes remain alive for about 70% of the network lifetime while in case 
of PEGASIS 100% of the nodes remains alive for only around 40% of the network 
lifetime. 

8   Conclusion and Future Work 

In this paper we presented a unique efficient and scalable approach for clustering in 
large scale wireless sensor network based on node location and expected network 
lifetime. In both of our protocols we assumed only local and no global information 
available to individual nodes for cluster formation. Both the protocols have another 
unique characteristic where maximum number of nodes remains alive during 65-80% 
of network lifetime. This is very essential and required characteristics for any sensor 
network deployment in order to avoid network partitioning problem. This also aid to 
solve the problem of ‘hole’ formation in an uniformly deployed network. Its is seen 
that location and expected network lifetime information can be effectively used for 
efficient clustering in large scale wireless sensor network. We are working on 
extending the network simulator ns[23] to simulate LeLBC, LeLBC-ICC for sensor 
networks and thus obtain more empirical results that would help us establish the 
efficaciousness of our protocols and its applicability to other types of wireless 
networks. 

References 

1. D. Estrin, R. Govindan, J. Heidemann and Satish Kumar, “Next Century Challenges: 
Scalable Coordination in Sensor Networks”, Proceedings in Mobicom’99, 1999. 

2. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E.  Cayirci, “A survey on sensor 
networks,’’   IEEE Commun. Mag. , vol . 40, no. 8, pp. 102-114, 2002 

3. V. Rajavivarma, Y. Yang and T. Yang, “An overview of wireless sensor network and 
applications,” in Proc. 35th Southeastern Symposium on System Theory (SSST’03), pp. 
432-436, Morgantown, USA, March 2003. 

4. C. Y. Chong and S. P. Kumar, “Sensor networks: evolution, opportunities, and 
challenges,” Proc. IEEE, vol 91, no. 8, pp. 1247-1256, 2003. 

5. I. Chlamtac, M. Conti, and J. Liu, "Mobile Ad Hoc Networking: Imperatives and 
Challenges," Ad Hoc Networks, vol. 1, no. 1, pp. 13-64, 2003. 

6. L. Clare, G. Pottie and J Agre, “Self-Organizing Distributed Sensor Networks,” Proc. SPIE 
Conf. Unattended Ground Sensor Technologies and Applications, pp. 229-237, 1999. 

7. C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed Diffusion: A Scalable and 
Robust Communication Paradigm for Sensor Networks,” in Proceedings of the ACM/IEEE 
International Conference on Mobile Computing and Networking (MobiCOM ‘00), Boston, 
August 2000. 



 Distributed Location and Lifetime Biased Clustering 545 

8. W.R. Heinzelman, A. Chandrakasan, and H.  Balakrishnan, “Energy-Efficient 
Communication protocols for Wireless Microsensor Networks”, Proc. 33rd Hawaiian Int’l 
Conf. on Systems Sciences HICSS’00, pp.1-10, Hawaii, USA, January 2000. 

9. W.R. Heinzelman, A. Chandrakasan, and H.  Balakrishnan, “An Application- Specific 
Protocol Architecture for Wireless Microsensor Networks,” IEEE Transactions on 
Wireless Communications, vol. 1, no. 4, pp.660-670, October 2002. 

10. M. J. Handy, M. Hasse and D. Timmermann, “Low energy adaptive clustering with 
deterministic cluster head selection,” in Proc. 4th Int’l Workshop on Mobile and Wireless 
Communications Network (MWCN’02), pp 368-372, Sweden, Sept. 2002 

11. S. Lindsey and C. Raghabendra, “PEGASIS: Power-Efficient Gathering in Sensor 
Information Systems”, IEEE Int’l Conf. on Communications, 2001. 

12. S. Lindsey, C. Raghabendra and K. M. Sivalingam, “Data gathering algorithms in sensor 
networks using energy metrics,” IEEE trans. Parallel Distributed systems, vol 13, no. 9, pp 
924-935, 2002. 

13. Ioan Raicu, “Efficient Even Distribution of Power Consumption in Wireless Sensor 
Network”, ISCA 18th Int’l Conf. on Computers and Their Applications, CATA’03, 
Honolulu, Hawaii, USA, 2003. 

14. S. Basagni, “Distributed clustering for ad hoc networks”, in Proc. 4th Int’l Symposium on 
Parallel Architectures, algorithms and Networks (I-SPAN’99) pp 310-315, Australia, June 
1999. 

15. D. M. Blough and P. Santi, “Investigating upper bounds on network lifetime extension for 
cell-based energy conservation techniques in stationary adhoc network”, in Proc. Of the 
ACM/IEEE Int’l Conf. on Mobile Computing and Networking MOBICOM 2002. 

16. M. Bhardwaj, T. Garnett, and A.P. Chandrakasan, “Upper bounds on the lifetime of sensor 
networks,” In Proceedings of IEEE ICC, 2001 

17. Katayoun Sohrabi, Jay Gao, Vishal Ailawadhi and Grefory J. Pottie, “Protocols for Self-
Organization of a Wireless Sensor Network”, IEEE Personal Communications, pp. 16-27, 
October 2000 

18. J. N. Al-Karaki and A. E. Kamal, “Routing techniques in wireless sensor networks: a 
survey”, IEEE Wireless Communications, Vol.11, no. 6, pp. 6-28, 2004. 

19. Jamil Ibriq and Imad Mahgoub, “Cluster based routing in wireless sensor network: Issues 
and Challenges”, Proc. of Int’l Symposium on Performance Evaluation of Computer and 
Telecommunication Systems SPECTS'04, pp. 759-766, San Jose, California, 2004  

20. A. Conti and D. Dardari, “The effects of nodes spatial distribution on the performance of 
sensor networks,” in Proc. IEEE 59th Vehicular Technology Conf. VTC’04, vol. 5, pp. 
2724-2728, Italy May 2004. 

21. T. S. Rappaport, “Wireless communications”, Prentice Hall. 
22. “MATLAB and Simulink for Technical Computing”, http://www.mathworks.com/ 
23. “The network simulator-ns2”, http://www.isi.edu/nsnam/ns   



Power Aware Duty Scheduling in Wireless

Sensor Networks

Umesh Bellur and Nishant Jaiswal

School of IT
IIT Bombay - India

{umesh, nishant}@it.iitb.ac.in

Abstract. Limited, non replaceable power supply to sensor nodes still
remain the bottleneck for wireless sensor network applications. For many
sensor network applications such as military surveillance, it is neces-
sary to provide full sensing coverage to a security-sensitive area while at
the same time minimize energy consumption and extend system lifetime
by leveraging the redundant deployment of sensor nodes. In this pa-
per we propose a new power aware sleep/duty scheduling scheme which
maintains a full coverage of the region all the time and tries to increase
the lifetime of the network by load balancing amongst the neighboring
nodes.

Index Terms: Sensor Networks, Power Aware Duty Scheduling, En-
ergy Conservation.

1 Related Literature Survey

In recent years quite a number of research interests have been towards finding
duty/sleep scheduling scheme for wireless sensor networks. A few give determin-
istic approaches, like [1], others stay with randomized flavors[2]. Differentiated
Surveillance[3] (Grid point approach) gives the best results in terms of power
savings. We will try to come up with a duty scheduling scheme to improve upon
Grid point approach.

Our problem definition: To come up with a duty scheduling scheme for wire-
less sensor networks which will provide a full coverage all the time and try to
increase the lifetime of the network by load balancing amongst the neighboring
nodes.

2 Proposed Region Based Scheduling Scheme

Regions. If we look at Figure 1, we could easily see that all the grid points
which lie inside a area (e.g. r) have identical coverage. Such areas are called
as regions. All these grid points inside a single region will lead to identical
computation in Grid point approach[3]. If somehow these individual regions
are found out “easily”, such redundant identical computations could be
eliminated.
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Fig. 1. Sensing Coverage to Region R Fig. 2. Sensor Nodes sensing circum-
ferences intersecting each other

There are two types of region, a border region and a non-border region. A
border region is a region which has one edge as a border of the circle which
defines the sensing region of the node in consideration. In Figure 2, regions A,
B, C, D, E and F are examples of border regions. A non-border region is a region
which has no edge common with the circle defining the sensing circumference
of the node in consideration. In Figure 2 , regions G and H are non-border
regions.

Fig. 3. Calculating node schedules for
a single region

Fig. 4. The Process of Schedule Inte-
gration on a node

Individual Region Scheduling Calculation Phase and Schedule Merg-
ing Phase. In the initialization phase every node broadcasts a PING message
containing information about node’s location, N randomly chosen time reference
point Ref [] from an interval [0− T ], and current remaining power of the node.
Consider node A and region r shown in Figure 1. Node A sorts time reference
points in ascending order of all its neighbors who cover region r including its
own reference point on a scale of [0 − T ], where T is the duration of a round
(see Figure 3). Two consecutive reference points make an interval, Tfront and
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Tend of every node is set to left hand side midpoint and right hand side midpoint
of the intervals respectively (Figure 3). The above technique splits the interval
between the two reference points in half. In our scheme this is done only if the
remaining power of consecutive nodes on this scale is the same. If the remaining
power of these nodes are different then the interval is split proportionally to
the remaining power of these nodes. This will account towards the power aware
feature of our technique. A node which has more power left will tend to take
more portion of the schedule each time and thus contribute to load balancing
in the network which will eventually lead to increase in lifetime of the network.
Since there is no overlap among the node’s working schedules for region r and
total coverage time equals the duration of the round, it is easy to conclude that
at any time, all the points inside region r are covered by at least one node’s
schedule.

After each node calculates its schedules for regions it can cover, it creates
an integrated schedule (T, Ref, Tfront, Tend). The integrated schedule of each
node is the union of its schedules for all the regions it can cover. Thus with the
calculated integrated schedules of all the sensor nodes, at any time any region is
covered by at least one awaken sensor node. To clarify this integration process
further, refer to Figure 4.

Now that we have gone through the integrated schedule calculation phase, the
question that still remains is, how to find such regions. Following subsections will
explain the algorithms used to find these regions.

Fig. 5. Projection of Intersection
points on scale of [0, 2π]

Fig. 6. Graph view of intersecting circles
to find Non-border Regions

Border Region Discovery Algorithm. Border regions are relatively easy to
find than the non-border region. Steps of the algorithm are as follows:

1. Find intersection points of my sensing circle with all my neighbor’s sensing
circles

2. Project all the intersection points on a scale of [0, 2π]. (see Figure 5)
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3. Sort all these point of intersections. on a scale of [0, 2π].
4. Each of these intervals will represent one border region.

Non-border Region Discovery Algorithm. Following are the steps involved
in finding all the non-border regions:

1. Find all the intersections of all the circles (neighborhood nodes) with each
other. Each neighboring circle can intersect all the other d − 1 neighboring
circles.

2. Sort these d2 intersection points. Now view this intersection of circles as a
graph (see Figure 6).

3. Run a modified Breath First Traversal to find all the special cycles (non-
border regions) in this graph.

When we view the intersection of circles as a graph (see Figure 6), intersection
points will form the nodes. The circle segments will form the edges in the graph.
We will do a modified BF traversal on this graph to find all the non-border
regions. These non-border regions form a special type of cycle in the graph.
These cycles do not have any edge dividing the region which it encloses into two
parts. To find such cycles in the graph we only traverse the graph (Breath First
Traversal) abiding by the following rule:

– Only children of a node (z,u) are (x,u) and (u,y) if the last node visited was
(y,z) or (x,z).

– However if the last node was (x,u) or (u,y) then children are (y,z) or (x,z).

If we traverse in such a way we will only find cycles of type described above,
which fortunately are the non-border regions. Region coverage calculation is
simple, only those neighboring nodes completely cover a region which cover all
the end points of that region.

Forecasting Energy Levels of Neighboring Nodes. Since our Power Aware
Scheduling Scheme is using the power levels of nodes to determine the awake time
in the Individual Region Schedule calculation phase, every node needs to know
the current remaining power of all its neighbors at the start of every round. Each
node keeps forecasting energy level of all its neighbors and also itself. If at any
point of time a node finds out that the difference between its actual remaining
power and its forecasted power is more than a threshold (update threshold), it
send the actual power as a broadcast to all its neighbors.

Using different set of Reference Points. A new schedule is calculated every
round. Awake time of nodes depend upon the selection of the reference points.
If several sensor nodes, capable of sensing a particular region, select reference
points very close to each other, there will result a extraordinarily long schedule
for one of these nodes. To avoid such scenarios to repeatedly occur, we use a
different set of reference points each time. A array of reference points is sent
along with the PING message in the initialization phase itself.
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3 Energy Conservation Results

Implementation of the above algorithm has been done on TOSSIM[4] (tinyos
simulator). Ratio between message send energy and message receive energy is
taken as 2.5 : 1. The ratio between node awake energy(sensing) and node sleep
energy is taken to be 1000 : 1. The update threshold taken for experiments was
1/20th of the full power. Graph (Figure 7) shows that at lower update threshold
values the average remaining power of the network drops at a higher rate. This
is due to more number of Update Remaining Power messages sent by nodes.
When threshold value is increased lifetime of the network increases, however
as we increase the value of this threshold the average remaining power of the
network hits an optimum. This is because at very high threshold values nodes
have inaccurate remaining power knowledge of neighbors and the power aware
feature of our algorithm fails to load balance.

Fig. 7. Sensitivity of scheduling on up-
date threshold

Fig. 8. Comparison between Region
Based Scheduling and Grid Point Ap-
proach

In Graph (Figure 8) the line which represents grid point approach plots aver-
age remaining power of the nodes when power unaware scheduling (Differentiated
Surveillance[3]) was used. Power aware scheduling plots the average remaining
power of the network when Region Based Approach was used. No communication
overhead line represents the average remaining power if Regions Based approach
was used with zero power being used to send and receive a message. This plots
the best case performance of our algorithm, i.e. if our technique involved no com-
munication overhead, how well would it had performed. The fourth line - Nodes
up all the time is the worst case performance which we could achieve during a
duty scheduling. This plots the average remaining power across round when all
the nodes are up all the time. Figure 8 clearly shows that our algorithm performs
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Figure 9 plots the Awake time of the
nodes in the sensor network when Re-
gion Based Power Aware Scheduling is
applied. It shows that most of the nodes
are up for more than half of the round
duration but less than 80% of it. Awake
time greatly depends upon the topol-
ogy and density of the network. These
readings where taken on a grid topol-
ogy. There still lies scope for reducing
this uptime by applying some optimiza-
tion techniques and this will be a part
of our future work.

Fig. 9. Average Awake time of the
Nodes

better than the Differentiated Surveillance technique and increases the lifetime
of the network by load balancing amongst the neighboring nodes. Power aware
technique incurs a one time initial setup costs which is evident from the fact
that power aware graph starts much below the power unaware graph. However
it catches up and surpasses the power unaware graph later after a few rounds.

4 Conclusion and Future Work

In this paper we looked at a new power aware, load balancing, and coverage
preserving duty scheduling scheme for wireless sensor networks which does not
leave any blind spot in the region and has reasonably low computational as well
as communication complexity. There is scope for improvement in the forecasting
method used to predict the remaining power levels of the neighboring nodes,
since it directly affects the communication overhead incurred by this scheme.
Also optimization techniques to reduce the average awake time of the nodes
remain unexplored as of now.
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Abstract. The end-to-end reliable data transport is one of important issues in 
large-scale wireless sensor networks (LS-WSNs). In this paper, the reliable data 
transport protocol, called the Data Forwarding Protocol (DFP), is proposed to 
improve the performance in wireless sensor environments consisting of mobile 
sensor nodes with low speed. The key idea of the protocol is that an Agent Host 
(AH), which plays rule of a source or a sink, estimates multi-split connections, 
to support reliable end-to-end deliver. Using AH nodes, the DFP locally 
performs local error control and flow control mechanism with low overhead in 
terms of an end-to-end connection. We evaluate the proposed DFP method 
using NS-2 simulator and prove that the performance of reliable delivery 
service can be increased to at least 30%, compared with that of traditional TCP-
like end-to-end approach. 

1   Introduction 

Recent advances, microprocessor technology have enabled the deployment of the 
large-scale wireless sensor networks (LS-WSNs) where thousands or even tens of 
thousands of small sensors are distributed over a vast field to obtain high-precision 
sensing data [1]. There are frequent data losses due to the high link error rate over an 
end-to-end route beyond at least 6-hops. In the networks, the success rate of data 
deliver is under 50% [4]. Thus, in order to support a reliable data delivery service 
with low transport overhead, data forwarding protocol is necessary. In this paper, our 
work focuses on a reliable data transport in LS-WSNs. An error recovery in terms of 
hop-by-hop and end-to-end approaches, in existing work [2], is inconsistent at sensor 
networks because retransmissions may be frequently caused. In addition, wireless 
sensor networks based on event-based systems do not always need to achieve the data 
delivery up to 100%. Existing works (a hop-by-hop and end-to-end approaches), 
however, are implemented to achieve the guaranteed data delivery of 100%. Thus, 
traditional both approaches are inapplicable in such networks. In order to support only 
delivery rate required by sensor application, a Data Forwarding protocol (DFP) is 
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proposed. In the DFP, both hop-by-hop and end-to-end retransmissions are not 
performed. Instead, a local recovery mechanism at only joint node between split 
connections is performed.  

The remainder of the paper is organized as follows. In section 2, we describe the 
data forwarding protocol. In section 3, we illustrate simulation results. Finally, 
Section 4 draws conclusions.  

2   Data Forwarding Protocol (DFP)  

The DFP performs a feasible local retransmission scheme with the minimum 
overhead of retransmission about data losses which result from link and congestion 
errors. The concept behind this protocol divides a source-sink connection into multi-
split connections to compensate error accumulation. In the DFP, multi-split 
connections are estimated with an Agent Host (AH) agent that plays a role of a virtual 
source or a sink. Also, the AH performs local retransmission of loss data. It has a 
minimal temporary buffer which is used to store the data generated from a source. 
The stored data is used to retransmit loss data. Therefore, the AH are responsible to 
confirm that data have successfully delivered to next AH or a sink. In order to 
estimate optimal multi-split connection, the DFP need the values about the number of 
AHs and the hop-count between AHs over a source-sink route. Both values are 
determined according to the link error rate and target reliability required by a sensor 
application.  

How to determine the position of the AH and the number of AH (N) is performed 
as follows; we firstly assume two parameters that are the target reliability ( ) and the 
prediction success rate (Ps) over a route between a nodes. Let ep denote the error rate 
of one hop link and h denote the number of hops in the route. Here, we assume that ep 
stays constant at least during the controlled time. Thus, PS over the route with k 
retransmission can be defined as follows:  

1 (1 (1 ) )h k
S pP e= − − −  (1) 

Now, let AHi be i th AH apart from the source (AH0 is a source and AHi is a sink) 
and PAHi be the reliability from AHi to AHi+1. In order to determine hop-counter, hi, 
between AHi to AHi+1 target reliability ( ) must satisfy 

iAHPσ ≤  (2) 

where, PAHi is obtained by equation (1).  
The aim of the DFP provides the mechanism to provide target reliability with 

control overhead. Thus, N is minimized. The minimum N is derived as follows: 
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The DFP is composed of two parts; the configuration of multi-split connection and 
the local retransmission scheme between the AHs. Thus, it performs the procedure as 
follows; the connection estimation, the local error control (LEC), and the local flow 
control (LFC). In order to estimate multi-split connections, the DFP utilizes multiple 
AHs: < source, AH_0 >, < AH_i AH_i+1>, < AH_i-1, sink >.  And the AH has the 
two controls such as the error control, called LEC, and the flow control, called LFC, 
to hide lost data from a source and then locally retransmit lost data over a split 
connection. The selected AHi has the following information: {source ID, sink ID, 
AHi-1, AHi+1}. The AH are enabled at a connection establishment phase and released 
when a message is received from a source to close the connection.  

• A multi-split connections establishment: On generating data, a source obtains a 
source-sink route, using routing protocol. Once an overall route is built, a source 
estimates values of the number of the AHs and hop-count between the AHs. Then, 
to indicate nodes which are selected as the AH, the source sends control message 
to the nodes with determined hop-distance interval. This procedure is repeated, by 
determining all AHs. When a sink receives the control message, to inform the end 
of split-connection establishments, a sink sends the active connection notification 
message to a source. On receiving the active connection notification message, a 
source forwards data. Also, to close this connection, close connection notification 
message is used by a source and a sink. 

• Local Error Control (LEC) mechanism: the LEC is responsible for detecting data 
loss and retransmitting the lost data using a local buffer and a local buffer timer as 
retransmission timer. To perform error recover locally, all AHs keep all received 
data in its local buffer and forward the data towards next AH. To detect data loss, 
the LEC performs store-and-forwarding scheme like error detection scheme in 
traditional TCP. This mechanism not only decreases the burden of retransmission 
at a source and the generation of unnecessary control message from sink for 
requesting retransmission, but it also greatly contributes toward the data loss 
tolerance of the DFP against many data losses. However, this mechanism will give 
rise to a source-sink delay in low error-prone environments. Therefore, the LEC 
mechanism in the DFP has the tradeoff between reliability and delay. Hence, to 
consider this tradeoff, in the DFP, a Local flow control (LFC) is proposed. With 
the LFC, the DFP must operate in multi-data forwarding during periods of low-
error condition to minimize end-to-end delay, while the DFP behaves more like 
store-and-forwarding communications [5] when the network state is high-error 
condition. Therefore,  

• Local flow control (LFC) mechanism: a LFC decides the amount of transmitting 
data to avoid the buffer overflow of next AH or a sink. Thus, the LFC notifies a 
send window size to previous (upstream) AH. A send window size is included in 
each ‘ACK’ message. Whenever receiving ACK message, each AH chooses its 
send window size which is the smallest between the send window size depending 
on the current transmission state in physical layer and the residual size of the local 
buffer in itself. With the LFC, the overflow of the local buffer in (downstream) AH 
is prevented. If receiving ACK message with residual size of 0, which means high-
error condition, the AH (the sender side) defers sending next data until next ACK 
with more than 1 arrives.  
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• The AH recovery mechanism: if the role of the AHi is not played due to it’s 
mobility before the connection closes, the AHi has to select any node in its one-hop 
transmission range. Thus, in the situation, the AHi sends the reset message to the 
AHi-1 (previous AH) and then the AHi-1 resends control message at the determined 
hop-interval to relay its AHi (next AH). The selected AH also sends this message 
to the AHi+1 of the past AHi for informing new AH. 

3   Simulation Results 

In this section, we evaluate the performance of the DFP, compared with end-to-end 
approach in scenarios with mobile multi-hop environments. Denoted as end-to-end 
approach, this approach uses traditional TCP. Thus, end-to-end approach represents 
the performance perceived in wireless sensor networks using existing scheme. The 
DFP is implemented in ns-2.28 [6]. The network configuration consists of 100 mobile 
nodes in 1000 x 1000m areas, where each node randomly moves according to the 
random way point model and a maximum speed varies from 1m/s to 3m/s. The 
transmission range is constrained to 40m. It is also assumed that the data length is 128 
bytes and each query packet has 36 bytes. A basic transmission rate is 1Mbps.  The 
energy model in [7] and S-MAC is applied. Dynamic Source Routing (DSR) [3] is 
employed. In the energy model, the transmission and reception power is assumed as 
about 0.66W, and 0.395W, respectively. The local buffer size is assumed to store 10 
data. Three different scenarios were randomly selected and the simulation was run for 
1000s. The simulation results show average value. A source generates five data per 
second and each event randomly chooses both a sources and a sink. The 
retransmission-count is set to 3. The hop-count between AHi and AHi+1 and the 
number of AHs are determined by equation (3). The target satisfaction is set to 90 %. 
The Retransmission counter is set to 3 times. We assume the reliability over split 
connection is equal under the given total reliability.  

3.1   End-to-End Latency 

The results of average end-to-end delay are shown in Table 1. The delay is defined as 
the average time between the moment a source transmits a packet and the moment a 
sink receives the packet, also averaged over all source-sink pairs.  In the results, as the  
 

Table 1. The average end-to-end delay 

Average end-to-end delay (ms) 

E2E approach DFP 
Channel 
error rate 

1 ms  2 ms 3 ms 1 ms  2 ms 3 ms 
0.1 0.4 4.2 5.9 0.2 0.4 1.3 
0.2 1.2 5.6 11.1 0.4 0.5 2.3 
0.3 4.2 8.5 15.1 0.8 0.9 4.6 
0.4 5.3 9.5 21.8 1.4 2.3 5.6 
0.5 8.1 14.1 23.2 1.9 2.7 6.3 
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Fig. 1. The average delivery rate Fig. 2. The communication cost 

channel error rate and node mobile increase, the DFP has better end-to-end delay than 
that of end-to-end approach. Specially, the delay of the end-to-end approach increases 
exponentially, while the delay of the DFP increases linearly in the high-error rate 
region. The reason that the DFP shows better performance than the existing end-to-
end approach in the large error region is caused by the fast error recovery in the LFC 
and LEC mechanisms. Consequently, the DFP provides the end-to-end delay 
assurance over the long hop situations. 

3.2   Average Delivery Rate  

To evaluate the performance of the DFP in both various link error conditions from 0.1 
to 0.4 and mobile environments, the average deliver rate is evaluated. Fig. 1 shows an 
average delivery rate. As the channel error rate and speed of mobile node increase, the 
DFP achieves the average delivery rate of 0.87%, the end-to-end approach, however, 
achieves the average delivery rate of 0.39%. Thus, it has been proven from these 
results that the DFP can achieve the high average delivery rate under consideration of 
high-error conditions and mobility of sensor node. Moreover, it is verified that the 
LEC provides nearly an optimal average success rate regardless of variable channel 
error rate. 

3.3   Communication Cost  

Finally, we study the communication cost. The communication cost is defined as 
communication (transmitting and receiving) energy the network consumes; the idle 
energy is not counted because it does not indicate data forwarding. Fig 2 shows the 
simulation results under various channel error conditions over 6 hop route in static 
multi-hop networks. The channel error rate varies from 0.1 to 0.5. In the simulation, 
we force on measuring the retransmission cost to recover lost data. We separate 
the retransmission cost from the communication cost through calculating the number 
of retransmission data and ACK message. In simulation results, the DFP shows 
that the retransmission cost increases linearly, while a retransmission cost and a  
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communication cost in the end-to-end approach increases more in the high-error rate 
region. Thus, these results show the DFP is sufficient to support the reliable data 
delivery in LS-WSNs. 

4   Conclusion  

This paper presents data forwarding protocol in LS-WSNs with mobile nodes. In our 
solution, two mechanisms are performed; local error control (LEC) and local flow 
control (LFC). The proposed protocol supports an efficient reliable delivery service 
with the low overhead of retransmission of data loss. LEC is the error control 
mechanism of both data loss detection and retransmission and LFC is the flow control 
with low overhead of a transmission rate. These mechanisms achieve the minimum 
energy expenditure for reliable transport. The simulation results show that the DFP 
has higher performance, compared with the end-to-end approach. We conclude that 
the DFP efficiently provides the reliable data delivery service.  
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Abstract. Recently, there is an urge to allocate chunks of the spectrum
to the wireless service providers on a more dynamic basis rather than the
current practice of static allocation. This shift in paradigm is a result of
many studies that indicate the improper utilization of the spectrum by
the service providers due to the static spectrum assignment. Also, the use
of the spectrum has been found to be space and time invariant. In this
paper, we investigate the dynamic spectrum allocation policy for optimal
use of the spectrum band. We propose a dynamic spectrum assignment
strategy based on auction theory that captures the conflict of interest be-
tween wireless service providers and spectrum owner, both of whom try
to maximize their respective benefits. We compare two different alloca-
tion strategies – synchronous and asynchronous. It is demonstrated that
synchronous strategy outperforms the asynchronous strategy. Through
simulation results, we show how the optimal usage of spectrum band
is achieved along with the maximized revenue for spectrum owner and
higher probability of winning spectrum for the service providers.

1 Introduction

The presence of multiple wireless service providers in every geographic region is
creating a competitive environment where the goal of every service provider is
to maximize their profit and continue to enhance their service portfolio. Every
wireless service provider buys spectrum from the spectrum owner (for example,
Federal Communications Commission in the United States of America) with a
certain price and then sells the spectrum to the subscribers (end users) in the
form of services. In such a scenario, the aim of each service provider is to get a
large share of subscribers and a big spectrum chunk from the spectrum band to
fulfill the demand of these subscribers. As capacity of spectrum band is finite,
the providers compete among themselves to acquire chunks of spectrum to offer
services to a bigger customer base.

The competitive behavior for spectrum was initiated by spectrum auctions in
most countries. Though the auctions were very successful in some countries (e.g.,
United Kingdom, Germany), they were open to criticism in others (e.g., Austria,
Switzerland, Netherlands) [4]. Through the Federal Communications Commis-
sion (FCC), the spectrum for cellular services was auctioned in the United States.
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These spectrum allocations are long–term and any changes are made under the
strict guidance of FCC.

This kind of static allocation of spectrum has several disadvantages because
of being time and space invariant. It has been demonstrated through experimen-
tal studies that spectrum utilization is typically time and space dependent [7].
Thus static spectrum allocation may not be the optimal solution toward efficient
spectrum sharing and usage. In static spectrum allocation, large parts of the ra-
dio bands are allocated to the military, government and public safety systems.
However, the utilization of these bands are significantly low. One may argue that
spectrum allocated to cellular and PCS network operators is highly utilized. But
in reality, spectrum utilization even in these networks vary over time and space
and undergo under-utilization. Often times, the usage of spectrum in certain
networks is lower than anticipated, while there might be a crisis in others if the
demands of the users using that network exceed the network capacity. Static
allocation of spectrum fails to address this issue of spectrum sharing even if the
service providers (with statically allocated spectrum) are willing to pay for extra
amount of spectrum for a short period of time.

1.1 Dynamic Spectrum Access

With the dis-proportionate and time-varying demand and hence usage of the spec-
trum, it is intuitive that the notion of static spectrum assignment to providers is
questionable. Though it might be argued that the implementation and adminis-
tration is very easy, the fact remains that the current system is ineffective and
deprives service providers and their end users. With the transition from 2G to
3G, the demand for bandwidth has been increasing. As a result, to better serve
users, each of the service providers needs more spectrum in addition to the already
allocated spectrum through static allocation.

As an alternative, the notion of Dynamic Spectrum Access (DSA) has been
proposed and is being investigated by network and radio engineers, policy mak-
ers, and economists [2]. In DSA, spectrum is shared dynamically depending on
demand of the service providers. In this new approach, parts of the spectrum
band, which are no longer used or under–used, are made open to all the ser-
vice providers as shown in figure 1. These parts of the band are known as the
Coordinated Access Band (CAB) [2]. Whenever the total requested spectrum
amount exceeds the spectrum available in CAB, then auction mechanism can be
adopted. Spectrum is assigned dynamically from CAB for a certain lease period
and again taken back after the lease period expires. Auction model in this case
presents a simple way to depict the conflict among the service providers; and if
designed properly, an auction will maximize the revenue also for the spectrum
owner; thus providing incentive for spectrum owner to design and follow better
auctions models. This method of spectrum sharing is efficient and will help ser-
vice providers, users as well as FCC not to go through any artificial spectrum
scarcity. At the same time, as service providers are ready to compete among
themselves in a demand–supply world by paying more for the spectrum they
need, this will provide FCC a better approach for maximizing its revenue.
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Fig. 1. Virtual merging and coordinated access band

1.2 Contributions of This Work

In this research, we deal with the process of dynamic spectrum allocation where
service providers request for additional spectrum lease from the CAB in addition
to the already allocated static spectrum. Upon expiry of the lease time, the ad-
ditional amount of spectrum is returned to the CAB which is made available for
reuse. Depending on time interval at which the allocation and de-allocation of
spectrum is done form this common pool to the service providers, the spectrum
allocation policy can be either synchronous or asynchronous. In this paper, we
define both strategies and compare them. More specifically, the contributions of
this paper are as follows.

•We formulate an auction theoretic model to address the DSA policy among the
wireless service providers and depict the conflict among these service providers
and spectrum owner.
•We devise a “Dynamic spectrum allocator knapsack auction” mechanism with
the help of sealed bid, second price auction strategies that is used to dynamically
allocate and de-allocate spectrum to competing wireless service providers.
•We investigate both the synchronous and asynchronous allocation policies and
compare them in terms of average spectrum allocated, average revenue gener-
ated, and probability of winning spectrum after bidding is completed.
• With the help of extensive simulation study, we show that the proposed
synchronous allocation strategy encourages the service providers and spectrum
owner to participate in the auction. Synchronous allocation and de-allocation of
spectrum at a shorter intervals generate average revenue more than the asyn-
chronous allocation and de-allocation strategy. Also the probability of winning
spectrum is greater for the synchronous strategy than the asynchronous strategy.

The rest of the paper is organized as follows. In section 2, we discuss the basics
of auctions and their types. Our proposed auction methodology is presented in
section 3. Synchronous and asynchronous allocation models are also discussed
here. In section 4, we compare performances of both these models in regard to
the dynamic spectrum access. Simulation model and results are presented in
section 5. Conclusions are drawn in the last section.
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2 Basics of Auctions

An auction is the process of buying and selling goods by offering them up for
bid (i.e., an offered price), taking bids, and then selling the item to the highest
bidder. In economic theory, an auction is a method for determining the value of
a commodity that has an undetermined or variable price.

Auction types: There are several kinds of existing auction strategies. De-
pending on whether the bidding strategies of each of the bidders are disclosed
in front of the other bidders, open and closed bid auctions are designed. In
open auctions [1], [4], bids are open to everybody so that a player’s strategy
is known to other players and players usually take their turns one by one until
winner(s) evolve. This auction game can be best known as the complete infor-
mation game. Bids generated by players in open bid auction can be either in
increasing (e.g., English and Yankee auction) [3], [4] or decreasing order (Dutch
auction).

An important perspective of increasing auction is that it is more in the favor
of bidders than the auctioneers. Moreover, increasing open bid auction helps
bidders in early round to recognize each other and thus act collusively. Increasing
auction also detract low potential bidders (bidders with low amount of spectrum
request or low value bid) because they know a bidder with higher bid will always
exceed their bids.

Closed bid auctions are opposite to open bid auctions and bids/strategies are
not known to everybody. Only the organizer (spectrum owner in our case) of the
auction will know about the bids submitted by the bidders and will act accord-
ingly. Closed bid auctions thus do not promote collusion. Closed bid auctions
are best generalized as the incomplete information game.

Spectrum auctions: Spectrum auction is more close to the multi–unit auc-
tions. Multiple bidders present their bids for a part of the spectrum band, where
sum of all these requests exceed the total spectrum band capacity thus causing
the auction to take place. Moreover, unlike classic single unit auction, multiple
winners evolve in this auction model constituting a winner set. The determina-
tion of winner set often depends on the auction strategy taken by the spectrum
owner in this case.

Spectrum owner owns the coordinated spectrum band (CAB) and is the seller
in the auction model. Service providers on the other hand are the buyers of this
additionally created spectrum band. We assume that there are service providers
who are already overloaded i.e., they have little or no spectrum left from their
static allocation. To attract more users and to make more profit, these ser-
vice providers request more spectrum from the CAB and advertise a price that
they are willing to pay for that amount of spectrum for a certain period. Auc-
tion is then held by the spectrum owner depending on these advertised price
and the requested amount of spectrum from the service providers in a dynamic
basis.
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3 Proposed Auction Model for DSA

Good auction design is important for any type of successful auction and often
varies depending on the item on which the auction is held. The auctions held in
Ebay [6] are typically used to sell an art object or a valuable item. Bidding starts
at a certain price defined by auctioneer and then the competing bidders increase
their bids. If a bid provided by a bidder is not exceeded by any other bidder
then the auction on that object stops and final bidder becomes the winner.

There are two important issues behind any auction design. They are (i) at-
tracting bidders (enticing bidders by increasing their probability of winning),
and (ii) maximizing auctioneer’s revenue. It is not at all intended that only
big companies with high spectrum demand should have a chance at the new
spectrum. The goal is to increase competition and bring fresh new ideas and
services. As a result it is necessary to make the small companies, who also have
a demand of spectrum, interested to take part in the auction. This way, revenue
and spectrum usage maximization from the CAB can be made.

3.1 Auction Formulation

The situation described above maps directly to the 0-1 knapsack problem, where
the aim is to fill the sack as much as possible maximizing the valuations of the
items sacked. Here, we compare the spectrum bands present in CAB as the total
capacity of the sack and the bids presented by service providers as the valuations
for the spectrum amount they request. We propose this auction procedure as
“Dynamic Spectrum Allocator Knapsack Auction”.

We formulate the above mentioned knapsack auction as follows. Let us con-
sider that there are n service providers (bidders) looking for the additional
amount of spectrum from the CAB. All the service providers submit their de-
mand in a sealed bid way. We follow sealed bid auction strategy, because sealed
bid auction has shown to perform well in all–at–a–time auction bidding and has
a tendency to prevent collusion. Note that, each service provider has knowledge
about its own bidding quantity and bidding price but do not have any idea
about any other service providers’ bidding quantity and price. We assume that
the spectrum band available in CAB is W . Now, if the spectrum requests sub-
mitted by some or all of the service providers exceed the spectrum available in
CAB then the auction is held to solve the conflict among these providers.

Let, i = 1, 2, · · · , n denote the bidders (service providers). We denote the
strategy taken by service provider i as qi, where qi captures the demand tuple
of this ith service provider.

qi = {wi, xi} (1)

where, wi and xi denote the amount of spectrum and bidding price for that
spectrum respectively requested by ith service provider. Auction is best suited
when the total demand is more than the supply, i.e.,

n∑
i=1

wi > W (2)
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Our goal is to solve the dynamic spectrum allocation problem in such a way
so that earned revenue is maximized from the spectrum owner’s point of view,
by choosing a bundle of bidders, subject to condition such that total amount of
spectrum allocated does not exceed W . Then, formally the allocation policy of
the spectrum owner would be,

maximizei

∑
i

xi, such that
∑

i

wi ≤W (3)

3.2 Synchronous and Asynchronous Auctions

Spectrum allocation with the help of proposed sealed bid knapsack auction can
be done in two ways. In asynchronous allocation allocation and de-allocation of
spectrum from and to the CAB are not done at fixed intervals. On the other
hand, in synchronous allocation, allocation and de-allocation of spectrum from
and to the CAB are done at fixed intervals.
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Fig. 2. a)Asynchronous allocation in different intervals of time; b)Synchronous alloca-
tion of spectrum in fixed intervals

Asynchronous allocation: As the name suggests, this allocation procedure of
spectrum is asynchronous among the service providers as shown in figure 2(a).
Whenever a service provider comes up with a request for spectrum from the
CAB, the spectrum owner checks to see if that request can be serviced from
the available pool of CAB. If the requested amount of spectrum is available,
spectrum owner assigns this chunk to the service provider for the requested time
(e.g., at time t1, bidder 1’s allocation time is 2 units while bidder 3’s alloca-
tion time is 1 unit as shown in figure 2(a)) and declines if the spectrum re-
quested is not available at that instant in the available pool. Similarly, if more
than one service provider come up with requests for spectrum from the CAB,
the spectrum owner checks to see if all the requests can be serviced from the
available pool of CAB. If they can be serviced, the spectrum is assigned but
if all the requests can not be granted, then the auction model comes into pic-
ture. We denote the strategy taken by service provider i as qa

i , where qa
i cap-

tures the demand tuple of this ith service provider in asynchronous allocation
mode.



564 S. Sengupta and M. Chatterjee

qa
i = {wi, xi, Ti} (4)

where, wi and xi denote the amount of spectrum and bidding price for that
spectrum respectively requested by ith service provider and Ti is the duration
for which the spectrum amount is requested. The numbers inside the paren-
thesis in the figure 2(a) denote the duration Ti of the spectrum lease allocated
to the corresponding bidders from the CAB. As the decision about whether to
allocate or not to allocate spectrum to a service provider is taken instantly
in this allocation procedure by looking at the available pool only this allo-
cation procedure is not very effective and may not maximize the earned rev-
enue from spectrum broker point of view. It may easily happen that a service
provider B is willing to pay a higher price than a service provider A who is
willing to pay a lower price for the same demand and the available pool is
such that only one request could be processed. But unfortunately B’s request
came up after A’s request. In this allocation procedure, as the spectrum owner
does not have any idea about the future, A’s request will be processed and
B’s will be declined (assuming that the available pool does not change at the
time of B’s arrival. Thus revenue could not be maximized in this allocation
procedure.

Synchronous allocation: The second allocation procedure that could be taken
to encounter the situation presented in asynchronous allocation is to allocate
and de-allocate spectrum chunks at fixed intervals (figure 2(b)). All the service
providers with a demand from the CAB present their requests to the spectrum
broker with their price which they are willing to pay. Spectrum broker takes all
the requests, process them using some strategy and then allocate the spectrum
bands to the providers at the same time for the same lease period. When the lease
period expires, all the allocated spectrum chunks are returned to the common
pool of spectrum for future use. For example, lease periods for all the bidders
are indicated as 1 in the figure 2(b).

4 Performance Comparison

We analyze and compare the performances of synchronous and asynchronous
allocation of spectrum with the help of knapsack auction.

Lemma. Revenue generated in asynchronous allocation through knapsack auc-
tion procedure can not be better than revenue generated in synchronous allocation
for a given set of biddings.

Proof. We assume that there are n bidders competing for W amount of spec-
trum. In asynchronous allocation mode, the bid strategies taken by ith service
provider is given by tuple qa

i , while in synchronous mode, the tuples are repre-
sented by, qi.

We prove the above proposition with the help of counter-example. We arbitrarily
decide two time intervals, tj and tj+1 for the asynchronous mode allocation. We
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assume that first deallocation(s) of spectrum (service providers returning the
allocated spectrum to the CAB) and new allocation(s) are happening at time
tj+1 after time tj . Moreover, we assume that the asynchronous allocation at time
tj is maximal and provide us with maximum generated revenue from the CAB.
Let, m be the number of bidders who were granted spectrum at time tj . Then,
the maximum revenue generated at time tj can be given by,

m∑
i

xi (5)

Now, we assume l of m bidders de-allocate at time tj+1 and rest (m − l)
bidders continue to use their spectrum. Then the revenue generated by these
(m− l) bidders is given by,

m−l∑
i

xi (6)

Moreover, the (n−m) bidders, who were not granted spectrum at time tj, will
also compete for the rest of the spectrum,

W −
m−l∑

i

wi (7)

Now, we need to find, whether the revenue generated in this asynchronous mode
at time tj+1 can exceed the synchronous mode revenue at the same time by same
set of bidders. For simplicity, we assume that the bidders do not change their
bidding requests in time intervals tj and tj+1.

By the property of 0-1 knapsack auction, we know that the revenue generated
by a subset (we denote this subset by Q) of n − l set of bidders will be a local
maxima, if only the revenue obtained from all the (n − l) set of bidders are
considered simultaneously, i.e., synchronous allocation of spectrum to (n − l)
interested bidders (note that l is the set of bidders de-allocating their spectrum
at time tj+1 and are not taking part in auction at time tj+1).

But on the other hand, in the asynchronous mode, (m− l) bidders are already
present and thus knapsack auction happens among (n−m) bidders for the spec-
trum W−∑m−l

i wi. Then, it can be easily said from the property of 0-1 knapsack
auction that, this asynchronous mode will generate the same local maxima as
the synchronous mode, if and only if all (m− l) bidders (who are already present
from the previous time interval) fall under the optimal subset Q. If any of the
bidders out of (m − l) bidders do not fall under the optimal subset Q, then it
is certain that asynchronous mode allocation will not be able to maximize the
revenue for that given set of biddings. Let us provide a simple example to clarify
the proof.

An illustrative example: Let us consider that 5 bidders are competing for the
CAB spectrum. We assume that the capacity of the CAB is 14 and the bid tuples
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generated by 5 bidders at time interval tj are (6, 10, 2), (5, 9, 3), (7, 14, 1), (2, 8, 2)
and (3, 9, 3) taken arbitrarily. The first number of the tuple denotes spectrum
amount requested, while the second and third number denote the price willing to
pay for that spectrum request and time duration for which the spectrum request
is done respectively. As we can see from the above tuples that bidder 3’s request
has duration 1, that means, bidder 3 will de-allocate first at time tj+1.

We execute both asynchronous and synchronous knapsack auction. In asyn-
chronous mode, the revenue generated at time tj is 31 with the optimal subset
of bidders given by bidder 2, 3, 4. Now at time tj+1, bidder 3 exits, while bidders
2 and 4 continue. Then rest of the spectrum left in the CAB is 7 for which the
bidders 1 and 5 compete. Then the revenue generated at time tj+1 is given by
27 and the bidders granted are 1, 2, 4.

On the other hand, in synchronous allocation, each of the providers are al-
located and de-allocated at fixed time intervals. Then with the same set of bid
requests of spectrum amount and price, it is seen that maximum possible rev-
enue generated at time tj+1 out of the bidders 1, 2, 4 and 5 (as bidder 3 is not
interested to take part in auction at time tj+1) is 28, while the optimal subset
of bidders is given by Q = {1, 2, 5}. This shows that asynchronous auction may
not provide the maxima depending on the bidders de-allocating and requesting.

5 Simulation Results and Interpretation

We simulate our dynamic spectrum allocator knapsack auction model and show
how the synchronous allocation outperforms the asynchronous allocation. The
factors that we consider for comparing the performance of the proposed syn-
chronous knapsack sealed-bid auction with the asynchronous auction are the
revenue generated by spectrum owner, total spectrum usage, and probability of
winning for bidders. We consider the following for the simulation model:

• Bid tuple: The bid tuple qi generated by bidder i in synchronous auction
consists of amount of spectrum requested, wi and the price the bidder is willing
to pay, xi. In asynchronous auction, the duration is also advertised in addition to
the above two. Each bidder has a reservation or evaluation price for the amount
of spectrum requested and the bid is governed by this reservation price. We
assume that the reservation price of each bidder is considered sealed bid and is
independent of other bidders’ reservation prices.
• Bidders’ strategies: We follow second price sealed-bid mechanism. We could

have chosen the first price bidding policy; the only reason for choosing second
price policy is that it has more properties than first price in terms of uncer-
tainty [5]. After each round of auction, the only information bidders know is
whether their request is granted or not. We assume that all the bidders are
present for all the auction rounds; bidders take feedback from previous rounds
and generate the bid tuple for next round.
• Auctioneer’s strategies: Spectrum owner tries to maximize the revenue gen-

erated from the bidders. At the beginning of each auction round, spectrum owner
collects the bid tuples and executes the dynamic programming knapsack solver
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and determines the winner(s). As we implemented synchronous allocation, the
assigned band from CAB is taken back at the end of each round and reused for
next round.

We compare the proposed synchronous sealed bid knapsack auction with the
asynchronous sealed bid knapsack auction under the second price bidding policy,
i.e., bidder(s) with the winning bid(s) do not pay their winning bid but pay the
second winning bid. Simulation parameters are shown in table 1.

Table 1. Simulation Parameters

Parameter Parameter
type Value

Total amount of spectrum 125

Minimum amount of spectrum that can be requested 11

Maximum amount of spectrum that can be requested 50

Minimum bid for per unit of spectrum 25

Minimum time requested for spectrum leasing 1
in asynchronous allocation

Maximum time requested for spectrum leasing 5
in asynchronous allocation

Fixed time for spectrum leasing 1
in synchronous allocation

Figures 3(a) and 3(b) compare revenue and spectrum usage for both the strate-
gies (synchronous and asynchronous) with increase in auction rounds. The num-
ber of bidders considered in this simulation is 15. Note that, both revenue and
usage are low at the beginning and subsequently increases with rounds. When auc-
tion starts, bidders always act skeptical, thus initial bids are always much lower
than the true potential bids of them. With the increase in auction rounds, bidders
get an idea of the bids of other bidders and thus try to increase or decrease their
bids accordingly.

0 10 20 30 40 50 60 70 80 90 100
4000

4500

5000

5500

6000

6500

 A
ve

ra
ge

 R
ev

en
ue

 

 Auction rounds 

Synchronous Knapsack Auction
Asynchronous Knapsack Auction

(a)

0 10 20 30 40 50 60 70 80 90 100
100

105

110

115

120

125

 A
ve

ra
ge

 U
sa

ge
 

 Auction rounds 

Synchronous Knapsack Auction
Asynchronous Knapsack Auction

(b)

Fig. 3. a)Revenue generated and b)Spectrum usage with auction rounds
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Figures 4(a) and 4(b) show the average revenue and spectrum usage with vary-
ing number of bidders for both the auction strategies. We observe that the pro-
posed synchronous knapsack auction generates approximately average 10% more
revenue compared to the asynchronous knapsack auction and also reaches steady
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state faster. The average spectrum usage is also more with the synchronous
allocation policy. Figures 5(a) and 5(b) show the average revenue and spectrum
usage with increase in capacity in CAB for both the auction strategies. It is clear
that with increase in CAB, synchronous strategy provides more revenue and usage
of CAB than the asynchronous strategy.

In figure 6, we look at the auction model from the bidders’ perspective. Higher
revenue requires high participation in number of bidders. We compare the two
strategies in terms of the probabilities to win a bid. We observe that the pro-
posed synchronous auction strategy has a significantly higher probability of win-
ning compared to asynchronous auction strategy. This implies that providers will
be encouraged to take part in the synchronous knapsack auction model thus in-
creasing the competition among the providers and increasing the chance to gen-
erate more revenue.

6 Conclusions

In this paper, we proposed an auction mechanism for dynamic spectrum access
that is based on the well known knapsack problem. The auction captures the con-
flict of interest between wireless service providers and spectrum owner. It is such
designed that it maximizes the spectrum usage and the revenue of the spectrum
owner. Both synchronous and asynchronous auction strategies are studied and
compared. Through simulations it was found that it is in the best interest of both
service providers and spectrum owner to adopt the synchronous auction. We also
showed how the optimal usage of spectrum band is achieved and the revenue is
maximized for the spectrum owner. The proposed mechanism yields higher prob-
ability of winning for the service providers and thus encourages the providers to
participate in the bidding process.
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Abstract. This paper proposes a new technique for Mobile IP (MIP) registration 
by WLAN host (WH) through GPRS network. The home agent (HA) of WH 
resides in external IP network. The gateway GPRS support node (GGSN) 
provides foreign agent (FA) functionality for WH in GPRS. After successful 
attach with GPRS network, WH needs two mandatory passes for MIP registration 
with HA. First it establishes PDP (packet data protocol) context in GPRS network 
and then it sends MIP registration request (MRR) to FA at GGSN. This causes a 
large delay for handoff from WLAN to GPRS. We propose a one-pass technique 
of MIP registration through GPRS network to reduce the handoff delay. We 
transport MIP-registration request of WH in the information field of activate-
PDP-context request message to GGSN. Thus MIP registration message reaches 
GGSN before completion of PDP context establishment. This technique reduces 
the control signaling for handoff from WLAN to GPRS. We observed from 
simulated results that proposed one-pass technique reduces handoff delay by 18% 
compared to handoff delay in two-pass method. 

Keywords: 3G, GPRS, loose coupling, MIP, tight coupling, UMTS, WLAN. 

1   Introduction 

The demand for high speed data transfer at user level for multimedia services is 
growing rapidly [1]. The bandwidth constraint has put a challenge of high data rate at 
user level for next generation wireless networks. The mobile networks (2.5G-
GPRS/3G-UMTS) provide data transfer rate (144Kbps/2Mbps) much below required 
for multimedia services [2]. Other hand, WLAN can provide superior bit rate at user 
level (802.11b/802.11a, 11Mbps/54Mbps). Mobile networks provide best coverage 
and WLAN provides best bit rate [3]. Therefore, in WLAN/GPRS integrated network, 
a mobile station (MS) can avail the best services of both the networks. WLAN at hot 
spot can provide best bit rate and GPRS can provide always-connectivity out side the 
hop spots. 

Design of dual mode terminal equipment [[4], [5]] and mobility management 
technique for vertical roaming are two key issues of WLAN/GPRS interworking 
network [6]. A user may be subscribed either to WLAN network or to GPRS network 
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or to both networks. WH is subscribed to only WLAN of external IP network and 
GPRS mobile station (GMS) is subscribed to only GPRS network. An MIP based 
mobility management is performed when WH moves within WLAN networks [7]. A 
GPRS mobility management technique is performed when GMS moves within GPRS 
network. An FA is required to be deployed at GGSN and HA at Gi interface for MIP 
based mobility management in roaming scenario [8]. GPRS network must provide FA 
functionality to WH when it moves from WLAN to GPRS network. In another 
roaming scenario GMS moves into WLAN and GPRS must provide HA functionality 
for MIP based signaling. In such case HA is deployed at same GGSN and an MIP 
based handoff procedure is performed between GMS and GGSN. Therefore, GMS’s 
subscription and authority profile for WLAN service are stored at this entity. 

WH must perform MIP based mobility management signaling through GPRS 
network with it’s HA at external IP network [8]. The MIP based mobility signals are 
dealt like data packets by GPRS core networks. To transport these packets to GGSN, 
GPRS provides bearer service. To provide this service the PDP context establishment 
in GPRS network is mandatory [9]. When WH comes out from WLAN area and 
moves into GPRS coverage, it first performs the attachment signaling with GPRS 
network. Then, in first pass it creates PDP context and in second pass it sends MIP 
registration packet to FA. Therefore, MIP registration packet cannot be transported 
until the PDP context is created in GPRS network.  This two-pass method of MIP 
registration in GPRS network increases handoff delay from WLAN to GPRS [8]. We 
propose a technique of combined PDP and MIP registration method. This technique 
helps to start MIP based signaling between FA at GGSN and HA at IP network before 
the complete establishment of PDP context. Both PDP context creation and MIP 
registration are feasible in one pass of signaling by inserting the MIP registration 
information in PDP request message. A faster handoff can be achieved as this 
technique reduces the control signals for handoff from WLAN to GPRS. 

2   Review of Related Works 

An operator’s WLAN (OWLAN) system, based on loose coupling architecture of 
GPRS/WLAN integrated network, has been proposed in [10]. There the main design 
challenge was to transport the standard GSM subscriber authentication signaling from 
the terminal to the cellular site using IP framework. So OWLAN suggested 
implementing GSM SIM card reader, SIM authentication software module and 
roaming control module in MS. Network access authentication and accounting 
protocol (NAAP) was defined as alternative to EAP protocol at terminal. NAAP runs 
over UDP and it is capable of transporting GSM authentication messages through IP 
in WLAN access networks.  

Although operator-oriented solution is useful for SIM based authentication and 
single subscription, but it covers only public WLANs at hot spots. To access private 
WLANs at office and residences, an MS needs frequent changes in its WLAN 
configurations. An internet-based roaming architecture has been implemented in [11], 
which cover private WLANs. Each mobile host gets a secure connection to corporate 
networks through SMG (secured mobility gateway), works as IPSec gateway and 
supports mobile IP for mobility management. 
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A tight coupling architecture of UMTS and WLAN integrated has been proposed 
in [12]. WLAN IP network is connected to SGSN through border router (BR). Intra-
SGSN handoff from UMTS to WLAN is performed, and PDP context between SGSN 
and GGSN need not be upgraded. This technique provides a faster handoff. This 
system requires MSs to maintain complex states for mobility management, which 
requires dual contact with WLAN as well UMTS. Hot spot WLAN service cannot 
survive without UMTS availability. 

An implementation technique of 3G based AAA server for UMTS/WLAN 
integrated network has been proposed in [13]. The 3G AAA server in the home 
PLMN terminates all AAA signaling with the WLAN and interfaces with other 3G 
components, such as the home subscriber server (HSS), home location register 
(HLR), charging gateway/charging collection function (CGw/CCF), and online 
charging system (OCS). AAA signaling uses EAP and DIAMETER protocol. In one 
architecture, WLAN routes data traffic directly to internet/intranet. In other 
architecture, WLAN traffic is routed to wireless access gateway (WAG) and WAG 
routes packet to Internet through packet data gateway (PDG). The PDG based 
architecture enables MS to access 3G packet-switched based services such as 
wireless application protocol, multimedia message service and IP multimedia 
services. 

A critical review of the above works reveals that article abounds in efficient 
handoff from GPRS to WLAN area. As WLAN coverage is narrow, WH may 
frequently need GPRS service to sustain its IP connectivity. Therefore faster handoff 
mechanism from WLAN to GPRS is equally important. Hence in GPRS/WLAN 
integrated network, MIP based mobility management for WLAN subscriber through 
GPRS network still needs more focus. Our work attempts to address this space for 
faster handoff from WLAN to GPRS by introducing a one-pass method of MIP 
registration through GPRS network. 

3   GPRS/WLAN Interworking Architecture 

Figure 1 shows the interworking architecture for WLAN/GPRS integrated network. 
WLAN is directly connected to external IP network which may be Internet. GPRS 
network is connected to this IP network at GGSN through Gi interface. FA entity is 
deployed at GGSN and HA is implemented at Gi interface in stand alone mode. 
GGSN acts as foreign agent when WH goes outside the WLAN and enters in GPRS 
coverage. In this architecture, GPRS and external IP networks are owned by two 
different operators. GPRS operator has an agreement to provide the WLAN services 
of IP network to its own subscribers. Similarly, Internet promises the GPRS services 
to its own subscribers. The HA at Gi interface maintains the subscription and access 
profile of GMS for WLAN service. GPRS operator can maintain the agreement 
profile(s) for WH in HLR. Therefore, it can impose access control during GPRS 
attach procedure. In roaming scenario when GPRS terminal moves to WLAN area, it 
performs an MIP based mobility management with FA in access router (AR) and 
performs the registration with HA at Gi interface. The subscription and access profile 
of WH for GPRS service is maintained at it’s HA in Internet. 
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4   The Handoff Management 

The subscription and service profiles of GMS are maintained by GPRS network at 
two entities. Its GPRS profiles are stored at HLR and its WLAN profiles are stored at 
HA. The subscription and service profiles of WH are maintained by it’s HA in 
Internet. In our proposed WLAN/GPRS interworking architecture, two type handoff 
procedures are performed. 
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Fig. 1. Architecture of GPRS/WLAN interworking network 

4.1   Handoff from GPRS to WLAN 

We take the scenario, a GMS is initially in GPRS network and maintains a session 
with correspondent node (CN) N1 in Internet through GPRS network (Fig.1). The 
terminal’s GPRS system is active and WLAN radio system is in passive scan mode. 
When it moves to WLAN, deployed at hot spot, its WLAN card is activated on receipt 
of beacon signals from WLAN access point (AP) [14]. The GPRS system is triggered 
off and terminal performs association with AP. Then it performs MIP based 
registration with HA at Gi interface through access router (AR/FA). After completion 
of MIP based handoff, the GMS can send packets to N1 through WLAN with much 
higher speed and packets are directly routed in Internet. Therefore, the HA maintains 
the anchor point of GMS while it is in WLAN area. 

4.2   Handoff from WLAN to GPRS 

Internet is the home network of WH [Fig 1]. The subscription and service profiles of 
WH are maintained at the HA in Internet. WH is the dual mode terminal and it has the 
capability to access GPRS network. GPRS operator must have agreement with 
Internet to provide IP connectivity through cellular network. The GPRS network may 
maintain the service profiles and QoS that such terminal can avail through GPRS 
network. The WLAN terminal may have subscriptions to access GPRS network from 
selected cells or routine area. When WH comes out of the hot spot area, they can be in 
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cellular coverage. Therefore, their IP based sessions can continue through cellular 
network. These terminals will perform MIP based mobility and handoff management 
through GPRS network. 

4.2.1   One-Pass Method 
Following sequential operations are performed by WH and GPRS network for 
handoff management [Fig 2]. 

• WH performs GPRS attachment signaling with GPRS network and terminal 
equipment attains the GPRS-attached state. 

WH SGSN GGSN/FA HA of WH

GPRS Attach
Procedure

GSM entity
Retrieves MRR

Packet from IP layer

GGSN buffers the MRR packet
and Creates PDP context

GGSN fills the Care-of-address
Field of MRR With PDP address

and gives the packet at Gi interface

Activate-PDP-context
Request

Create-PDP-context
Request

Activate-PDP-context
Response

Create-PDP-context
Response

MIP Registration Request

MIP Registration
Response

MIP Registration
Response

MIP Registration
Response  

Fig. 2. Control signaling for MIP based handoff management from WLAAN to GPRS 

• GSM sublayer of terminal retrieves the MRR packet from network layer. 
• WH sends modified activate-PDP-context request message to SGSN and this 

message contains MRR packet. 
• SGSN sends a modified create-PDP-context request to GGSN and it contains MRR 

packet. 
• GGSN creates PDP context and it sends create-PDP-context response message to 

SGSN. 
• GGSN fills the care-of-address field of MRR message with the PDP address and 

gives the MRR packet to FA. 
• Now FA deals the MRR packet for MIP signaling with HA and simultaneously, 

create-PDP-context response message travels through GPRS network. 
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• FA receives the MIP registration response packet from HA and gives this packet to 
GGSN addressed to WH. 

• Now PDP is already established. Therefore the MIP response packet is tunneled to 
SGSN using GTP and SGSN sends this packet to WH. 

4.2.2   Service Access Point (SAP) and Protocol Stack for Retrieval of MRR 
Packet 

We define new service primitives for MRR retrieval by GSM entity from network 
layer. A new network layer entity, WLAN/GPRS mobility agent (WGMA) is 
implemented in mobile terminal. The WGMA is developed in control management 
entity of network layer. This entity can use existing network layer SAP identifier 
(NSAPI) with SNDCP (subnet dependent convergence protocol) sublayer [15]. The 
SAP between sublayer SNDCP and sublayer GSM is defined as SNSM [Fig 3(a)]. 
This is an existing SAP in GPRS specifications. GSM entity can use this SAP for new 
services provided by SNDCP management entity. 

SNDCP
Management

Entity
SNDCP

WGMA
Control entity

GSM

LLC Layer

Packet Data Protocol
(IPv4/IPv6) /

Relay

NSAPINSAPI

SAPI

SNSM

SAPI

SNDCP Layer

WGMA

SNDCP
Management
Entity GSM

WLAN MS

SM-MIP
REGISTRATION.

request
SN-MIP

REGISTRATION.
indication

WGMA-MIP
REGISTRATION.

response

SN-MIP
REGISTRATION.

confirm
3(a) 3(b)  

Fig. 3. (a) The interlayer SAP and protocol stack for retrieval of MRR packet by GSM entity 
from network layer and (b) the interlayer signaling for retrieval of MRR packet from network 
layer by GSM sublayer 

− SM-MIP-REGISTRATION.request: This primitive is used by GSM sublayer 
before sending PDP activate request to network side [Fig. 3(b)]. This uses SNSM 
service access point to give information to SNDCP layer for retrieval of MIP 
registration packet from WGMA. The information contains NSAPI between packet 
data protocol entity and SNDCP. GSM sublayer gives this information to WGMA 
entity. Packet data protocol entity remembers this NSAPI through which it will 
receive the MIP registration accept packet from SNDCP sublayer in future. 

− SN-MIP-REGISTRATION.indication: This is used by SNDCP layer to deliver the 
information given by SM entity for retrieval of MIP registration packet. 
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− MA-MIP-REGISTRATION.response: This service primitive is to be used by 
WGMA. This is already configured with the home address of terminal equipment, 
address of HA and FA. For whole GPRS network the only one FA functionality is 
implemented at GGSN. WGMA gives this information to SNDCP sublayer. 
WGMA remembers the NSAPI received from lower layer through which it expects 
the MIP registration accept after completion of PDP context establishment. 

− SN-MIP-REGISTRATION.confirm: This is used by SNDCP sublayer. It gives the 
MIP registration packet from WGMA to GSM entity. 

4.3   Format of Activate-MIP-PDP-Context Request (AMCR) Message 

We define a modified format of activate-PDP-context request message to compose 
AMCR message. The AMCR message carries the MRR packet. The unused bit 
pattern such as 01010110 can be used in message type field (Table 1). First eight 
information elements in the packet have been kept same as in activate PDP context 
request message. First seven information elements are mandatory for activate-PDP-
context request [16] and eighth element is optional. The last element was protocol 
configuration options (PCO) in activate-PDP-context request packet and which was 
optional information element. The purpose of PCO information element is to transfer 
external network protocol options associated with a PDP context activation. For this 
optional information element, an MIP registration request packet can be used 
alternatively in AMCR message. This information element is distinguished by a 
separate information element identifier (IEI).  

Table 1. Format of AMCR message 

 

Maximum length of PCO information elements is 253 bytes. However in AMCR 
message this field can be specified for larger length if necessary. The unused 
hexadecimal value such as 26 can be used as IEI for MIP registration request 
followed by length of MIP registration request packet. WLAN MS sends AMCR 
message to network side. SGSN sends the MIP registration packet GGSN through 
create-PDP-context-request message. 

IEI Information Element Type Presence Format Length 
  Protocol discriminator Protocol discriminator M V 1/2 
  Transaction identifier Transaction identifier M V 1/2 
  AMCR message identity Message type M V 1 
  Requested NSAPI NSAPI M V 1 
  Requested LLC SAPI LLC SAPI M V 1 
  Requested QoS Quality of service M LV 4 
  Requested PDP address PDP address M LV 3 - 19 

28 Access point name Access point name O TLV 3 - 102 
26 MRR packet MRR packet type M LV 3 - 253 
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4.4   Format of Create-MIP-PDP-Context Request (CMCR) Message 

The CMCR is a new message type for GPRS tunneling protocol. Its format is similar 
to create-PDP-context request (CPCR) message except two information elements in 
the message. It’s message type field bears new message identity for GTP. PCO is 
replaced by MIP registration packet. Therefore, all existing primitives can be used to 
process the information elements for CMCR message except PCO information. 

4.5   Complete Handoff Procedure with Signaling in Layer Interfaces at Each 
Node 

Four sublayers of WH terminal become active during handoff from WLAN to GPRS. 
GSM sublayer retrieves MRR packet from WGMA through SNDCP sublayer. Then, 
it sends a AMCR message to SGSN through LLC link. GSM sublayer of SGSN 
receives this message from LLC layer [Fig 4].  

The interworking function at SGSN sends corresponding CMCR message through 
GTP to GGSN. The SNDCP sublayer in SGSN is used for only packet data transfer. 
After receiving CMCR message GGSN retrieves MRR message from PCO 
information field. The MRR is immediately not handled by the IP layer of GGSN at 
Gi interface. Rather it is buffered with a special mark that the care-of address field of 
this packet is to be filled after the completion of PDP context. GGSN creates PDP 
context and sends a response packet to SGSN. GGSN gives a PDP address (IP 
address) to WH through the response message. This PDP address is equivalent to 
care-of address in GPRS network. After receiving activate-PDP-context response 
message, the GSM entity of WH informs SNDCP layer that LLC connection has 
already been established for data packet. GSM also gives the SAPI to be used 
between LLC and SNDCP sublayers [[15], 16]]. 

Having transmitted the response of CMCR message, GGSN cares for MRR packet 
associated with it. The IP layer of GGSN at Gi interface is enhanced with FA 
functionality for WH. It has already provided a PDP address from its own address 
pool. The care-of address given by the GGSN is the foreign agent care-of address. 
This address can be put into the care-of address field of MRR message. The GGSN 
functionality can be enhanced so that after processing CMCR message it fills the care-
of address field of MRR packet. It then gives the packet to IP layer of GGSN at Gi 
interface. Subsequently usual MIP based signaling performed between FA and HA. 
HA sends the MRR response packet usual way to GGSN. The address of FA is the IP 
address of GGSN at Gi interface. This packet is received by the FA at GGSN. FA 
gives this packet to GGSN for downward transmission.  

After receiving MIP registration response packet from FA, GGSN deals it like an 
IP data packet. GGSN tunnels this packet to SGSN using PDP context. Finally it is 
received by WH from SGSN. The LLC layer at WH gives this packet to SNDCP 
sublayer through already configured SAPI. SNDCP gives this packet to network 
layer. Network layer does not take action for MIP registration packet rather it gives 
this packet to WGMA entity through its relay functionality. 
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Fig. 4. The complete signaling for simultaneous PDP activate and MIP registration in one-pass 
method 

5   Simulation 

The network architecture [Fig. 1] has been simulated using NS-2.26 [Table 2]. We 
used WLAN as GPRS access network keeping the bit rate GPRS suite (144kbps) at 
user level. A WH is initially in its home networks. However the initial position of 
WH can be considered under any FA in IP network. The WH transmits packets to 
correspondent node (CN) at a bit rate 2Mb per sec. A wired node N1 connected to 
router AR2 is considered as correspondent node (CN). However, any WLAN host 
in IP network can be also considered as CN. When WH comes out of WLAN 
coverage, it initiates MIP based handoff signaling through GPRS network. We 
implement FA functionality at GGSN and HA functionality at AR1. The GTP based 
signaling for handoff management is developed at SGSN and GGSN node.  
All control and data packets between SGSN and GGSN are transported using  
GTP. The simulation is carried out for one-pass and two-pass methods for  
MIP registration when WH moves from WLAN to GPRS. After handoff, the  
WH transmits IP packets through GPRS network to CN at a bit rate of 144 Kb  
per sec. 
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Table 2. Values used for simulation 

MAC 802_11
Interface Queue DropTail/PriQueue
Link Layer LL
Antenna Omniantenna
Interface queue length 700
Adhocrouting DSDV
Data packet size 500 bytes
Mean link delay 50us
Link layer over-head 25us
Receive Threshold
power

3.625 x 10-10

Transmit Power 0.28183815
Bandwidth between
any two wired node

50Mb 15Ms

 

6   Performance 

Results obtained from simulation show that for a fixed packet size of 500 bytes, the 
handoff delay in one-pass method is reduced by 18.657% compare to handoff delay 
in two-pass method [Fig. 5(a)]. Figure 5(b) shows the variation in handoff delay in 
one-pass and two-pass methods while packet size varies from 100 bytes to 1000 
bytes in steps of hundred. It is seen that for increasing packet size from 100 to 1000 
bytes, handoff delay increases by 17.784% in one-pass method and by 21.852% in 
two-pass method. 

We computed the inter arrival delay of received packets at CN before and after 
handoff from WLAN to GPRS in one-pass method [Fig. 6(a)]. The average inter 
arrival delay of received packets is 5.91ms before handoff and this corresponds to 
average throughput of 678.8Kb per sec. The average inter arrival delay after 
handoff is 27.78ms and it corresponds to throughput of 144Kb per sec. Figure 6(b) 
shows the bit rate received at CN before and after handoff in one-pass method. 
Handoff is initiated in 8th sec. During handoff signaling, the IP network still routes 
packets for CN already buffered in queue. Thus, CN still receives data packets 
during first phase of handoff session. We selected simulation parameters such that 
these packets do not flow beyond handoff session. Therefore, at the last stage of 
handoff session, throughput becomes zero. After handoff, WH transmits data at bit 
rate of 144Kb per sec through GPRS network. But, same session is continued 
although throughput goes very low. The simulation results for inter arrival delay of 
received packets and throughput are also observed in two-pass method of handoff 
[6(c), 6(d)].  It is seen that results are similar to those observed in one-pass method 
except increased handoff delay. Here, the duration for which CN does not receive 
any packet in handoff session is larger. Therefore, the duration for zero level of 
throughput is larger than that in one-pass method. 
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Fig. 5. Handoff delays in one-pass and two-pass methods 9b) Variation in handoff delays in 
one-pass and two-pass method with packet size 
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Fig. 6. (a) Interarrvial delay of received packet before and after handoff in one-pass method  
(b) throughput in Mbps before and after handoff in one-pass method (c) interarrival delay of 
received packet before and after handoff in two-pass method (d) throughput in Mbps before and 
after handoff in two-pass method 

7   Conclusion 

In the proposed architecture, the WLAN is loosely coupled to GPRS network. Both 
WLAN and GPRS networks converge to IP layer in integrated scenario. This 
architecture enables the GPRS subscriber to avail the WLAN service of Internet. This 
also facilitates the Internet subscribers to avail the internet service through GPRS. The 
Internet subscriber can maintain the session through GPRS network when they move 
from WLAN to GPRS. The proposed WLAN/GPRS architecture and handoff 
technique, support MIP based mobility management under roaming between GPRS 
and WLAN. The one-pass method of MIP registration by WH in GPRS network  
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reduces the control signals for MIP based handoff management through GPRS. The 
handoff latency is reduced by 18% compare to two-pass method of handoff, although 
the through put in both methods are comparable with each other. 
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Abstract. Contention MAC protocols for a wireless LAN cannot count on 
selfish stations' adherence to the standard MAC. We consider anonymous 
stations in that a transmitted frame is only interpretable at the recipient(s). Two 
components of a MAC protocol are identified, a winner policy and a selection 
policy; by self-optimizing the latter, selfish stations can steal bandwidth from 
honest ones. We apply a game-theoretic framework to a protocol family called 
RT/ECD and design a repeated game strategy to discourage an invader − a 
station selfishly deviating from that strategy. We require that (R1) if there is no 
invader, or if an invader retreats to honest behavior, then ultimately all stations 
are honest, and (R2) an invader ultimately obtain less bandwidth than it would 
if behaving honestly. The proposed strategy fulfills (R1), while fulfillment of 
(R2) is examined via Monte Carlo simulation of heuristic invader strategies.  

Keywords: wireless LAN, distributed MAC, random token, game theory. 

1   Introduction 

Contention MAC protocols for wireless LANs cannot count on network stations' 
adherence to the standard MAC if it runs counter their selfish interests. In this context 
it is appropriate for MAC design to meet game theory. Existing game-theoretic 
analyses extend to slotted ALOHA [1], [14] and  CSMA/CA [2], [4] (as part of IEEE 
802.11 [12]). The prevailing assumption is that the very principle of the contention is 
observed and only certain parameters may be configured selfishly. In this paper we 
model a class of contention mechanisms as follows: within each protocol cycle there 
is a finite contention interval to accommodate the stations' requests/attempts to 
transmit a data frame, and each station is free to select the instant within that interval 
where it makes its request/attempt. Such Random Token (RT) mechanisms [5] 
underlie slotted ALOHA and CSMA/CA, as well as HIPERLAN/1 [7] and some other 
known protocols. We allow the stations to be anonymous in that a transmitted frame is 
only interpretable at the recipient(s), all other stations perceiving it just as a burst of 
carrier. Anonymity is particularly justified in ad hoc systems, where stations are 
autonomous, likely to spoof on one another (their identifiers hardly being verifiable), 
and possibly use different data encoding/encryption schemes. 

An RT protocol breaks up into two components: a selection policy, entirely within 
a station's discretion, determines the instant within the contention interval at which to 
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make a request/attempt; a winner policy, common to all stations, defines the length of 
the contention interval, prescribes the rules of requesting to transmit a data frame, and 
determines a winner station in each protocol cycle (producing exactly one winner or 
none). We focus on a family of slotted-time protocols called RT/ECD (RT with 
Extraneous Collision Detection), where there are E contention slots in a contention 
interval, and a request to transmit a data frame has the form of a short pilot frame sent 
in a selected contention slot 1,…, E; it is expected to be reacted to with another short 
frame from the data frame's recipient. The mechanism is not unlike RTS/CTS access 
[12], although reaction frames need not be interpretable. Bandwidth utilization 
dictates that the earliest non-colliding pilot in the contention interval win: indeed, 
prolonging the contention beyond that does not increase the proportion of protocol 
cycles with a winner (hence, a collision-free data frame transmission), while 
increasing the contention overhead. Thus nontrivial winner policies only differ in how 
they account for the outcome of slots preceding the winning pilot. We compare two 
extreme cases: RT/ECD-0 and RT/ECD-∞, 0 and ∞ referring to the maximum 
allowed number of colliding pilots prior to the winning one (if any). Examples of 
protocol cycles under RT/ECD-0 and RT/ECD-∞ are shown in Fig. 1. 

Two types of stations can be envisaged: honest and selfish. The former use some 
predefined standard selection policy e.g., uniform probability distribution over 
{1,…,E}, referred to as Honest Randomizer (HR). The latter are free to adopt any 
selection policy and self-optimize their bandwidth shares to the detriment of honest 
stations ("bandwidth stealing"). We assume that a selfish station is biased towards 
early contention slots, a selection policy referred to as Selfish Randomizer (SR). 

 
 
 
 
 
 
 
 

Fig. 1. Example protocol cycles; RT/ECD-0: slot 1 not selected, two stations select slot 2, lack 
of  reaction terminates protocol cycle (left), RT/ECD-∞: lack of reaction after slot 2, reaction 
after slot 4 prompts the sender of the pilot to transmit data (right) 

Given a winner policy, honest behavior should discourage any selfish deviation. 
Call a deviating station an invader. We require that (R1) if there is no invader, or if it 
retreats to honest behavior, then ultimately all stations use HR, and (R2) an invader 
ultimately obtain a lower bandwidth share than it would if behaving honestly. 

We define one-shot RT/ECD games and look into their payoff structure under 
saturation load. We show that if SR is biased towards early contention slots heavily 
enough then under RT/ECD-0 the game resembles a multiplayer Prisoners' Dilemma 
(with a unique, fair, and Pareto non-optimal Nash equilibrium), whereas under 
RT/ECD-∞ falls into the class of anti-coordination games (with multiple unfair Nash 
equilibria at which exactly one station uses SR). Next we design strategies fulfilling 
(R1) and (R2) for a repeated RT/ECD game. In Sec. 2 we study one-shot RT/ECD-0 

 

slotsempty 1   2     empty 1    2   3 

 protocol cycle  protocol cycle 

 pilot  reaction  data

slots empty 1  2          3    4 

 protocol cycle 



584 J. Konorski 

and RT/ECD-∞ games. In Sec. 3 related repeated games are defined, and a class of 
strategies are shown to fulfill (R1), while fulfillment of (R2) is examined via Monte 
Carlo simulation of heuristic invader strategies. Sec. 4 concludes the paper. 

2   Binary RT/ECD Game 

Consider N anonymous stations under RT/ECD-0 or RT/ECD-∞ with E contention 
slots. By choosing between HR and SR, each station pursues a maximum bandwidth 
share independently of the others. Thus an N-player noncooperative game arises, in 
which bandwidth shares are payoffs. In a one-shot game, choosing HR or SR is a 
single act performed simultaneously by all the stations. 

Definition 1. (i) A binary noncooperative game [10] is a triple ({1,…,N}, A, b), 
where A = {HR, SR} is the set of feasible actions, and b: AN → RN is a payoff 
function. Each station n chooses an ∈ A and subsequently receives a payoff bn(a) 
dependent on the action profile a = (a1,…,aN) = (an, a−n), where a−n is the opponent 
profile. An action profile (a,…,a) will be denoted all-a. (ii) A Nash equilibrium (NE) 
is an action profile a = (an, a−n) at which bn(an, a−n) > bn(a, a−n) for all n = 1, …, N and 
a  ≠ an. It is Pareto optimal if for any other action profile a' there exists an m such that 
bm(a') < bm(a), and fair if b1(a) = … = bN(a). 

At a NE, each station plays the best reply to the opponent profile, hence no station 
deviates unilaterally − a likely outcome if the stations are rational (only maximizing 
own payoffs) and their rationality is common knowledge [10]. A fair and Pareto 
optimal action profile is desirable; unfortunately, it need not coincide with a NE. 

Let O denote the average contention overhead per protocol cycle. (In Fig. 1 (right), 
contention overhead is 7 slots.) Let ωn be the proportion of protocol cycles where 

station n wins, and ==Ω N

m m1
ω . At saturation load, station n's bandwidth share and 

the overall bandwidth utilization are: 

slotDATA

DATA

ττ
τω

⋅+⋅Ω
⋅

=
O

b n
n  ,  

slotDATA

DATA

1 ττ
τ

⋅+⋅Ω
⋅Ω

==
= O

bb
N

m
m  , (1) 

where τslot and τDATA denote the slot and data frame duration, respectively. We write 
bHR(N, x) and bSR(N, x) for a station playing HR and SR, indicating the number x of 
stations playing SR. Similarly we write ω HR(N, x), ω SR(N, x), Ω(N, x), and O(N, x). 

Fig. 2 depicts the payoffs for RT/ECD-0 and RT/ECD-∞ obtained via Monte Carlo 
simulation (N = 10, E = 8, τ DATA/τ slot = 20, relative confidence intervals narrowed 
down to 5%), assuming Pr[SR selects slot i] = pSR(i) = const./ψ 

i−1 with ψ = 10. 
Arrows pointing northeast indicate incentives to switch from HR to SR; reverse 
incentives are indicated by arrows pointing northwest; lack of an outgoing arrow 
therefore indicates a NE at x. In both games, x = 0 is the only fair and Pareto optimal 
action profile. The RT/ECD-0 game is a multiplayer Prisoners' Dilemma [15] (always 
rewards playing SR and has a unique Pareto non-optimal NE at x = N); RT/ECD-∞ 
rewards "deep minority" stations (a single station using SR or the few using HR). 
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Fig. 2. One-shot game payoffs; RT/ECD-0 (left), RT/ECD-∞ (right) 

A station inclines to a large ψ if it hopes that few other stations play SR. Assume 
that this is the case, a conservative approach since "bandwidth stealing" then becomes 
more painful. We will show that the layout of Fig. 2 is preserved for any pSR that 
concentrates near i = 1. Both RT/ECD-0 and RT/ECD-∞ games then acquire a clear 
payoff structure: the former becomes a multiplayer Prisoners' Dilemma for any E, N, 
and τ DATA/τ slot, whereas, for any τ DATA/τ slot and under a mild restriction on E and N, 
the latter becomes an anti-coordination game with only unfair Nash equilibria. 

Let pSR(i) = pψ(i), where (pψ)ψ∈R is a family of probability distributions on 
{1,…,E} continuous in ψ and such that limψ→∞pψ(1) = 1. Consider a random (N, E)-
arrangement of N numbered objects in E boxes, obeying the Maxwell-Boltzmann 
statistic [8], and let Ξ(N, E) be the probability of at least one box containing exactly 
one object. By the inclusion-exclusion principle [8] and with 00 = 1 we have: 
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Proposition 1. For sufficiently large ψ, (i) the RT/ECD-0 game is an N-player 
Prisoners' Dilemma with a unique, fair, and Pareto non-optimal NE at x = N i.e., 

 bSR(N, x) > bHR(N, x − 1), x = 1,...,N (3) 

bSR(N, N) < bHR(N, 0). (4) 

(ii) provided that 

−−
−

>Ξ
−1

1
11

1
),(

N

EN

N
EN , (5) 

the RT/ECD-∞ game has unfair Pareto optimal Nash equilibria at x = 1 i.e., 

bSR(N, x) < bHR(N, x − 1), x = 2,...,N (6) 

bSR(N, 1) > bHR(N, 0). (7) 

Proof. Let Pψ(i) = Σj=i+1,…,E pψ(j). Pψ(i) is nonincreasing in i and limψ→∞Pψ(i) = 0. 
Hence, if ψ is large enough then Pψ(i) < 1 − i/E for all i = 1,…,E − 1. For RT/ECD-0, 
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Therefore for large enough ψ, ω SR(N, x) > ω HR(N, x − 1) > ω HR(N, x) for x ≥ 1, and 
ωSR(N, x) < ωSR(N, x − 1) for x ≥ 2. If ω SR(N, x) = αω    HR(N, x − 1) (α > 1) then Ω(N, x) 
< αΩ(N, x − 1) [since for x = 1, Ω(N, 1) = ω SR(N, 1) + (N − 1)ω HR(N, 1) < αω HR(N, 0) 
+ (N − 1)ω HR(N, 0) <α  Nω HR(N, 0) = α  Ω(N, 0), while for x ≥ 2, Ω(N, x) = xωSR(N, x) 
+ (N − x)ω HR(N, x) < αω HR(N, x − 1) + (x − 1)ωSR(N, x − 1) + (N − x)ωHR(N, x − 1) < 
α((x − 1)ω  SR(N, x − 1) + (N − x + 1)ω HR(N, x − 1)) = α    Ω(N, x − 1)]. 

The probability of at least (i + 3)-slot overhead (including synchronization, pilot 
and reaction slots) equals (Pψ  (i))x(1 − i/E)N−x. Summed over i, these probabilities yield 
O, and each of them decreases in x for large enough ψ. Thus O(N, x) < O(N, x − 1). 
Putting together the above findings along with (1), we prove (3) as follows: 
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To verify (4), observe that its left-hand side is arbitrarily close to zero for large 
enough ψ, whereas ωHR(N, 0) = (1/E)⋅Σi=1,…,E (1 − i/E)N−1 > 0 implying bHR(N, 0) > 0. 

For RT/ECD-∞, the left-hand side of (6) is arbitrarily small for large enough ψ, 
whereas for x = 2,…, N, Ω(N, x − 1) is arbitrarily close to Ξ(N − x + 1, E − 1) > 0 i.e., 
given that all the selfish stations are almost certain to select slot 1, an honest station 
wins if at least one of slots 2,…,E is selected by exactly one honest station. This 
implies ω HR(N, x − 1) > 0 and bHR(N, x − 1) > 0. 

It remains to prove (7) for ψ → ∞ along similar lines as (4). Firstly, observe that 
ωSR(N, 1) = (1 − 1/E)N−1 > Ξ(N, E)/N = ωHR(N, 0). The latter equality follows by 
symmetry and the left-hand side of the inequality represents the probability that at 
least one slot is left empty for a given station to select for a successful pilot − an event 
implied by, but not implying, that station winning the contention. Secondly, we have 
(N − 1)ω HR(N, 1) < 1 − (1 − 1/E)N−1. Indeed, the right-hand side represents the 
probability that at least one honest station transmits a pilot in slot 1, where it is almost 
certain to collide with the selfish station's pilot; this is necessary, but not sufficient for 
one of the other honest stations to win. Thus (5) implies ωHR(N, 1) < ωHR(N, 0). 
Finally, ω SR(N, 1) = αω HR(N, 0) (α > 1) implies Ω(N, 1) < α  Ω(N, 0), as can be shown 
by direct counting of random (N, E)- and (N − 1, E − 1)-arrangements.               

Since all involved probabilities are continuous in ψ, one can expect a similar payoff 
structure for a large but finite ψ. Condition (5) is not too restrictive e.g., for E = 8, 9, 
and 10 it holds for N ≤ 16, 19, and 23, respectively. 

3   Repeated RT/ECD Game 

Given that the desirable action profile (x = 0) is not a NE of the one-shot RT/ECD 
games, one may ask if a repeated game admits a strategy fulfilling (R1) and (R2). 
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Definition 2. (i) A noncooperative repeated game [10] proceeds in stages, each 
consisting of a number of protocol cycles. In each stage k = 1,2,…, a one-shot game 
({1, …, N}, A, b) is played i.e., the stations each choose HR or SR, which they play 

consistently throughout the stage. If ak = ),...,( 1
k
N

k aa  is the action profile in stage k 

then the sequence (a1,…,ak) is the play path up to stage k.1 In stage k station n 

receives a stage payoff )( k
n

k
n bb a= . (ii) Player n's strategy is a function σn: Π → A, 

where Π is the set of all play paths. That is, σn determines the action k
na  to be taken in 

stage k given the play path up to stage k − 1. By analogy with Definition 1, 
(σ1,…,σN) will be referred to as a strategy profile, and all-σ = (σ,…,σ). 

We are seeking a σ such that (R1) all-σ leads to all-HR regardless of initial 

conditions, and (R2) for an invader station n, k
nb  < bHR(N, 0) for sufficiently large k 

(that is, all-σ is a subgame perfect NE of the repeated RT/ECD game [10]). In our 
binary games, a sufficient characterization of a play path up to stage k is (x1,…,xk).  

For the RT/ECD-0 game, a multiplayer Prisoners' Dilemma, one can use an honest 
strategy similar to SPELL [13] provided the xk are observable despite the stations' 
anonymity. E.g., one may observe the proportion of protocol cycles with empty slot 1. 
Assuming pSR(i) = const./ψi−1 with a large ψ, it is approximately (1 − 1/E)N − x/(ψ)x. 
Online estimation of this quantity in successive stages detects a clear maximum, 
revealing xk = 0 and yielding N, as well as second- and subsequent-magnitude 
maxima, revealing respectively xk = 1, …, xk = x*, where x* is a threshold. For 
example, with E = 8 and ψ = 10, the maxima differ by a factor of 8.75. The threshold 
x* is dictated by statistical credibility: if the observed proportion is β (β << 1) then 

the relative width of a confidence interval is roughly proportional to β/1 . We take 

x* = 2 i.e., a station can distinguish xk = 0, 1, 2, and >2. 
The same scheme works for the RT/ECD-∞ game, whose payoff structure calls for 

a novel honest strategy. Two candidates will be examined, Nash and Idea Bag. 

3.1   Nash Strategy 

The one-shot RT/ECD-∞ game admits a fair mixed NE, at which the stations play SR 
with the same probability PNE. This symmetry permits to replace the routine linear 
system describing a mixed NE [3] by a single nonlinear equation in PNE: 

0)],()1,()[(
1

0 HRSR,1 NE
=−+−

= −
N

x PN xNbxNbxB , (8) 

where xKx
pK pp

x

K
xB −−⋅⋅= )1()()(, . The Nash strategy recreates this NE in each 

stage, thus discouraging an invader playing SR with a different probability (e.g., 
always − hoping for bSR(N, 1), or never − hoping for bHR(N, N − 1)). For the parameter 
setting in Fig. 2 we get PNE = 0.1551. Monte Carlo simulations of the repeated 
RT/ECD-∞ game for N = 10, E = 8 and ψ = 10 are illustrated in Fig. 3; stage payoffs 
are averaged over 1000 runs and normalized with respect to bHR(N, 0). 
                                                           
1 Here k are superscripts; for powers we reserve the notation (a)b unless a is a numeral. 
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In Fig. 3 (left), a single invader always playing SR is unable to significantly 
outperform the stations playing Nash. However, the best (unrealistic) strategy of an 

invader station n is to predict the opponent profile |}SR|{| =≠=−
k
m

k
n anmx  prior to 

stage k, and play SR=k
na  when 0=−

k
nx , otherwise play HR=k

na . This is an Ideal 

Invader strategy. From Fig. 3 (right) one sees that it yields almost 40% above the fair 

bandwidth share − namely, ≈⋅+− −
= −

− 1

1 HRNE,1SR
1

NE ),()()1,()1(
N

x PN
N xNbxBNbP  

)0,(391.1 HR Nb⋅ . Thus if an invader can do better than randomize between HR and 

SR, the Nash strategy does nor prevent "bandwidth stealing." Neither does it ensure 
that xk falls to zero in the absence of invaders (rather, xk hovers around N⋅PNE). 
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Fig. 3. Nash strategy; vs. Always SR (left),  vs. Ideal Invader (right) 

3.2   Idea Bag Strategy 

A station may start with an "idea bag" − a set of possible substrategies to choose 
from. Each one prescribes an action in the next stage given the past play. As the game 
progresses, the station focuses on those that (would) have yielded the highest stage 
payoffs. Thus one arrives at various "meta-strategies" e.g., responsive learning [9] or 
virtual scoring [6]. In the latter, a virtual score is updated stage-by-stage for each 
substrategy. The station follows the currently highest ranking substrategy. At the end 
of a stage, it calculates the received stage payoff and increments the highest ranking 
substrategy's virtual score. It also examines the other substrategies and adds the stage 
payoffs they would have yielded to the respective virtual scores. 

Consider an "idea bag" with two substrategies: σHR = "always play HR" and σSR = 

"always play SR." If HR=k
na  then σHR scores bHR(N, xk) (real stage payoff) and σSR 

scores bSR(N, xk +1) (virtual stage payoff); if SR=k
na  then σSR scores bSR(N, xk) and 

σHR scores bHR(N, xk − 1). Let k
n  = virtual_score(σHR) − virtual_score(σSR) at station 

n prior to stage k. The following specifies the Idea Bag (IB) strategy: 

<Δ
≥Δ

= −

−

, 0 if SR,

0 if HR,
1

1

k
n

k
nk

nw  (9) 
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IB has two drawbacks. First, it requires the knowledge of N and xk to determine the 
virtual payoffs bSR(N, xk + 1) and bHR(N, xk − 1), while in fact xk can only be 
distinguished up to the threshold x*. Second, we want the game to converge to xk = 0; 
unfortunately, under all-IB it turns out that either a one-shot NE is ultimately played 
(xk = 1) or the play never converges to a particular action profile. The former is quite 
likely: once a one-shot NE is played in a stage, it is played forever (i.e., if there exists 

a k0 such that 0k
n

k
n aa =  for all k ≥ k0 and n = 1,…,N then 10 =kx  and vice versa; the 

proof relies on (6) and (7) in the spirit of fictitious play [11]). 
It is easy to modify (10) so that under all-IB, xk = 0 obtains for large enough k (a 

trivial modification would have k
n  grow with k regardless of the play). The problem 

lies in ensuring that it still discourages persistent deviations from IB. We propose a 

heuristic called IB', with (10) replaced as follows. If HR=k
na  then 
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and if SR=k
na  then 
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where random(D) is a uniform random variable on [0, D). Note that (11) and (12) 
attempt to mimic (10) i.e., retain the drive towards the one-shot NE. However, two 

features violate (10) and weaken the drive: when xk = 1, k
n  drops at all the stations 

(including the one playing SR), and when xk = 0 it remains constant. (The latter 

feature is also of practical value as it prevents indefinite growth of k
n  should the play 

converge to xk = 0.) The other modifications account for observability of xk up to x* 
and pertain to the virtual payoffs (the bSR terms in (11) and the bHR terms in (12)). 
Finally, the presence of random(D) is vital to convergence to all-HR, as shown below. 
The following proposition states conditions under which all-IB' fulfills (R1). 

Proposition 2. Assume that in the repeated RT/ECD-∞ game, 

bHR(N, x) > bSR(N, x'), x = 1,…,N, x' = 2,…,N . (13) 

Then under all-IB' and with finite initial virtual scores, the play converges in 
probability to all-HR (the number of stages with xk > 0 is finite with probability one). 
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Proof. If 00 =kx  for some k0 then xk = 0 for all k ≥ k0. Indefinitely long play with xk = 
1 is impossible, as is indefinitely long play with xk > 1: in both cases, the k

n  are all 
monotone in k. We now show that there exists a 0k ′  (finite with probability one) such 
that 00 =′kx . It suffices that for some k0, the two smallest among the 0k

n  are within an 
arbitrarily small ε > 0 of each other, implying that almost certainly they are both 
nonnegative (thus 00 =kx ) or negative (thus 010 =+kx ). As an illustration, Fig. 4 (left) 
plots the k

n  against k for a generic game scenario with random initial scores. Note 
that when xk > 1, all stations playing SR increase k

n  by the same amount, (dependent 
on xk) and when xk = 1, stations playing HR decrease k

n  faster than those playing SR 
(due to the random term in (11)). Consider successive stages k1, k2, … with 1=ikx . 
Suppose that i

i

k
n  and i

i

k
n′  are the smallest and second-smallest among the ik

n . Two 
cases are possible in the next stage: (a) 1+i

i

k
n  is the smallest among the 1+ik

n , implying 
that the distance to the second-smallest among the 1+ik

n  has shrunk, and (b) 1+ik
m  and 

1+
′

ik
m  are now the smallest and second-smallest (with m ≠ ni), implying that they are 

within D of each other; consequently, there is a nonzero probability that 1+ik
m  and 

1+
′

ik
m  will be within ε > 0 of each other. In either case the number of stages before that 

occurs is finite with probability one.                        

In our parameter setting, (13) is fulfilled for N up to 20. To illustrate the convergence 
of all-IB' to all-HR, a number of Monte Carlo simulations have been conducted with 
D = 5 and N = 10; all results are averaged over 1000 runs. Fig. 4 (right) depicts the 
number xk of stations playing SR in successive stages. The dashed curve has been 
obtained for a fixed and large discrepancy between the stations' initial virtual scores, 
with )1 ,(SR

0
1 Nb−=  and )1 ,(SR

0 Nbn =  for n = 2,…,N. This is an unfavorable 
setting, since it lessens the chances of all k

n  quickly becoming nonnegative. Notice 
the lengthy plateau that corresponds to N − 2 stations constantly playing HR and the 
other two being stuck in a nasty pattern of the two lowest curves in Fig. 4 (left). One 
way of speeding up the convergence is to build in a firm upward drift of k

n  in the 
initial stages; to this end, we have replaced each bHR(N, x) term in (12) by a linear 
combination of itself and bHR(N, N − 1), the latter component losing weight as the 
number of past stages with xk = 1 grows. The convergence is now much faster (the 
solid curve) despite an even more unfavorable initial setting of virtual scores, with 

)1 ,(3 SR
0
1 Nb⋅−=  and )1 ,(3 SR

0 Nbn ⋅=  for n = 2,…,N. 
The problem with (R2) is to find a best reply to IB' (a worst-case invader), and next 

to establish that there is no better reply to that best reply than IB'. Compare Ideal 
Invader's performance  against all-Nash opponent strategy profile − Fig. 3 (right) with 
that against all-IB' − Fig. 5 (left), for N = 10, E = 8, and D = 5, and with random initial 
scores set between −3⋅bSR(N, 1) and 3⋅bSR(N, 1. The Ideal Invader station no longer 
enjoys a sustained advantage over bHR(N, 0), although it does enjoy a temporary  
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Fig. 4. IB' strategy; illustration for proof of Proposition 2 (left), convergence to all-HR (right) 

advantage (in the initial 50 or so stages) when the IB' stations use the convergence 
speedup. The amount of bandwidth stolen from the honest stations is almost 
intangible, unlike in Fig. 3 (right) − apparently, IB' has a way with Ideal Invader. It is 
instructive to note that the best reply to an Ideal Invader station n is to confront it with 

an opponent profile with 1=−
k
nx  in each stage k. To preserve fairness, the IB' stations 

should therefore correlate their play and take turns at playing SR in successive stages. 
Fig. 5 (right) convinces that in most stages, the IB' stations manage to coordinate on 

2=−
k
nx  instead, and only occasionally produce 0=−

k
nx  to the invader's advantage. 

Thus the little intelligence they use for virtual scoring permits them to perform 
distinctly better than Nash strategy stations facing a single Ideal Invader station. 
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Fig. 5. IB' strategy vs. Ideal Invader; stage payoffs (left), number playing SR (right) 

In reality, Ideal Invader might be approximated by sophisticated enough invader 
strategies. How would those perform against IB'? Two plausible approximations 
consist in: modifying (11) and (12) so that they more resemble (10) (thus the invader 
drives towards an unfair one-shot NE), or using a larger "idea bag" in the hope to 
outwit the honest stations, which only choose between σHR and σSR. 
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Fig. 6. IB' strategy; vs. IB-a and IB-b (left), vs. IB-Σ/H (right) 

The approximation of IB, called IB-a, replaces the xk = 0 and xk = 1 entries in (11) 
by bHR(N, 0) − bSR(N, 1) and bHR(N, 1) − bSR(N, 2), respectively (the former difference 
is negative and the latter is positive). Fig. 6 (left) shows that an IB-a invader station 
does not enjoy a larger-than-fair bandwidth share except for a temporary advantage 
due to the convergence speedup used by the IB' stations. Interestingly, xk tends to 0 as 
k increases: the drift toward SR at xk = 0 is compensated by the drift away from SR at 
xk = 1. To eliminate the latter, an invader might try another variation of IB, called IB-
b, whereby the xk = 1 entry of (11) is retained, creating a uniform drift towards SR. 
However, the IB-b curve in Fig. 6 (left) shows that this is in fact counterproductive. 

Finally, an invader trying a larger "idea bag" must first constrain the set of 
substrategies. A wide class of substrategies consist in distinction of Q predefined 
stage outcomes, and mapping a sequence of H recent stage outcomes onto the set A of 

feasible actions in the next stage. There are therefore 
HQ)(2  different substrategies 

(e.g., 2.4⋅1024 for Q = 3 and H = 4). Of this huge set, a modest number Σ are selected 
at random for inclusion in the "idea bag" [6]. We call the resulting strategy IB-Σ/H. 

Let k
no  be stage k outcome perceived at station n. The action in stage k that 

substrategy σ = 1,…,Σ prescribes for station n is obtained by first calculating 
hk

n

H

h h o −
= ⋅+
10 )()( σασα  and then taking HR=k

na  if this number is even, and 

SR=k
na  if it is odd. The αh(σ) are random integers defining σ. The substrategy with 

the largest virtual score is followed in stage k; all substrategies prescribing the same 
action score the real stage payoff, whereas the other score the virtual payoff. 

In our experiment, seven stage outcomes were distinguished at a station according 
to own action and xk i.e., (HR, 0), (HR, 1), (HR, 2), (HR, >2), (SR, 1), (SR, 2), and 
(SR, >2), and assigned numerical values 0 through 6. Care was taken to include σHR 
and σSR in the "idea bag." Fig. 6 (right) presents the normalized stage payoffs for a 
single invader station playing IB-3/2 and IB-10/5 against N − 1 IB' stations. Again, 
after the initial surge due to the convergence speedup at the IB' stations, the invader 
finds its payoffs inferior to the fair bandwidth share and subsequently learns the game 
to achieve slightly higher payoffs. As expected, the learning process is the faster, the 
more intelligence (the larger Σ and H) the invader possesses. However, it does not 
lead to a distinct long-run advantage over IB'. 
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4   Conclusion 

While adherence to a common winner policy is a prerequisite for using the network, 
there is room for adopting selfish selection policies. We have addressed this problem 
by studying one-shot and stage-by-stage repeated RT/ECD games. Under certain 
conditions, the one-shot RT/ECD-0 game is a multiplayer Prisoners' Dilemma, hence 
enables various cooperation enforcement strategies. However, RT/ECD-∞ gives rise 
to an anti-coordination game whose only Nash equilibria are unfair. A strategy IB'  
has been proposed for the repeated RT/ECD-∞ game, such that all-IB' fulfills (R1). 
Yet there is only partial evidence, based on examination of heuristic invader 
strategies, that (R2) is also fulfilled. As seen from Fig. 5 (left), an Ideal Invader 
station can "steal" a little bandwidth and never get punished. On the other hand, Ideal 
Invader is not realizable, which leaves the question about fulfillment of (R2) open. 
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Abstract. Fast handoff is a major problem in the wireless networks and this 
problem is further aggravated due to limited range of 802.11 Access points. 
Scanning phase is the major contributor to 802.11 handoff delays; it can be 
decreased by reducing the number of channels that are scanned at the handoff 
time. Prior knowledge of the neighbouring Access points (AP) can help in 
reducing the number of channels to be scanned and thus can assist a mobile 
station (STA) in making a fast and accurate handoff decision. Dissemination of 
the neighbouring AP information to all the STA attached to a given AP is a 
challenging task and it needs to be accomplished without making major  
changes to the 802.11 standard or significant client/AP modifications. Low 
computational complexity and backward compatibility are the other issues 
which have to be taken into account while designing such handoff schemes.  
We have proposed a new method of providing neighbouring AP channel 
information to the STA. This method provides the neighboring channel 
information to the mobile nodes with the help of specially crafted Null CTS 
frames sent by the access points. We have shown that the overheads due to this 
scheme are well within the permissible limits.  

Keywords: IEEE 802.11 networks, Handoff, Null CTS Frames, Signaling 
overheads. 

1   Introduction 

IEEE 802.11 based wireless and mobile networks [1] are experiencing a very fast rate 
of growth and are being widely deployed but they suffer from limited coverage range 
of AP, resulting in frequent handoffs, even in moderate mobility scenarios. 802.11 
standards follow the “break before Make” approach at the handoff times. It is quite 
evident from [2][4][6] that the time taken by the STA to scan the neighbouring AP at 
the  handoff time is a major contributor towards the handoff delay in 802.11 based 
networks. Long handoff delays can be decreased if numbers of channels to be scanned 
at handoff time are reduced.  

In the scheme proposed by [4] all the channels have to be scanned. In [6] when 
using neighbour graphs, requires long time to build and is not suitable for fast 
changing topologies. In [2], a mechanism to reduce the handoff delay by staggering 
beacons, on different channels, in time, STA still have to run syncscan on all the  
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Fig. 1. Diagram shows scheduling of NULL CTS frames three non overlapping channels with 
beacon interval of 100ms 

channels as STA have no method of knowing about their neighbours. This approach 
adds to high signaling overhead and strict timing constraints [2]. In [3] a technique 
where the strict timing requirements of syncscan have been removed, but still all 
channels need to be scanned.  

In this paper we have proposed a scheme to disseminate accurate neighbouring AP 
channels information. This is accomplished while the STA is still connected to the 
current AP and without making modifications into the existing 802.11 standards. We 
have done analysis of this approach and have calculated the percentage signaling 
overheads due to this approach and provides excellent results if used in conjunction 
with the [2] or [3]. 

2   Basic Algorithm 

Our algorithm proposes that all APs in the Distribution system (DS) know about the 
channel numbers on which their immediate neighbouring APs are operating. This 
Neighbour information is further disseminated to the STA's, by the current AP to 
which they are attached. One approach to gather neighbour information is to manually 
assign neighbour information, consisting of neighbouring AP channel numbers at the 
time of installation of DS. Another approach is to GPS enable all APs[7].  

The task of disseminating this neighbour information to the STA attached to a 
given AP is a complex task and it needs to done with desirably no modifications to 
the existing standards, minimum modifications to client/AP software and minimum 
signalling overheads. To accomplish this task we exploit the existing CTS frames and 
tailor them for propagating neighbour information to associated STAs. 

3   NULL CTS Frames 

In this approach we have slotted the beacon interval into ten equal time division as 
shown in Fig 1. It is proposed that an AP sends specially crafted null CTS frames with 
duration field set to zero and destination address of self during the NULL CTS 
windows. Based on this, if null CTS frame is received by the STA at the interval 
t+n*d (where n is the channel number, and t is the beacon interval, d=t/10), it is taken 
as indication of presence of an AP on channel n. It should be noted that Null CTS  
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Fig. 2. State Machine Depicting how channels are selected for scan 

transmission can be delayed in case, media is not available due to some ongoing 
transmission, this problem can be circumvented by using a window during which an 
AP can send a null CTS frame. By doing so the stringent timing requirements are 
taken care of (Fig 1). 

All the null CTS for a given AP are sent during the time of associations/ 
reassociation or in case there is some change in the APINFO table. To ensure that 
neighbour information properly reach the STAs, the null CTS frames are repeated 
over the next beacon interval as well. Thus, the list of neighbouring channels is 
gathered by all the stations and is fed to the scanning algorithm, [2] or [3] or the 
classical scanning approach at the time of handoff, the scanning algorithm will run on 
limited number of channels as opposed to all the channels. We have defined the states 
into which a system can move and the State transition diagram is given in Fig 2. 

• Unconfirmed (UC): Initially all the 802.11 channels for a STA are in this state.  
• Not Confirmed Present (NCP): This state contains the channels for which null 

CTS was received from the currently associated AP. This state contains the list of 
neighbouring channels on which scanning algorithm will actually run to ascertain 
their signal strengths. 

• Confirmed Present (CP): This state contains the list of channels from which the 
STA has received the beacons and measured their signal strengths. These channels 
will be used for making handoff decisions. 

• Confirmed Not Present (CNP): This state will contain the list of channels for 
which channel was sensed to be clear at the time when null CTS was expected but no 
null CTS was received. These channels will never be used for handoff or scanning. 

3.1   Overhead Due to Null CTS 

In this section we calculate the overhead traffic due to the Null CTS frames in a given 
beacon interval and is represented in the form of percentage overhead of the normal 
traffic.  
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3.2   Calculation of Normal Throughput 

For calculating the normal throughput we have adopted the model proposed by [8].  
In a contention based environment as per [8] the probability p, of traffic of a given 

STA colliding with transmission of any of the other STAs can be approximated as: 

 

(1) 

Where  
 n is the number of STAs  W is the minimum window size  
 m is the back off stage    max windows size is  2^m*W 
 Tslot is slot time   Tpayload is time to transmit payload bits 
 Tphy is time to transmit packet  Tcycle is time between start of two packet. 

Equation (1) can be solved for p by simplifying and applying Newton bisection 
method for various values of n, W and m. Table 1 shows the values of p for various 
values of n, with constant W and m. From (1) Success rate of transmission can be 
calculated which is given in equation (2)[8]. 

Table 1. 

N W m P 

5 128 3 0.0625 

10 128 3 0.119 

15 128 3 0.168 

20 128 3 0.231 

 

(2) 

 
(3) 

It is assumed that all packets are of uniform size and all the STAs are in saturated 
stage, i.e. they always have a packet to transmit.  

In this case  
   packet payload 8184 bits MAC Header 272 bits 
   PHY Header 128 bits ACK Length 240 bits 
   Channel Bit Rate 1 Mbits/ sec SIFS 28 microseconds 
   DIFS 130 micro sec SLOT Time  51 microseconds 
   Channel Bit Rate 1 Mbits/sec propagation delay  1 microsecond 

The throughput is given by 

 (4) 

 
(5) 

Where units of Tcycle are taken in seconds and payload size is taken in bits and hence 
throughput is measured in bits per second. Now the throughput in a single beacon 
interval of 100ms duration is obtained as follows: 

 
(6) 
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3.3   Traffic Due to Null CTS 

Let us assume that Tnullctswindow is the size of Null CTS window and Tcycle represents 
the time to transmit a given packet. Tcycle, therefore represents the interval between the 
two packet transmissions. All the above intervals are taken in slot times. 

Let   x= Tnullctswindow/ Tcycle                                                                                                                                             (7) 

Eq. (7) represents the number of transmissions in a given null CTS window. In our 
calculations we take x=1 for . AP will grab any trans-
mission opportunity during Null CTS window to send Null CTS frame as it has 
highest priority.  

 (8) 

Where size of null CTS MAC is 14 bytes and it contains the address of the AP which is 
sending it. Time taken to send a Null CTS frame is given below. This overhead is 
actually calculated on the basis of Null CTS frames sent in the beacon interval just 
succeeding the association/ reassociation request. It is expressed in number of bits used 
to send Null CTS frames corresponding to all the neighbours per beacon interval. 

Length of Null CTS = SIFS + Physical header + (Null CTS MAC) 
Where Size of null CTS MAC=14x8 bits  Physical Header size= 128 bits. 

Number of neighbour depends on the deployment and available in APINFO table 
stored on AP. 

 
(9) 

Graph 1 shows the percentage overhead versus number of neighbours in a beacon 
interval for various numbers of STAs attached to a given AP. 

 

Graph 1. Overheads due to NULL CTS with varying number of neighboring AP 
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3.4   Backward Compatibility 

Our approach is fully backward compatible with no modifications done to the base 
802.11 standards. In case STA is not running the modified drivers it will simply 
ignore the Null CTS signaling frames and can use the original [2], [3] or standard 
scanning mechanism for handoff decision. 

4   Conclusion 

In this paper we have proposed a novel approach of providing neighbour information 
to the 802.11 wireless STA; that makes use of Null CTS frames for disseminating 
neighbour information using very small Null CTS frames and add very little to the 
signaling overheads. By providing neighbour information, number of channels to be 
scanned by the STA is reduced resulting in lesser number of scan operations. This 
approach is fully backward compatible and can be modified to suit both high mobility 
and low mobility scenarios. We have mathematically calculated the percentage 
overheads for the beacon intervals carrying the null CTS signaling elements and the 
results show that the overheads are within the permissible limits. Moreover, Null CTS 
signaling overheads are not continuous and are present only at the time of association/ 
reassociation requests. 
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Abstract. We propose a predictive scheme, where the MT stores only current 
day movement log and sends this log to MSC during off-peak hours. The MSC 
performs offline computation to find unique sub-patterns and hot cells from 
pattern logs. The hot cells are downloaded in the MT which sends an update 
when it leaves a hot cell thus enables the MSC to identify the sub-pattern to be 
followed next. On arrival of a call the MSC performs selective paging 
Analytical study shows the total location management cost using the proposed 
scheme is far better than distance-based location management scheme. 

Keywords: Predictive location management, mobility logs, sub-pattern. 

1   Introduction 

In cellular network a Location Area (LA) is controlled by a Mobile Switching Centre 
(MSC) consisting of Home Location Register (HLR) and Visitor Location Register 
(VLR). Location management (LM) involves two tasks: location update (LU) and 
paging. Several non-predictive LM strategies has been proposed in [4],[5]. Mobile 
terminal (MT) generally follows a regular pttern of cells. In predictive scheme, the 
location of MT can be predicted to some extent from the history of its movement 
stored in MSC database. Therefore the predictive LM schemes are preferred over non-
predictive ones as prediction reduces paging cost drastically. 

Among predictive LM schemes one proposed in [3] is based on the user mobility 
pattern. Here a MT stores several day movement logs and also patterns extracted from 
logs. There may be redundancy of some consecutive cells as patterns are concerned 
thus increasing storage requirement. Another scheme in [2] requires the regional route 
map to be downloaded in the MT. Here the pattern is identified by the MT. The above 
scheme expects the MTs to be very intelligent as it assigns huge computation load to 
it. In [6], the user mobility patterns (UMP) are derived from the users actual path 
(UAP) by sequential pattern mining method. The computation overhead of the 
algorithm is very high. Both [2], [6] assumes that a LA consists of single cell which is 
unrealistic. In this paper, we propose a predictive scheme which assigns more load to 
the MSC than MT. The MT stores only current day movement log and sends this log 
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to MSC during off-peak hours for computing the sub-patterns and hot cells. An 
analytical study considering semi-random mobility model estimated the LM cost. 

Section 2 of this paper explains the proposed scheme with the algorithm to extract 
the unique sub-pattern and the paging procedure. The LU and paging cost is given in 
Section 3. Section 4 presents the results with discussion and Section 5 concludes. 

 

Fig. 1. Different sub-patterns extracted for a MT  

2   The Proposed Predictive Location Management Scheme 

Mobile Users generally follow regular trip routes from home (source) to office 
(destination) in morning and reverse route in evening. A node is defined as a tuple 
(c,t) with cell-id (c) and entry time (t) in the cell. The MT stores the node list 
(NL)of the current day. At the end of day each MT will send NL to the HLR via the 
VLR. For each MT the HLR will extract the patterns from the log of the different 
days some of which may have common sub-patterns. Here each pattern/sub-pattern 
is a sequence of consecutive cells. HLR will extract only the unique sub-patterns to 
store in database. The last cell of those sub-patterns is called hot cell whose next 
cell will determine the new sub-pattern that MT will follow. Fig.1 shows different 
sub-patterns (spi’s) and hot cells generated in a MT trip from cell labeled S to D. 
The HLR will send the list of hot cells, source and destination cell ids to the 
corresponding MT. When the MT leaves its source cell or a hot cell the MT will 
send an update message and the HLR will determine from the log which sub-pattern 
the MT is going to follow. Whenever an incoming call arrives at time T, selective 
paging strategy is used i.e., the MT is searched in the predicted cell obtained from 
sub-pattern node list. If the MT is not found, it is searched in those cells where the 
probability of residence of the MT is non-zero at time T else the MT is searched 
exhaustively in the entire LA. 

2.1   The Algorithm to Find the Unique Sub-pattern Followed by a MT 

S={ si :i 1} is set of all unique sub-patterns existing in database. Initially S=Ø. s_new 
is a new movement pattern obtained from a day’s mobility log. Each si contains the 
beginning cell index (si.beg), last cell index (si.end), total no of cells(m) in it and the 
starting time(ST) of it.Here m=(si.end -si.beg +1). The algorithm pattern() to identify 
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the sub-patterns accepts s_new ,S and updates S if unique sub-patterns are found and 
is described below: 

If(S=Ø) then Add the entire new pattern s_new as a unique sub-pattern in S  
Else {compare s_new with each si of S. If it exists, the algorithm is terminated, else 
call generate_sub_pattern() to generate unique sub-patterns to add in S and old si s’ 
from which the new sub-patterns are generated, are deleted from S.}   
The algorithm generate_sub_pattern ( ) is described as follows: Let H be the 
cardinality of the set S and n=length of s_new and Junction, initially 0, indicates the 
intersected cells in s_new by other si and each Junction has a flag “flag” whose 0&1 
value indicates that 2 paths meeting it are different & same respectively. 
For each si ∈S Do   Begin  j := 1; 
    For i= si.beg to si.end Do Begin   

 If(jthcell of s_new = ith cell of si) then  /* si & s_new meets in junction-id j */ 
  Begin     H=H+1, get a new  sH and assign 0 to sH.beg , (i - si.beg) to sH.end   and 

update m of sH and assign ST of si to ST of sH and if this junction(j) is new, reset  
Junction.flag to 0,increase the junction by 1; 
      For k : = 0 to sH.end Do  kth cell of sH := (si.beg + k)th cell of si;    /* EndFor */ 
       Update si.beg to (i+1), assign entering time(ET) of (i+1)th cell of si to ST of si. 
Assign i to v and reset a flag “flag1” to 0 . 
While((j<n)and(v<m)) Do  If((j+1)th cell of s_new = (v + 1)th cell of si ) then 

increment both j, v by 1 and set flag to 1 Else   break;  /* End While */ 
If((flag=0)and((j>n)or(v>m))Then either s_new or si is terminated, so discard the 
current si ,exit from loop, select the next new si  ,start the outermost for loop again. 
Else if( flag1=1) then  /* junction Cell id where si and s_new meets as j */ 
 Begin    H=H+1,get new sH ,assign 0 to sH.beg & (v - si.beg) to sH.end, update m in       
sH. Assign ST of si to ST of sH ,1 to Junction.flag; if “j” is new, Junction=Junction+1; 
   For k=0 to sH.end Do kth cell of sH :=(si.beg + k)th cell of si; /* For end */ 
   si.beg := v;assign ET of vth cell of si to ST of si & v to i; Endif  Else  continue;   j++;   
Endfor ;      Endfor  /* End of outermost for loop */ 
Now assign “-1” value to the cell id of the Junction to denote it as last junction. 
 /*All si are checked. Now derive the new sub-pattern from the s_new */  
 t=0; 
While(cell-id of the tth junction  -1) do 
If( the tth Junction.flag  1) then   Begin H=H+1, get a new sH and assign 0 to sH.beg; 
If(t  0)then sH.end:=( tth junction-id)-((t-1)th junction-id)–1 
else sH.end:=tth junction-id– 1 /* End of inner If */  
update m of sH  and ST of sH as ET of s_new. beg;   

For k:= 0 to sH.end Do  kth cell of sH := (s_new.beg + k)th cell of s_new;/*For end */ 
Assign (the tth junction-id +1) to s_new.beg and t=t+1; 

Endif 

Now S is updated. If the cell-id of any junction obtained in the above algorithm is 
absent in the list of hot cell, that junction is added as a hot cell to the list. The worst 
case complexity of the above algorithm is Ο (H.m.n) where m is the length of longest 
unique sub-pattern and H, n are described as before. For a regular user the number of 
unique sub-patterns H is less, i.e. thus worst complexity of the algorithm is much 
better than [6]. 
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2.2   The Procedure to Page a MT During Call Delivery 

For an incoming call in a MT moving with average velocity V cells/hour, the sub-
pattern being followed by it is obtained from the MSC database because when(at time 
t2) the MT left the hot cell, the MT sent an update signal and at that time the MSC 
database tracked which sub-pattern is going to be followed by the MT. Now last 
update time (t2) is compared with ST(t1) of the sub-pattern stored in the database and 

t = (t2 – t1) sec. If t=0, then the MT is searched in the predicted cell from the 
mobility log. If t >0, the MT’s entry time in the sub-pattern is late than actual time, 
so it is searched C1= Δ× t

V

3600
cells behind the actual cell. If t < 0, the MT’s entry 

time in the sub-pattern is before than the actual time, so it is searched C1 cells ahead 
the actual cell. If it is not found, it is searched as described in section 2. 

3   Analysis of the Proposed Scheme 

For analyzing the LM cost of the scheme, we have assumed semi-random directional 
mobility model [1] and regular hexagonal cells.  

3.1   Mobility Model and Traffic Model 

In semi-random directional model [1] probabilities assigned to neighbors are estim-
ated based on some criteria with more value assigned to a preferred neighbor 
(NPREF) who takes the MT closer towards the destination. Let S(0,0) and D(x,0) be 
the source and destination of MT, h be the no of hops moved by the MT, at any 
instant from S and incoming call arrival follows a Poisson distribution with rate  
calls/hour. 

3.2   Location Update and Paging Cost  

Let h be the distance between the source and the1st cell of the current pattern in cell 
units. The sub-pattern’s length is l in cell unit that is being followed by the MT at that 
instant as shown in Fig 1. Let C be cost incurred to page a single cell. Since the call 
arrival follows the Poisson process, the expected no of calls in a particular time 
interval(I) will be required. We take this I as the time required to cover the pattern 
being followed at that instant. Let Cavg be average cost for a single call during this 
time interval I. The average paging cost, Cpag during the interval I is given by 

( )
×

×
×=

∞

=

−

0
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n
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We assume that U be the cost of a single update. The average cost, avgU for 

updating are given as three cases: if( 5≥h ) UU avg = , if (( 5<l  ) && ( lh −≤≤ 51 )) 
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4   Results and Discussion 

We compare our scheme with the distance based location update (with distance 
threshold l hops which is generally 3 or 4 hops) scheme which performs the best 
among non-predictive schemes. Considering all types of cases it can be shown the 

total cost is ( 12 −× l )
×

×
−165

1
l

+×U { ( ) 113 +−× ll } C× . The value of U and C is 

taken as 1.4 and 1 respectively. The graph in Fig. 2(c) shows the total cost against 
the different distance thresholds which is higher than that of our scheme. In 
distance based update case the total cost does not depend on the distance of LUC 
from the source cell of the MT. The total average cost pagavgT CUC += . In our 

scheme, we assume V=5 cells/hour. We have got the plot of LU, paging and total 
cost with respect to l for different values of h, in Fig 2(a), Fig. 2(b) and Fig. 2(c) 
respectively. Here h implies how far away the pattern is from the source cell S. So 
if h increases, the MT follows nearly optimal path. The graph in Fig 2(a) shows 
that the values of avgU , for 2≤h decreases initially as the length of pattern 

increases because the probability to follow the exact current pattern decreases but 
in the latter stage of its trip becomes constant as it tends to follow optimal route 
with probability 1. As the probability to follow the path increases, the probability 
to send update message increases and the update cost will also increases and vice 
versa. For 2>h , the value of avgU does not change with respect to length of 

pattern. It is quite obvious that when the MT moves far from the S, the MT follows 
the pattern having optimal route and therefore it is not required to send update 
message. The Fig 2(b) shows that the paging cost increases when the length of sub-
pattern increases, but this rate of increase decreases if h or l increases as the MT 
will not deviate so much and try to follow optimal path and so paging cost is 
reduced. So for higher values of l the LU cost becomes constant, but the paging 
cost increases in slow rate. The Fig 2(c) shows that the total average cost of the 
MT decreases when the value of h increases. 

5   Future Work 

As a future work, the mobile users can be grouped into different categories according 
to their mobility pattern, which will reduce the storage overhead in MSC database, 
because the MTs will share some common sub-pattern among themselves. 
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       (a)   (b) 

 
(c) 

Fig. 2. (a) Updated cost vs length of sub-pattern  (b) Paging cost vs length of sub-pattern         
(c ) Total cost(CT) vs length of sub-pattern(l) of a MT 
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